Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 74: 101748, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290673

RESUMO

OBJECTIVE: Cancer cells convert more glucose into lactate than healthy cells, what contributes to their growth advantage. Pyruvate kinase (PK) is a key rate limiting enzyme in this process, what makes it a promising potential therapeutic target. However, currently it is still unclear what consequences the inhibition of PK has on cellular processes. Here, we systematically investigate the consequences of PK depletion for gene expression, histone modifications and metabolism. METHODS: Epigenetic, transcriptional and metabolic targets were analysed in different cellular and animal models with stable knockdown or knockout of PK. RESULTS: Depleting PK activity reduces the glycolytic flux and causes accumulation of glucose-6-phosphate (G6P). Such metabolic perturbation results in stimulation of the activity of a heterodimeric pair of transcription factors MondoA and MLX but not in a major reprogramming of the global H3K9ac and H3K4me3 histone modification landscape. The MondoA:MLX heterodimer upregulates expression of thioredoxin-interacting protein (TXNIP) - a tumour suppressor with multifaceted anticancer activity. This effect of TXNIP upregulation extends beyond immortalised cancer cell lines and is applicable to multiple cellular and animal models. CONCLUSIONS: Our work shows that actions of often pro-tumorigenic PK and anti-tumorigenic TXNIP are tightly linked via a glycolytic intermediate. We suggest that PK depletion stimulates the activity of MondoA:MLX transcription factor heterodimers and subsequently, increases cellular TXNIP levels. TXNIP-mediated inhibition of thioredoxin (TXN) can reduce the ability of cells to scavenge reactive oxygen species (ROS) leading to the oxidative damage of cellular structures including DNA. These findings highlight an important regulatory axis affecting tumour suppression mechanisms and provide an attractive opportunity for combination cancer therapies targeting glycolytic activity and ROS-generating pathways.


Assuntos
Neoplasias , Piruvato Quinase , Animais , Piruvato Quinase/genética , Espécies Reativas de Oxigênio , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo
2.
Angew Chem Int Ed Engl ; 61(40): e202207175, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35876840

RESUMO

2',3'-cGAMP is a cyclic A- and G-containing dinucleotide second messenger, which is formed upon cellular recognition of foreign cytosolic DNA as part of the innate immune response. The molecule binds to the adaptor protein STING, which induces an immune response characterized by the production of type I interferons and cytokines. The development of STING-binding molecules with both agonistic as well as antagonistic properties is currently of tremendous interest to induce or enhance antitumor or antiviral immunity on the one hand, or to treat autoimmune diseases on the other hand. To escape the host innate immune recognition, some viruses encode poxin endonucleases that cleave 2',3'-cGAMP. Here we report that dideoxy-2',3'-cGAMP (1) and analogs thereof, which lack the secondary ribose-OH groups, form a group of poxin-stable STING agonists. Despite their reduced affinity to STING, particularly the compound constructed from two A nucleosides, dideoxy-2',3'-cAAMP (2), features an unusually high antitumor response in mice.


Assuntos
Interferon Tipo I , Proteínas de Membrana/genética , Nucleosídeos , Animais , Antivirais , Citocinas , DNA , Endonucleases , Imunidade Inata , Proteínas de Membrana/metabolismo , Camundongos , Nucleotídeos Cíclicos , Nucleotidiltransferases/metabolismo , Ribose
3.
Clin Epigenetics ; 12(1): 163, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33138842

RESUMO

BACKGROUND: Multiple myeloma (MM) is a heterogeneous plasma cell malignancy that remains challenging to cure. Global hypomethylation correlates with an aggressive phenotype of the disease, while hypermethylation is observed at particular regions of myeloma such as B cell-specific enhancers. The recently discovered active epigenetic mark 5-hydroxymethylCytosine (5hmC) may also play a role in tumor biology; however, little is known about its level and distribution in myeloma. In this study, we investigated the global level and the genomic localization of 5hmC in myeloma cells from 40 newly diagnosed patients, including paired relapses, and of control individuals. RESULTS: Compared to normal plasma cells, we found global 5hmC levels to be lower in myeloma (P < 0.001). Higher levels of 5hmC were found in lower grades of the International Staging System prognostic index (P < 0.05) and tend to associate with a longer overall survival (P < 0.1). From the hydroxymethylome data, we observed that the remaining 5hmC is organized in large domains overlapping with active chromatin marks and chromatin opening. We discovered that 5hmC strongly persists at key oncogenic genes such as CCND1, CCND2 and MMSET and characterized domains that are specifically hydroxymethylated in myeloma subgroups. Novel 5hmC-enriched domains were found at putative enhancers of CCND2 and MYC in newly diagnosed patients. CONCLUSIONS: 5hmC level is associated with clinical aspects of MM. Mapping 5hmC at a genome-wide level provides insights into the disease biology directly from genomic DNA, which makes it a potent mark to study epigenetics on large patient cohorts.


Assuntos
5-Metilcitosina/análogos & derivados , Genoma/genética , Mieloma Múltiplo/genética , Sequências Reguladoras de Ácido Nucleico/genética , 5-Metilcitosina/sangue , 5-Metilcitosina/química , 5-Metilcitosina/metabolismo , Cromatina/genética , Ciclina D1/metabolismo , Ciclina D2/metabolismo , Metilação de DNA , Epigênese Genética , Epigenômica , Feminino , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Fenótipo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/metabolismo , Índice de Gravidade de Doença
4.
Cell Rep ; 11(2): 283-94, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25843715

RESUMO

Ten-eleven translocation hydroxylases (TET1-3) oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). In neurons, increased 5hmC levels within gene bodies correlate positively with gene expression. The mechanisms controlling TET activity and 5hmC levels are poorly understood. In particular, it is not known how the neuronal TET3 isoform lacking a DNA-binding domain is targeted to the DNA. To identify factors binding to TET3, we screened for proteins that co-precipitate with TET3 from mouse retina and identified the transcriptional repressor REST as a highly enriched TET3-specific interactor. REST was able to enhance TET3 hydroxylase activity after co-expression and overexpression of TET3-activated transcription of REST target genes. Moreover, we found that TET3 also interacts with NSD3 and two other H3K36 methyltransferases and is able to induce H3K36 trimethylation. We propose a mechanism for transcriptional activation in neurons that involves REST-guided targeting of TET3 to the DNA for directed 5hmC generation and NSD3-mediated H3K36 trimethylation.


Assuntos
Citosina/análogos & derivados , Proteínas de Ligação a DNA/genética , Neurônios/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Repressoras/genética , 5-Metilcitosina/análogos & derivados , Animais , Citosina/metabolismo , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Retina/metabolismo , Ativação Transcricional/genética
5.
Nat Chem Biol ; 10(7): 574-81, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24838012

RESUMO

Ten eleven translocation (Tet) enzymes oxidize the epigenetically important DNA base 5-methylcytosine (mC) stepwise to 5-hydroxymethylcytosine (hmC), 5-formylcytosine and 5-carboxycytosine. It is currently unknown whether Tet-induced oxidation is limited to cytosine-derived nucleobases or whether other nucleobases are oxidized as well. We synthesized isotopologs of all major oxidized pyrimidine and purine bases and performed quantitative MS to show that Tet-induced oxidation is not limited to mC but that thymine is also a substrate that gives 5-hydroxymethyluracil (hmU) in mouse embryonic stem cells (mESCs). Using MS-based isotope tracing, we show that deamination of hmC does not contribute to the steady-state levels of hmU in mESCs. Protein pull-down experiments in combination with peptide tracing identifies hmU as a base that influences binding of chromatin remodeling proteins and transcription factors, suggesting that hmU has a specific function in stem cells besides triggering DNA repair.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Pentoxil (Uracila)/análogos & derivados , Proteínas Proto-Oncogênicas/metabolismo , Timina/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Isótopos de Carbono , Montagem e Desmontagem da Cromatina , Cromatografia Líquida , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Células-Tronco Embrionárias/citologia , Expressão Gênica , Camundongos , Dados de Sequência Molecular , Oxirredução , Pentoxil (Uracila)/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Espectrometria de Massas por Ionização por Electrospray , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Cell ; 152(5): 1146-59, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23434322

RESUMO

Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers for these modifications are only partially overlapping, and some readers, such as Rfx proteins, display strong specificity. Interactions are dynamic during differentiation, as for example evidenced by the mESC-specific binding of Klf4 to mC and the NPC-specific binding of Uhrf2 to hmC, suggesting specific biological roles for mC and hmC. Oxidized derivatives of mC recruit distinct transcription regulators as well as a large number of DNA repair proteins in mouse ES cells, implicating the DNA damage response as a major player in active DNA demethylation.


Assuntos
5-Metilcitosina/análise , Citosina/análogos & derivados , Metilação de DNA , 5-Metilcitosina/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Citosina/análise , Citosina/metabolismo , DNA Glicosilases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/metabolismo , Fator 4 Semelhante a Kruppel , Espectrometria de Massas , Camundongos , Oxirredução , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição de Fator Regulador X , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Nucleic Acids Res ; 40(13): 6235-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22422838

RESUMO

The unusual cyclin-dependent protein kinase 5 (CDK5) was discovered based on its sequence homology to cell cycle regulating CDKs. CDK5 was found to be active in brain tissues, where it is not involved in cell cycle regulation but in the regulation of neuronal cell differentiation and neurocytoskeleton dynamics. An aberrant regulation of CDK5 leads to the development of various neurodegenerative diseases including Alzheimer's disease. Although CDK5 is not regulated by cyclins, its activity does depend on the association with a protein activator and the presence or absence of further inhibitory factors. Recently, CDK5RAP1 was discovered to inhibit the active CDK5 kinase. Here, we show that CDK5RAP1 is a radical SAM enzyme, which postsynthetically converts the RNA modification N6-isopentenyladenosine (i(6)A) into 2-methylthio-N6-isopentenyladenosine (ms(2)i(6)A). This conversion is surprisingly not limited to mitochondrial tRNA, where the modification was known to exist. Instead, CDK5RAP1 introduces the modification also into nuclear RNA species establishing a link between postsynthetic kinase-based protein modification and postsynthetic RNA modification.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isopenteniladenosina/análogos & derivados , Proteínas do Tecido Nervoso/metabolismo , RNA/metabolismo , Sulfurtransferases/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/genética , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Isopenteniladenosina/análise , Isopenteniladenosina/metabolismo , Mitocôndrias/enzimologia , Proteínas do Tecido Nervoso/análise , RNA/química , RNA Mitocondrial , RNA de Transferência/química , RNA de Transferência/metabolismo
8.
Int J Cancer ; 131(7): 1577-90, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22234893

RESUMO

5-Methylcytosine (5 mC) in genomic DNA has important epigenetic functions in embryonic development and tumor biology. 5-Hydroxymethylcytosine (5 hmC) is generated from 5 mC by the action of the TET (Ten-Eleven-Translocation) enzymes and may be an intermediate to further oxidation and finally demethylation of 5 mC. We have used immunohistochemistry (IHC) and isotope-based liquid chromatography mass spectrometry (LC-MS) to investigate the presence and distribution of 5 hmC in human brain and brain tumors. In the normal adult brain, IHC identified 61.5% 5 hmC positive cells in the cortex and 32.4% 5 hmC in white matter (WM) areas. In tumors, positive staining of cells ranged from 1.1% in glioblastomas (GBMs) (WHO Grade IV) to 8.9% in Grade I gliomas (pilocytic astrocytomas). In the normal adult human brain, LC-MS also showed highest values in cortical areas (1.17% 5 hmC/dG [deoxyguanosine]), in the cerebral WM we measured around 0.70% 5 hmC/dG. levels were related to tumor differentiation, ranging from lowest values of 0.078% 5 hmC/dG in GBMs (WHO Grade IV) to 0.24% 5 hmC/dG in WHO Grade II diffuse astrocytomas. 5 hmC measurements were unrelated to 5 mC values. We find that the number of 5 hmC positive cells and the amount of 5 hmC/dG in the genome that has been proposed to be related to pluripotency and lineage commitment in embryonic stem cells is also associated with brain tumor differentiation and anaplasia.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Citosina/análogos & derivados , DNA/química , Epigênese Genética , 5-Metilcitosina/análogos & derivados , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anaplasia , Astrocitoma/genética , Encéfalo/metabolismo , Córtex Cerebral/metabolismo , Criança , Pré-Escolar , Citosina/análise , Feminino , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
9.
Chem Commun (Camb) ; 47(18): 5196-8, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21448475

RESUMO

RNA nucleosides are often naturally modified into complex non-canonical structures with key biological functions. Here we report LC-MS quantification of the Ar(p) and Gr(p) 2'-ribosylated nucleosides in tRNA using deuterium labelled standards, and the first detection of Gr(p) in complex fungi.


Assuntos
Escherichia coli/química , Guanosina Monofosfato/análogos & derivados , Nucleosídeos/análise , Nucleosídeos/química , RNA Fúngico/química , RNA de Transferência/química , Monofosfato de Adenosina/análogos & derivados , Pareamento de Bases , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Escherichia coli/metabolismo , Guanosina Monofosfato/análise , Guanosina Monofosfato/química , Espectrometria de Massas , RNA Fúngico/metabolismo , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA