Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37190232

RESUMO

Thermal Magnetic Resonance (ThermalMR) is a theranostic concept that combines diagnostic magnetic resonance imaging (MRI) with targeted thermal therapy in the hyperthermia (HT) range using a radiofrequency (RF) applicator in an integrated system. ThermalMR adds a therapeutic dimension to a diagnostic MRI device. Focused, targeted RF heating of deep-seated brain tumors, accurate non-invasive temperature monitoring and high-resolution MRI are specific requirements of ThermalMR that can be addressed with novel concepts in RF applicator design. This work examines hybrid RF applicator arrays combining loop and self-grounded bow-tie (SGBT) dipole antennas for ThermalMR of brain tumors, at magnetic field strengths of 7.0 T, 9.4 T and 10.5 T. These high-density RF arrays improve the feasible transmission channel count, and provide additional degrees of freedom for RF shimming not afforded by using dipole antennas only, for superior thermal therapy and MRI diagnostics. These improvements are especially relevant for ThermalMR theranostics of deep-seated brain tumors because of the small surface area of the head. ThermalMR RF applicators with the hybrid loop+SGBT dipole design outperformed applicators using dipole-only and loop-only designs, with superior MRI performance and targeted RF heating. Array variants with a horse-shoe configuration covering an arc (270°) around the head avoiding the eyes performed better than designs with 360° coverage, with a 1.3 °C higher temperature rise inside the tumor while sparing healthy tissue. Our EMF and temperature simulations performed on a virtual patient with a clinically realistic intracranial tumor provide a technical foundation for implementation of advanced RF applicators tailored for ThermalMR theranostics of brain tumors.

2.
Theranostics ; 13(4): 1217-1234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923535

RESUMO

Theranostic imaging methods could greatly enhance our understanding of the distribution of CNS-acting drugs in individual patients. Fluorine-19 magnetic resonance imaging (19F MRI) offers the opportunity to localize and quantify fluorinated drugs non-invasively, without modifications and without the application of ionizing or other harmful radiation. Here we investigated siponimod, a sphingosine 1-phosphate (S1P) receptor antagonist indicated for secondary progressive multiple sclerosis (SPMS), to determine the feasibility of in vivo 19F MR imaging of a disease modifying drug. Methods: The 19F MR properties of siponimod were characterized using spectroscopic techniques. Four MRI methods were investigated to determine which was the most sensitive for 19F MR imaging of siponimod under biological conditions. We subsequently administered siponimod orally to 6 mice and acquired 19F MR spectra and images in vivo directly after administration, and in ex vivo tissues. Results: The 19F transverse relaxation time of siponimod was 381 ms when dissolved in dimethyl sulfoxide, and substantially reduced to 5 ms when combined with serum, and to 20 ms in ex vivo liver tissue. Ultrashort echo time (UTE) imaging was determined to be the most sensitive MRI technique for imaging siponimod in a biological context and was used to map the drug in vivo in the stomach and liver. Ex vivo images in the liver and brain showed an inhomogeneous distribution of siponimod in both organs. In the brain, siponimod accumulated predominantly in the cerebrum but not the cerebellum. No secondary 19F signals were detected from metabolites. From a translational perspective, we found that acquisitions done on a 3.0 T clinical MR scanner were 2.75 times more sensitive than acquisitions performed on a preclinical 9.4 T MR setup when taking changes in brain size across species into consideration and using equivalent relative spatial resolution. Conclusion: Siponimod can be imaged non-invasively using 19F UTE MRI in the form administered to MS patients, without modification. This study lays the groundwork for more extensive preclinical and clinical investigations. With the necessary technical development, 19F MRI has the potential to become a powerful theranostic tool for studying the time-course and distribution of CNS-acting drugs within the brain, especially during pathology.


Assuntos
Imagem por Ressonância Magnética de Flúor-19 , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Animais , Camundongos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Preparações Farmacêuticas , Imageamento por Ressonância Magnética/métodos , Receptores de Esfingosina-1-Fosfato
3.
Quant Imaging Med Surg ; 11(7): 3098-3119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34249638

RESUMO

BACKGROUND: The use of rigid multi-exponential models (with a priori predefined numbers of components) is common practice for diffusion-weighted MRI (DWI) analysis of the kidney. This approach may not accurately reflect renal microstructure, as the data are forced to conform to the a priori assumptions of simplified models. This work examines the feasibility of less constrained, data-driven non-negative least squares (NNLS) continuum modelling for DWI of the kidney tubule system in simulations that include emulations of pathophysiological conditions. METHODS: Non-linear least squares (LS) fitting was used as reference for the simulations. For performance assessment, a threshold of 5% or 10% for the mean absolute percentage error (MAPE) of NNLS and LS results was used. As ground truth, a tri-exponential model using defined volume fractions and diffusion coefficients for each renal compartment (tubule system: Dtubules , ftubules ; renal tissue: Dtissue , ftissue ; renal blood: Dblood , fblood ;) was applied. The impact of: (I) signal-to-noise ratio (SNR) =40-1,000, (II) number of b-values (n=10-50), (III) diffusion weighting (b-rangesmall =0-800 up to b-rangelarge =0-2,180 s/mm2), and (IV) fixation of the diffusion coefficients Dtissue and Dblood was examined. NNLS was evaluated for baseline and pathophysiological conditions, namely increased tubular volume fraction (ITV) and renal fibrosis (10%: grade I, mild) and 30% (grade II, moderate). RESULTS: NNLS showed the same high degree of reliability as the non-linear LS. MAPE of the tubular volume fraction (ftubules ) decreased with increasing SNR. Increasing the number of b-values was beneficial for ftubules precision. Using the b-rangelarge led to a decrease in MAPE ftubules compared to b-rangesmall. The use of a medium b-value range of b=0-1,380 s/mm2 improved ftubules precision, and further bmax increases beyond this range yielded diminishing improvements. Fixing Dblood and Dtissue significantly reduced MAPE ftubules and provided near perfect distinction between baseline and ITV conditions. Without constraining the number of renal compartments in advance, NNLS was able to detect the (fourth) fibrotic compartment, to differentiate it from the other three diffusion components, and to distinguish between 10% vs. 30% fibrosis. CONCLUSIONS: This work demonstrates the feasibility of NNLS modelling for DWI of the kidney tubule system and shows its potential for examining diffusion compartments associated with renal pathophysiology including ITV fraction and different degrees of fibrosis.

4.
MAGMA ; 32(1): 37-49, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30421250

RESUMO

OBJECTIVE: Fluorine MR would benefit greatly from enhancements in signal-to-noise ratio (SNR). This study examines the sensitivity gain of 19F MR that can be practically achieved when moving from 9.4 to 21.1 T. MATERIALS AND METHODS: We studied perfluoro-15-crown-5-ether (PFCE) at both field strengths (B0), as a pure compound, in the form of nanoparticles (NP) as employed to study inflammation in vivo, as well as in inflamed tissue. Brains, lymph nodes (LNs) and spleens were obtained from mice with experimental autoimmune encephalomyelitis (EAE) that had been administered PFCE NPs. All samples were measured at both B0 with 2D-RARE and 2D-FLASH using 19F volume radiofrequency resonators together. T1 and T2 of PFCE were measured at both B0 strengths. RESULTS: Compared to 9.4 T, an SNR gain of > 3 was observed for pure PFCE and > 2 for PFCE NPs at 21.1 T using 2D-FLASH. A dependency of 19F T1 and T2 relaxation on B0 was demonstrated. High spatially resolved 19F MRI of EAE brains and LNs at 21.1 T revealed signals not seen at 9.4 T. DISCUSSION: Enhanced SNR and T1 shortening indicate the potential benefit of in vivo 19F MR at higher B0 to study inflammatory processes with greater detail.


Assuntos
Éteres de Coroa/química , Imagem por Ressonância Magnética de Flúor-19 , Flúor/química , Inflamação/tratamento farmacológico , Animais , Encéfalo/diagnóstico por imagem , Calibragem , Meios de Contraste/química , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Feminino , Linfonodos/diagnóstico por imagem , Camundongos , Nanopartículas , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Razão Sinal-Ruído , Marcadores de Spin , Baço/diagnóstico por imagem
5.
Neuroscience ; 403: 136-144, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29273325

RESUMO

Our recent studies demonstrated that electrostatically stabilized very small superparamagnetic iron oxide particles (VSOPs) are promising MRI probes for detecting various pathological aspects of autoimmunity in the central nervous system (CNS). However, investigation of the precise tissue and cellular distribution of VSOP has been technically limited due to the need to use iron detection methods for VSOP visualization. Therefore, we assessed here the utility of europium (Eu)-doped VSOP as an MRI tool for in vivo investigations in the animal model experimental autoimmune encephalomyelitis (EAE), and as a tool to investigate histopathological processes in the CNS using fluorescence microscopy. We demonstrated that Eu-VSOP display the same properties as VSOP in terms of revealing inflammation-mediated changes by binding to brain endothelium in vitro, and in terms of visualizing brain lesions in EAE in vivo. MRI examinations with Eu-VSOP confirm that at peak disease particles accumulated inside the choroid plexus, and in cerebellar and meningeal lesions. Importantly, Eu-VSOP-based MRI showed for the first time in a longitudinal setup that particles were absent from the choroid plexus in mice during remission of EAE, but accumulated again during subsequent relapse. Within the choroid plexus, Eu-VSOP were associated both with monocytes/macrophages present in the plexus stroma, and associated with epithelial cells. Using Eu-VSOP, we demonstrated for the first time the involvement of the choroid plexus in relapses. Thus, Eu-VSOP have the potential to reveal various aspects of choroid plexus involvement in neuroinflammation, including monocyte recruitment from the blood and alterations of the choroid plexus epithelium.


Assuntos
Meios de Contraste , Európio , Compostos Férricos , Imageamento por Ressonância Magnética/métodos , Microscopia de Fluorescência/métodos , Nanopartículas , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Encéfalo/patologia , Linhagem Celular , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Feminino , Inflamação/diagnóstico por imagem , Inflamação/imunologia , Inflamação/patologia , Camundongos
6.
Mol Cancer Ther ; 15(8): 1975-87, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27256374

RESUMO

Glioma regression requires the recruitment of potent antitumor immune cells into the tumor microenvironment. Dendritic cells (DC) play a role in immune responses to these tumors. The fact that DC vaccines do not effectively combat high-grade gliomas, however, suggests that DCs need to be genetically modified specifically to promote their migration to tumor relevant sites. Previously, we identified extracellular signal-regulated kinase (ERK1) as a regulator of DC immunogenicity and brain autoimmunity. In the current study, we made use of modern magnetic resonance methods to study the role of ERK1 in regulating DC migration and tumor progression in a model of high-grade glioma. We found that ERK1-deficient mice are more resistant to the development of gliomas, and tumor growth in these mice is accompanied by a higher infiltration of leukocytes. ERK1-deficient DCs exhibit an increase in migration that is associated with sustained Cdc42 activation and increased expression of actin-associated cytoskeleton-organizing proteins. We also demonstrated that ERK1 deletion potentiates DC vaccination and provides a survival advantage in high-grade gliomas. Considering the therapeutic significance of these results, we propose ERK1-deleted DC vaccines as an additional means of eradicating resilient tumor cells and preventing tumor recurrence. Mol Cancer Ther; 15(8); 1975-87. ©2016 AACR.


Assuntos
Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glioma/imunologia , Glioma/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/imunologia , Modelos Animais de Doenças , Glioma/diagnóstico , Glioma/terapia , Humanos , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Gradação de Tumores , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
7.
Brain Struct Funct ; 221(2): 1157-72, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25523105

RESUMO

Microglia undergo a process of activation in pathology which is controlled by many factors including neurotransmitters. We found that a subpopulation (11 %) of freshly isolated adult microglia respond to the muscarinic acetylcholine receptor agonist carbachol with a Ca(2+) increase and a subpopulation of similar size (16 %) was observed by FACS analysis using an antibody against the M3 receptor subtype. The carbachol-sensitive population increased in microglia/brain macrophages isolated from tissue of mouse models for stroke (60 %) and Alzheimer's disease (25 %), but not for glioma and multiple sclerosis. Microglia cultured from adult and neonatal brain contained a carbachol-sensitive subpopulation (8 and 9 %), which was increased by treatment with interferon-γ to around 60 %. This increase was sensitive to blockers of protein synthesis and correlated with an upregulation of the M3 receptor subtype and with an increased expression of MHC-I and MHC-II. Carbachol was a chemoattractant for microglia and decreased their phagocytic activity.


Assuntos
Doença de Alzheimer/metabolismo , Microglia/metabolismo , Receptores Muscarínicos/biossíntese , Acidente Vascular Cerebral/metabolismo , Animais , Encéfalo/metabolismo , Carbacol/farmacologia , Modelos Animais de Doenças , Feminino , Glioma/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Modelos Animais , Esclerose Múltipla/metabolismo , Agonistas Muscarínicos/farmacologia , Neurotransmissores/metabolismo , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/metabolismo
8.
Nat Commun ; 6: 8535, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26437238

RESUMO

Cellular functions, ranging from focal adhesion (FA) dynamics and cell motility to tumour growth, are orchestrated by signals cells receive from outside via cell surface receptors. Signalling is fine-tuned by the exo-endocytic cycling of these receptors to control cellular responses such as FA dynamics, which determine cell motility. How precisely endocytosis regulates turnover of the various cell surface receptors remains unclear. Here we identify Stonin1, an endocytic adaptor of unknown function, as a regulator of FA dynamics and cell motility, and demonstrate that it facilitates the internalization of the oncogenic proteoglycan NG2, a co-receptor of integrins and platelet-derived growth factor receptor. Embryonic fibroblasts obtained from Stonin1-deficient mice display a marked surface accumulation of NG2, increased cellular signalling and defective FA disassembly as well as altered cellular motility. These data establish Stonin1 as a specific adaptor for the endocytosis of NG2 and as an important factor for FA dynamics and cell migration.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Antígenos/metabolismo , Movimento Celular/genética , Endocitose/genética , Adesões Focais/genética , Proteoglicanas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Cromatografia Líquida , Fibroblastos/metabolismo , Citometria de Fluxo , Imunofluorescência , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fotodegradação , Espectrometria de Massas em Tandem , Fatores Genéricos de Transcrição/genética
9.
Invest Radiol ; 49(5): 260-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24651662

RESUMO

OBJECTIVES: This study was designed to examine the feasibility of ophthalmic magnetic resonance imaging (MRI) at 7 T using a local 6-channel transmit/receive radiofrequency (RF) coil array in healthy volunteers and patients with intraocular masses. MATERIALS AND METHODS: A novel 6-element transceiver RF coil array that makes uses of loop elements and that is customized for eye imaging at 7 T is proposed. Considerations influencing the RF coil design and the characteristics of the proposed RF coil array are presented. Numerical electromagnetic field simulations were conducted to enhance the RF coil characteristics. Specific absorption rate simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Phantom experiments were carried out to validate the electromagnetic field simulations and to assess the real performance of the proposed transceiver array. Certified approval for clinical studies was provided by a local notified body before the in vivo studies. The suitability of the RF coil to image the human eye, optical nerve, and orbit was examined in an in vivo feasibility study including (a) 3-dimensional (3D) gradient echo (GRE) imaging, (b) inversion recovery 3D GRE imaging, and (c) 2D T2-weighted fast spin-echo imaging. For this purpose, healthy adult volunteers (n = 17; mean age, 34 ± 11 years) and patients with intraocular masses (uveal melanoma, n = 5; mean age, 57 ± 6 years) were investigated. RESULTS: All subjects tolerated all examinations well with no relevant adverse events. The 6-channel coil array supports high-resolution 3D GRE imaging with a spatial resolution as good as 0.2 × 0.2 × 1.0 mm, which facilitates the depiction of anatomical details of the eye. Rather, uniform signal intensity across the eye was found. A mean signal-to-noise ratio of approximately 35 was found for the lens, whereas the vitreous humor showed a signal-to-noise ratio of approximately 30. The lens-vitreous humor contrast-to-noise ratio was 8, which allows good differentiation between the lens and the vitreous compartment. Inversion recovery prepared 3D GRE imaging using a spatial resolution of 0.4 × 0.4 × 1.0 mm was found to be feasible. T2-weighted 2D fast spin-echo imaging with the proposed RF coil afforded a spatial resolution of 0.25 × 0.25 × 0.7 mm. CONCLUSIONS: This work provides valuable information on the feasibility of ophthalmic MRI at 7 T using a dedicated 6-channel transceiver coil array that supports the acquisition of high-contrast, high-spatial resolution images in healthy volunteers and patients with intraocular masses. The results underscore the challenges of ocular imaging at 7 T and demonstrate that these issues can be offset by using tailored RF coil hardware. The benefits of such improvements would be in positive alignment with explorations that are designed to examine the potential of MRI for the assessment of spatial arrangements of the eye segments and their masses with the ultimate goal to provide imaging means for guiding treatment decisions in ophthalmological diseases.


Assuntos
Neoplasias Oculares/diagnóstico , Olho/patologia , Imageamento por Ressonância Magnética/instrumentação , Adulto , Idoso , Desenho de Equipamento , Olho/anatomia & histologia , Estudos de Viabilidade , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Valores de Referência , Razão Sinal-Ruído , Adulto Jovem
10.
Neuro Oncol ; 15(11): 1457-68, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24014382

RESUMO

BACKGROUND: Glioblastomas are the most aggressive primary brain tumors in humans. Microglia/brain macrophage accumulation in and around the tumor correlates with malignancy and poor clinical prognosis of these tumors. We have previously shown that microglia promote glioma expansion through upregulation of membrane type 1 matrix metalloprotease (MT1-MMP). This upregulation depends on signaling via the Toll-like receptor (TLR) adaptor molecule myeloid differentiation primary response gene 88 (MyD88). METHODS: Using in vitro, ex vivo, and in vivo techniques, we identified TLR2 as the main TLR controlling microglial MT1-MMP expression and promoting microglia-assisted glioma expansion. RESULTS: The implantation of mouse GL261 glioma cells into TLR2 knockout mice resulted in significantly smaller tumors, reduced MT1-MMP expression, and enhanced survival rates compared with wild-type control mice. Tumor expansion studied in organotypic brain slices depended on both parenchymal TLR2 expression and the presence of microglia. Glioma-derived soluble factors and synthetic TLR2 specific ligands induced MT1-MMP expression in microglia from wild-type mice, but no such change in MT1-MMP gene expression was observed in microglia from TLR2 knockout mice. We also found evidence that TLR1 and TLR6 cofunction with TLR2 as heterodimers in regulating MT1-MMP expression in vitro. CONCLUSIONS: Our results thus show that activation of TLR2 along with TLRs 1 and/or 6 converts microglia into a glioma supportive phenotype.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Ativação de Macrófagos , Metaloproteinase 14 da Matriz/metabolismo , Microglia/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Encéfalo/patologia , Feminino , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Taxa de Sobrevida , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 6 Toll-Like/metabolismo
11.
Sci Rep ; 3: 1280, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23412352

RESUMO

Magnetic resonance imaging (MRI) provides the opportunity of tracking cells in vivo. Major challenges in dissecting cells from the recipient tissue and signal sensitivity constraints albeit exist. In this study, we aimed to tackle these limitations in order to study inflammation in autoimmune encephalomyelitis. We constructed a very small dual-tunable radio frequency (RF) birdcage probe tailored for (19)F (fluorine) and (1)H (proton) MR mouse neuroimaging. The novel design eliminated the need for extra electrical components on the probe structure and afforded a uniform -field as well as good SNR. We employed fluorescently-tagged (19)F nanoparticles and could study the dynamics of inflammatory cells between CNS and lymphatic system during development of encephalomyelitis, even within regions of the brain that are otherwise not easily visualized by conventional probes. (19)F/(1)H MR Neuroimaging will allow us to study the nature of immune cell infiltration during brain inflammation over an extensive period of time.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Flúor , Imageamento por Ressonância Magnética/instrumentação , Neuroimagem/instrumentação , Animais , Encéfalo/citologia , Desenho de Equipamento , Imageamento por Ressonância Magnética/métodos , Camundongos , Nanopartículas , Neuroimagem/métodos , Prótons
12.
Acta Neuropathol ; 125(4): 609-20, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23344256

RESUMO

High-grade gliomas are the most common primary brain tumors. Their malignancy is promoted by the complex crosstalk between different cell types in the central nervous system. Microglia/brain macrophages infiltrate high-grade gliomas and contribute to their progression. To identify factors that mediate the attraction of microglia/macrophages to malignant brain tumors, we established a glioma cell encapsulation model that was applied in vivo. Mouse GL261 glioma cell line and human high-grade glioma cells were seeded into hollow fibers (HF) that allow the passage of soluble molecules but not cells. The glioma cell containing HF were implanted into one brain hemisphere and simultaneously HF with non-transformed fibroblasts (controls) were introduced into the contralateral hemisphere. Implanted mouse and human glioma- but not fibroblast-containing HF attracted microglia and up-regulated immunoreactivity for GFAP, which is a marker of astrogliosis. In this study, we identified GDNF as an important factor for microglial attraction: (1) GL261 and human glioma cells secret GDNF, (2) reduced GDNF production by siRNA in GL261 in mouse glioma cells diminished attraction of microglia, (3) over-expression of GDNF in fibroblasts promoted microglia attraction in our HF assay. In vitro migration assays also showed that GDNF is a strong chemoattractant for microglia. While GDNF release from human or mouse glioma had a profound effect on microglial attraction, the glioma-induced astrogliosis was not affected. Finally, we could show that injection of GL261 mouse glioma cells with GDNF knockdown by shRNA into mouse brains resulted in reduced tumor expansion and improved survival as compared to injection of control cells.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Glioblastoma/metabolismo , Gliose/metabolismo , Microglia/metabolismo , Animais , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Quimiotaxia , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Glioblastoma/genética , Glioblastoma/patologia , Gliose/genética , Gliose/patologia , Humanos , Camundongos , Microglia/patologia , Transplante de Neoplasias
13.
PLoS One ; 6(7): e21981, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21811551

RESUMO

The development of cellular tracking by fluorine ((19)F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton ((1)H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by (19)F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the (19)F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models.


Assuntos
Células Dendríticas/citologia , Células Dendríticas/imunologia , Fluorocarbonos/química , Imageamento por Ressonância Magnética , Tamanho da Partícula , Animais , Diferenciação Celular , Forma Celular , Emulsões , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
14.
J Neuroimmunol ; 184(1-2): 17-26, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17222462

RESUMO

Multiple sclerosis (MS) is the most common chronic demyelinating disease of the central nervous system (CNS) and the major cause of neurological disability in young adults in Western countries. In spite of intensive research efforts, treatment options established to date do not sufficiently prevent the accumulation of tissue damage and clinical disability in patients with MS. We here describe recently identified molecules responsible for the inflammatory and the neurodegenerative processes in MS and its animal model, experimental autoimmune encephalomyelitis (EAE), and review new treatment options targeting both aspects of this disease.


Assuntos
Esclerose Múltipla/complicações , Degeneração Neural/etiologia , Degeneração Neural/prevenção & controle , Acil Coenzima A/metabolismo , Animais , Catequina/análogos & derivados , Catequina/uso terapêutico , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Fármacos Neuroprotetores/uso terapêutico , Linfócitos T/fisiologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
15.
J Immunol ; 168(10): 4881-8, 2002 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-11994437

RESUMO

TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, induces apoptosis in susceptible cells, which can be both malignant and nontransformed. Despite homologies among the death ligands, there are great differences between the TRAIL system on the one hand and the TNF and CD95 systems on the other hand. In particular, TRAIL-induced apoptosis differs between rodents and man. Studies on animal models of autoimmune diseases suggested an influence of TRAIL on T cell growth and effector functions. Because we previously demonstrated that TRAIL does not induce apoptosis in human (auto)antigen-specific T cells, we now asked whether TRAIL exhibits other immunoregulatory properties in these cells. Active TRAIL inhibited calcium influx through store-operated calcium release-activated calcium channels, IFN-gamma/IL-4 production, and proliferation. These effects were independent of APC, Ag specificity, and Th differentiation, and no differences were detected between healthy donors and multiple sclerosis patients. TRAIL affected neither the expression of the cell cycling inhibitor p27(Kip1) nor the capacity of T cells to produce IL-2 upon Ag rechallenge, indicating that signaling via TRAIL receptor does not induce T cell anergy. Instead, the TRAIL-induced hypoproliferation could be attributed to the down-regulation of the cyclin-dependent kinase 4, indicating a G(1) arrest of the cell cycle. Thus, although it does not contribute to mechanisms of peripheral T cell tolerance such as clonal anergy or deletion by apoptosis, TRAIL can directly inhibit activation of human T cells via blockade of calcium influx.


Assuntos
Apoptose/imunologia , Autoantígenos/imunologia , Regulação para Baixo/imunologia , Epitopos de Linfócito T/imunologia , Inibidores do Crescimento/fisiologia , Ativação Linfocitária/imunologia , Glicoproteínas de Membrana/fisiologia , Subpopulações de Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/fisiologia , Células Apresentadoras de Antígenos/imunologia , Proteínas Reguladoras de Apoptose , Cálcio/antagonistas & inibidores , Cálcio/metabolismo , Divisão Celular/imunologia , Linhagem Celular , Anergia Clonal/imunologia , Fase G1/imunologia , Inibidores do Crescimento/farmacologia , Humanos , Interferon gama/antagonistas & inibidores , Interferon gama/biossíntese , Interleucina-4/antagonistas & inibidores , Interleucina-4/biossíntese , Células Jurkat , Ligantes , Glicoproteínas de Membrana/farmacologia , Fase S/imunologia , Solubilidade , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF , Fator de Necrose Tumoral alfa/farmacologia
16.
J Neuroimmunol ; 126(1-2): 213-20, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12020973

RESUMO

T cell resistance towards apoptotic elimination by activation-induced cell death (AICD) might be a crucial pathogenic feature of multiple sclerosis (MS). Since the Bcl-2 family is critically involved in the regulation of apoptosis, we investigated the protein expression of Bcl-2, Bcl-X(L), and Bax in peripheral blood mononuclear cells (PBMC) of 23 MS patients and 29 control subjects. An in vitro model of AICD, which exemplifies the elimination of antigen-reactive T cells in vivo, was used as an indication of T cell susceptibility or resistance towards apoptosis. Increased expression of the survival factor Bcl-X(L), which directly correlated with a resistance towards AICD, was observed in peripheral immune cells of MS patients. In contrast to Bcl-X(L), no differences were found in the protein expression of Bcl-2 and Bax between patients and controls. Our data indicate that the anti-apoptotic factor Bcl-X(L), responsible for T cell resistance towards apoptosis, might be an important factor in the MS pathogenesis and a potential target for therapeutic intervention.


Assuntos
Esclerose Múltipla/imunologia , Esclerose Múltipla/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linfócitos T/citologia , Adulto , Apoptose/imunologia , Sobrevivência Celular/imunologia , Feminino , Expressão Gênica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/análise , Proteína X Associada a bcl-2 , Proteína bcl-X
17.
J Neurosci ; 22(4): RC209, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11844843

RESUMO

Apoptosis mediated by members of the tumor necrosis factor (TNF)-nerve growth factor superfamily plays a crucial role in the interaction of the nervous and the immune system. On the one hand, it is involved in the defense mechanisms of the brain, the immune privilege. On the other hand, it is involved in the induction of glial-neuronal cell death in neuroinflammatory diseases. Here, we show that in contrast to the other known death ligands, TNF-related apoptosis-inducing ligand (TRAIL) is not constitutively expressed in the human brain, whereas both apoptosis-mediating and apoptosis-blocking TRAIL receptors are found on neurons, astrocytes, and oligodendrocytes. Thus, the brain differs from other immune-privileged organs, such as the placenta, with the TRAIL receptor-TRAIL system not being part of the immune privilege of the brain. Conversely, this death receptor-ligand system might well play an important role in T cell-mediated autoimmune diseases of the CNS such as multiple sclerosis.


Assuntos
Encéfalo/metabolismo , Glicoproteínas de Membrana/deficiência , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/deficiência , Especificidade de Anticorpos , Apoptose , Proteínas Reguladoras de Apoptose , Western Blotting , Encéfalo/patologia , Química Encefálica , Linhagem Celular , Epilepsia/metabolismo , Proteínas Ligadas por GPI , Humanos , Imuno-Histoquímica , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Placenta/química , Placenta/citologia , Placenta/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/análise , Receptores do Fator de Necrose Tumoral/genética , Membro 10c de Receptores do Fator de Necrose Tumoral , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ligante Indutor de Apoptose Relacionado a TNF , Receptores Chamariz do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/genética
18.
J Neuroimmunol ; 122(1-2): 117-24, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11777550

RESUMO

Among the death ligands of the tumor necrosis factor/nerve growth factor (TNF/NGF) superfamily, TNF-related apoptosis-inducing ligand (TRAIL) is considered to play a unique role due to its binding to both apoptosis-inducing and -blocking membranous receptors, apoptosis-independent effects and distinct species differences. Here, we demonstrate that human antigen-specific T helper cells upon activation are capable of directly lysing glioma cell lines via TRAIL receptor/TRAIL interactions. Out of 17 T cell lines, nine showed predominantly TRAIL-mediated killing of glioma cell lines compared to CD95 ligand- or TNF-induced cell death. The cytotoxic potential of the T cell lines was independent of T helper differentiation, antigen specificity and donor source. Thus, TRAIL-mediated signaling is involved in T cell cytotoxicity towards glioma cell lines, which might play an important role in tumor regression.


Assuntos
Apoptose/imunologia , Neoplasias Encefálicas , Glioma , Glicoproteínas de Membrana/metabolismo , Linfócitos T Citotóxicos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Reguladoras de Apoptose , Diferenciação Celular/imunologia , Epitopos , Proteína Ligante Fas , Humanos , Glicoproteínas de Membrana/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Ligante Indutor de Apoptose Relacionado a TNF , Células Tumorais Cultivadas , Fator de Necrose Tumoral alfa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA