Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 114, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978121

RESUMO

The protein Bcl-2, well-known for its anti-apoptotic properties, has been implicated in cancer pathogenesis. Identifying the primary gene responsible for promoting improved cell survival and development has provided compelling evidence for preventing cellular death in the progression of malignancies. Numerous research studies have provided evidence that the abundance of Bcl-2 is higher in malignant cells, suggesting that suppressing Bcl-2 expression could be a viable therapeutic approach for cancer treatment. In this study, we acquired a compound collection using a database that includes constituents from Traditional Chinese Medicine (TCM). Initially, we established a pharmacophore model and utilized it to search the TCM database for potential compounds. Compounds with a fitness score exceeding 0.75 were selected for further analysis. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) analysis identified six compounds with favorable therapeutic characteristics. The compounds that successfully passed the initial screening process based on the pharmacodynamic model were subjected to further evaluation. Extra-precision (XP) docking was employed to identify the compounds with the most favorable XP docking scores. Further analysis using the Molecular Mechanics Generalized Born Surface Area (MM-GBSA) method to calculate the overall free binding energy. The binding energy between the prospective ligand molecule and the target protein Bcl-2 was assessed by a 100 ns molecular dynamics simulation for curcumin and Epigallocatechin gallate (EGCG). The findings of this investigation demonstrate the identification of a molecular structure that effectively inhibits the functionality of the Bcl-2 when bound to the ligand EGCG. Consequently, this finding presents a novel avenue for the development of pharmaceuticals capable of effectively addressing both inflammatory and tumorous conditions.


Assuntos
Catequina , Curcumina , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-bcl-2 , Catequina/análogos & derivados , Catequina/farmacologia , Catequina/química , Catequina/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Humanos , Curcumina/farmacologia , Curcumina/química , Curcumina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/metabolismo , Ligação Proteica , Farmacóforo
2.
Eur J Med Res ; 29(1): 313, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849950

RESUMO

Alzheimer's disease (AD) is a diverse disease with a complex pathophysiology. The presence of extracellular ß-amyloid deposition as neuritic plaques and intracellular accumulation of hyper-phosphorylated tau as neurofibrillary tangles remain the core neuropathologic criteria for diagnosing Alzheimer's disease. Nonetheless, several recent basic discoveries have revealed significant pathogenic roles for other essential cellular and molecular processes. Previously, there were not so many disease-modifying medications (DMT) available as drug distribution through the blood-brain barrier (BBB) is difficult due to its nature, especially drugs of polypeptides nature and proteins. Recently FDA has approved lecanemab as DMT for its proven efficacy. It is also complicated to deliver drugs for diseases like epilepsy or any brain tumor due to the limitations of the BBB. After the advancements in the drug delivery system, different techniques are used to transport the medication across the BBB. Other methods are used, like enhancement of brain blood vessel fluidity by liposomes, infusion of hyperosmotic solutions, and local intracerebral implants, but these are invasive approaches. Non-invasive approaches include the formulation of nanoparticles and their coating with polymers. This review article emphasizes all the above-mentioned techniques, procedures, and challenges to transporting medicines across the BBB. It summarizes the most recent literature dealing with drug delivery across the BBB.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Animais , Transporte Biológico
3.
Molecules ; 28(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37687232

RESUMO

Fruits, vegetables, and other food items contain phytochemicals or secondary metabolites which may be considered non-essential nutrients but have medicinal importance. These dietary phytochemicals exhibit chemopreventive and therapeutic effects against numerous diseases. Polyphenols are secondary metabolites found in vegetables, fruits, and grains. These compounds exhibit several health benefits such as immune modulators, vasodilators, and antioxidants. This review focuses on recent studies on using dietary polyphenols to treat cardiovascular disorders, atherosclerosis, and vascular endothelium deficits. We focus on exploring the safety of highly effective polyphenols to ensure their maximum impact on cardiac abnormalities and discuss recent epidemiological evidence and intervention trials related to these properties. Kaempferol, quercetin, and resveratrol prevent oxidative stress by regulating proteins that induce oxidation in heart tissues. In addition, polyphenols modulate the tone of the endothelium of vessels by releasing nitric oxide (NO) and reducing low-density lipoprotein (LDL) oxidation to prevent atherosclerosis. In cardiomyocytes, polyphenols suppress the expression of inflammatory markers and inhibit the production of inflammation markers to exert an anti-inflammatory response. Consequently, heart diseases such as strokes, hypertension, heart failure, and ischemic heart disease could be prevented by dietary polyphenols.


Assuntos
Aterosclerose , Insuficiência Cardíaca , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Verduras , Endotélio Vascular
4.
Molecules ; 28(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241737

RESUMO

Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic ß-cells against glucose toxicity, promoting ß-cell proliferation, reducing ß-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Estilbenos , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Antocianinas/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glucose/metabolismo , Insulina/metabolismo , Antioxidantes/farmacologia , Flavonóis , Diarileptanoides/uso terapêutico , Estilbenos/uso terapêutico
5.
Foods ; 11(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159528

RESUMO

Syzygium cumini, locally known as Jamun in Asia, is a fruit-bearing crop belonging to the Myrtaceae family. This study aims to summarize the most recent literature related to botany, traditional applications, phytochemical ingredients, pharmacological activities, nutrition, and potential food applications of S. cumini. Traditionally, S. cumini has been utilized to combat diabetes and dysentery, and it is given to females with a history of abortions. Anatomical parts of S. cumini exhibit therapeutic potentials including antioxidant, anti-inflammatory, analgesic, antipyretic, antimalarial, anticancer, and antidiabetic activities attributed to the presence of various primary and secondary metabolites such as carbohydrates, proteins, amino acids, alkaloids, flavonoids (i.e., quercetin, myricetin, kaempferol), phenolic acids (gallic acid, caffeic acid, ellagic acid) and anthocyanins (delphinidin-3,5-O-diglucoside, petunidin-3,5-O-diglucoside, malvidin-3,5-O-diglucoside). Different fruit parts of S. cumini have been employed to enhance the nutritional and overall quality of jams, jellies, wines, and fermented products. Today, S. cumini is also used in edible films. So, we believe that S. cumini's anatomical parts, extracts, and isolated compounds can be used in the food industry with applications in food packaging and as food additives. Future research should focus on the isolation and purification of compounds from S. cumini to treat various disorders. More importantly, clinical trials are required to develop low-cost medications with a low therapeutic index.

6.
Nutrients ; 13(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960117

RESUMO

Globally grown and organoleptically appreciated Grewia species are known as sources of bioactive compounds that avert the risk of communicable and non-communicable diseases. Therefore, in recent years, the genus Grewia has attracted increasing scientific attention. This is the first systematic review which focusses primarily on the nutritional composition, phytochemical profile, pharmacological properties, and disease preventative role of Grewia species. The literature published from 1975 to 2021 was searched to retrieve relevant articles from databases such as Google Scholar, Scopus, PubMed, and Web of Science. Two independent reviewers carried out the screening, selection of articles, and data extraction. Of 815 references, 56 met our inclusion criteria. G. asiatica and G. optiva were the most frequently studied species. We found 167 chemical compounds from 12 Grewia species, allocated to 21 categories. Flavonoids represented 41.31% of the reported bioactive compounds, followed by protein and amino acids (10.7%), fats and fatty acids (9.58%), ash and minerals (6.58%), and non-flavonoid polyphenols (5.96%). Crude extracts, enriched with bioactive compounds, and isolated compounds from the Grewia species show antioxidant, anticancer, anti-inflammatory, antidiabetic, hepatoprotective/radioprotective, immunomodulatory, and sedative hypnotic potential. Moreover, antimicrobial properties, improvement in learning and memory deficits, and effectiveness against neurodegenerative ailments are also described within the reviewed article. Nowadays, the side effects of some synthetic drugs and therapies, and bottlenecks in the drug development pathway have directed the attention of researchers and pharmaceutical industries towards the development of new products that are safe, cost-effective, and readily available. However, the application of the Grewia species in pharmaceutical industries is still limited.


Assuntos
Grewia/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Animais , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Linhagem Celular , Etnofarmacologia/métodos , Flavonoides/análise , Flavonoides/farmacologia , Frutas/química , Humanos , Hipnóticos e Sedativos/farmacologia , Hipoglicemiantes/farmacologia , Agentes de Imunomodulação/farmacologia , Camundongos , Fitoterapia/métodos , Extratos Vegetais/administração & dosagem , Ratos , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA