Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Clin Cancer Res ; 28(10): 2069-2081, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35046061

RESUMO

PURPOSE: Improving our understanding of the immunologic response to cancer cells within the sentinel lymph nodes (SLN) of primary tumors is expected to identify new approaches to stimulate clinically meaningful cancer immunity. EXPERIMENTAL DESIGN: We used mass cytometry by time-of-flight (CyTOF), flow cytometry, and T-cell receptor immunosequencing to conduct simultaneous single-cell analyses of immune cells in the SLNs of patients with melanoma. RESULTS: We found increased effector-memory αß T cells, TCR clonality, and γδ T cells selectively in the melanoma-bearing SLNs relative to non-melanoma-bearing SLNs, consistent with possible activation of an antitumor immune response. However, we also observed a markedly immunotolerant environment in the melanoma-bearing SLNs indicated by reduced and impaired NK cells and increased levels of CD8+CD57+PD-1+ cells, which are known to display low melanoma killing capabilities. Other changes observed in melanoma-bearing SLNs when compared with non-melanoma-bearing SLNs include (i) reduced CD8+CD69+ T cell/T regulatory cell ratio, (ii) high PD-1 expression on CD4+ and CD8+ T cells, and (iii) high CTLA-4 expression on γδ T cells. CONCLUSIONS: Our data suggest that these immunologic changes compromise antimelanoma immunity and contribute to a high relapse rate. We propose the development of clinical trials to test the neo-adjuvant administration of anti-PD-1 antibodies prior to SLN resection in patients with stage III melanoma. See related commentary by Lund, p. 1996.


Assuntos
Melanoma , Linfonodo Sentinela , Neoplasias Cutâneas , Humanos , Tolerância Imunológica , Melanoma/patologia , Receptor de Morte Celular Programada 1/uso terapêutico , Linfonodo Sentinela/patologia , Biópsia de Linfonodo Sentinela , Neoplasias Cutâneas/patologia , Microambiente Tumoral
2.
Aging (Albany NY) ; 12(24): 24914-24939, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33373316

RESUMO

Age is an important factor for determining the outcome of melanoma patients. Sentinel lymph node (SLN) status is also a strong predictor of survival for melanoma. Paradoxically, older melanoma patients have a lower incidence of SLN metastasis but a higher mortality rate when compared with their younger counterparts. The mechanisms that underlie this phenomenon remain unknown. This study uses three independent datasets of RNA samples from patients with melanoma metastatic to the SLN to identify age-related transcriptome changes in SLNs and their association with outcome. Microarray was applied to the first dataset of 97 melanoma patients. NanoString was performed in the second dataset to identify the specific immune genes and pathways that are associated with recurrence in younger versus older patients. qRT-PCR analysis was used in the third dataset of 36 samples to validate the differentially expressed genes (DEGs) from microarray and NanoString. These analyses show that FOS, NR4A, and ITGB1 genes were significantly higher in older melanoma patients with positive SLNs. IRAK3- and Wnt10b-related genes are the major pathways associated with recurrent melanoma in younger and older patients with tumor-positive SLNs, respectively. This study aims to elucidate age-related differences in SLNs in the presence of nodal metastasis.


Assuntos
Melanoma/genética , Linfonodo Sentinela/patologia , Neoplasias Cutâneas/genética , Adulto , Fatores Etários , Idoso , Proteínas Relacionadas à Autofagia/genética , Moléculas de Adesão Celular/genética , Feminino , Humanos , Integrina beta1/genética , Quinases Associadas a Receptores de Interleucina-1/genética , Lectinas Tipo C/genética , Metástase Linfática , Masculino , Melanoma/patologia , Glicoproteínas de Membrana/genética , Pessoa de Meia-Idade , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-fos/genética , Receptores Imunológicos/genética , Transdução de Sinais , Neoplasias Cutâneas/patologia , Transcriptoma , Proteínas Wnt/genética
3.
Front Immunol ; 11: 497, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373107

RESUMO

Periodontitis is an irreversible, bacteria-induced, chronic inflammatory disease that compromises the integrity of tooth-supporting tissues and adversely affects systemic health. As the immune system's first line of defense against bacteria, neutrophils use their microbicidal functions in the oral cavity to protect the host against periodontal disease. However, periodontal pathogens have adapted to resist neutrophil microbicidal mechanisms while still propagating inflammation, which provides essential nutrients for the bacteria to proliferate and cause disease. Advances in sequencing technologies have recognized several newly appreciated bacteria associated with periodontal lesions such as the Gram-positive anaerobic rod, Filifactor alocis. With the discovery of these oral bacterial species, there is also a growing need to assess their pathogenic potential and determine their contribution to disease progression. Currently, few studies have addressed the pathogenic mechanisms used by oral bacteria to manipulate the neutrophil functional responses at the level of the transcriptome. Thus, this study aims to characterize the global changes at the gene expression level in human neutrophils during infection with F. alocis. Our results indicate that the challenge of human neutrophils with F. alocis results in the differential expression of genes involved in multiple neutrophil effector functions such as chemotaxis, cytokine and chemokine signaling pathways, and apoptosis. Moreover, F. alocis challenges affected the expression of components from the TNF and MAPK kinase signaling pathways. This resulted in transient, dampened p38 MAPK activation by secondary stimuli TNFα but not by fMLF. Functionally, the F. alocis-mediated inhibition of p38 activation by TNFα resulted in decreased cytokine production but had no effect on the priming of the respiratory burst response or the delay of apoptosis by TNFα. Since the modulatory effect was characteristic of viable F. alocis only, we propose this as one of F. alocis' mechanisms to control neutrophils and their functional responses.


Assuntos
Clostridiales/imunologia , Neutrófilos/fisiologia , Periodontite/imunologia , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Explosão Respiratória , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
4.
Genes (Basel) ; 11(4)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344635

RESUMO

Acquired resistance to cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition in estrogen receptor-positive (ER+) breast cancer remains a significant clinical challenge. Efforts to uncover the mechanisms underlying resistance are needed to establish clinically actionable targets effective against resistant tumors. In this study, we sought to identify differentially expressed genes (DEGs) associated with acquired resistance to palbociclib in ER+ breast cancer. We performed next-generation transcriptomic RNA sequencing (RNA-seq) and pathway analysis in ER+ MCF7 palbociclib-sensitive (MCF7/pS) and MCF7 palbociclib-resistant (MCF7/pR) cells. We identified 2183 up-regulated and 1548 down-regulated transcripts in MCF7/pR compared to MCF7/pS cells. Functional analysis of the DEGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database identified several pathways associated with breast cancer, including 'cell cycle', 'DNA replication', 'DNA repair' and 'autophagy'. Additionally, Ingenuity Pathway Analysis (IPA) revealed that resistance to palbociclib is closely associated with deregulation of several key canonical and metabolic pathways. Further studies are needed to determine the utility of these DEGs and pathways as therapeutics targets against ER+ palbociclib-resistant breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia , Receptores de Estrogênio/metabolismo , Transcriptoma/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Biologia Computacional , Feminino , Humanos , Células Tumorais Cultivadas
5.
Exp Cell Res ; 386(1): 111690, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678172

RESUMO

Abundant with organelle-like membranous structures, the tumor microenvironment is composed of cancer cells that secrete exosomes. Studies have shown that these secreted exosomes transport RNA and active molecules to other cells to reshape the tumor microenvironment and promote tumor growth. In fact, we found that exosomes derived from melanoma cells drive pre-malignant transition in primary melanocytes. However, there is little available in the scientific literature on how exosomes modulate melanocytes in the microenvironment to optimize conditions for tumor progression and metastasis. We therefore focused this current study on identifying these conditions genetically. Through RNA sequencing, we analyzed gene expression levels of melanocytes driven by exosomes derived from melanoma and lung cancer cells compared with those without exosome controls. Significant differences were found in gene expression patterns of melanocytes driven by exosomes derived from melanoma and lung cancer cells. In the melanocytes responding to exosomes derived from melanoma cells, genes of lipopolysaccharide and regulation of leukocyte chemotaxis were predominant. In the melanocytes responding to exosomes derived from lung cancer cells, genes of DNA replication and mitotic nuclear division played an important role. These results provide further mechanistic understanding of tumor progression promoted by tumor-derived exosomes. This will also help identify potential therapeutic targets for melanoma progression.


Assuntos
Exossomos/metabolismo , Melanócitos/metabolismo , Melanoma/genética , Transcriptoma , Células A549 , Células Cultivadas , Exossomos/genética , Exossomos/patologia , Perfilação da Expressão Gênica , Humanos , Microambiente Tumoral
6.
Data Brief ; 27: 104624, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31692674

RESUMO

Exposure to ionizing radiation associated with highly energetic and charged heavy particles is an inherent risk astronauts face in long duration space missions. We have previously considered the transcriptional effects that three levels of radiation (0.3 Gy, 1.5 Gy, and 3.0 Gy) have at an immediate time point (1 hr) post-exposure [1]. Our analysis of these results suggest effects on transcript levels that could be modulated at lower radiation doses [2]. In addition, a time dependent effect is likely to be present. Therefore, in order to develop a lab-on-a-chip approach for detection of radiation exposure in terms of both radiation level and time since exposure, we developed a time- and dose-course study to determine appropriate sensitive and specific transcript biomarkers that are detectable in blood samples. The data described herein was developed from a study measuring exposure to 0.15 Gy, 0.30 Gy, and 1.5 Gy of radiation at 1 hr, 2 hr, and 6 hr post-exposure using Affymetrix® GeneChip® PrimeView™ microarrays. This report includes raw gene expression data files from the resulting microarray experiments representing typical radiation exposure levels an astronaut may experience as part of a long duration space mission. The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE63952.

7.
PLoS One ; 14(7): e0219610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295307

RESUMO

Glyphosate is a broad-spectrum herbicide that is used worldwide. It represents a potential harm to surface water, and when commercially mixed with surfactants, its uptake is greatly magnified. The most well-known glyphosate-based product is Roundup. This herbicide is potentially an endocrine disruptor and many studies have shown the cytotoxicity potential of glyphosate-based herbicides. In breast cancer (BC) cell lines it has been demonstrated that glyphosate can induce cellular proliferation via estrogen receptors. Therefore, we aimed to identify gene expression changes in ER+ and ER- BC cell lines treated with Roundup and AMPA, to address changes in canonical pathways that would be related or not with the ER pathway, which we believe could interfere with cell proliferation. Using the Human Transcriptome Arrays 2.0, we identified gene expression changes in MCF-7 and MDA-MB-468 exposed to low concentrations and short exposure time to Roundup Original and AMPA. The results showed that at low concentration (0.05% Roundup) and short exposure (48h), both cell lines suffered deregulation of 11 canonical pathways, the most important being cell cycle and DNA damage repair pathways. Enrichment analysis showed similar results, except that MDA-MB-468 altered mainly metabolic processes. In contrast, 48h 10mM AMPA showed fewer differentially expressed genes, but also mainly related with metabolic processes. Our findings suggest that Roundup affects survival due to cell cycle deregulation and metabolism changes that may alter mitochondrial oxygen consumption, increase ROS levels, induce hypoxia, damage DNA repair, cause mutation accumulation and ultimately cell death. To our knowledge, this is the first study to analyze the effects of Roundup and AMPA on gene expression in triple negative BC cells. Therefore, we conclude that both compounds can cause cellular damage at low doses in a relatively short period of time in these two models, mainly affecting cell cycle and DNA repair.


Assuntos
Neoplasias da Mama/genética , Glicina/análogos & derivados , Transdução de Sinais/genética , Transcriptoma/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Estrogênios/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicina/farmacologia , Herbicidas/efeitos adversos , Herbicidas/farmacologia , Humanos , Células MCF-7 , Transdução de Sinais/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Glifosato
8.
Nat Commun ; 10(1): 89, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626868

RESUMO

The importance of gut microbiota in human health and pathophysiology is undisputable. Despite the abundance of metagenomics data, the functional dynamics of gut microbiota in human health and disease remain elusive. Urolithin A (UroA), a major microbial metabolite derived from polyphenolics of berries and pomegranate fruits displays anti-inflammatory, anti-oxidative, and anti-ageing activities. Here, we show that UroA and its potent synthetic analogue (UAS03) significantly enhance gut barrier function and inhibit unwarranted inflammation. We demonstrate that UroA and UAS03 exert their barrier functions through activation of aryl hydrocarbon receptor (AhR)- nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent pathways to upregulate epithelial tight junction proteins. Importantly, treatment with these compounds attenuated colitis in pre-clinical models by remedying barrier dysfunction in addition to anti-inflammatory activities. Cumulatively, the results highlight how microbial metabolites provide two-pronged beneficial activities at gut epithelium by enhancing barrier functions and reducing inflammation to protect from colonic diseases.


Assuntos
Cumarínicos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Células CACO-2 , Cumarínicos/química , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Organismos Livres de Patógenos Específicos , Proteínas de Junções Íntimas/genética
9.
Cell Metab ; 28(5): 689-705.e5, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30100196

RESUMO

It is clear that obesity increases the risk of many types of cancer, including breast cancer. However, the underlying molecular mechanisms by which obesity is linked to cancer risk remain to be defined. Herein, we report that circulating adipose fatty acid binding protein (A-FABP) promotes obesity-associated breast cancer development. Using clinical samples, we demonstrated that circulating A-FABP levels were significantly increased in obese patients with breast cancer in comparison with those without breast cancer. Circulating A-FABP released by adipose tissue directly targeted mammary tumor cells, enhancing tumor stemness and aggressiveness through activation of the IL-6/STAT3/ALDH1 pathway. Importantly, genetic deletion of A-FABP successfully reduced tumor ALHD1 activation and obesity-associated mammary tumor growth and development in different mouse models. Collectively, these data suggest circulating A-FABP as a new link between obesity and breast cancer risk, thereby revealing A-FABP as a potential new therapeutic target for treatment of obesity-associated cancers.


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/etiologia , Proteínas de Ligação a Ácido Graxo/sangue , Obesidade/complicações , Família Aldeído Desidrogenase 1 , Animais , Biomarcadores Tumorais/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Progressão da Doença , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Interleucina-6/metabolismo , Isoenzimas/metabolismo , Camundongos Endogâmicos C57BL , Invasividade Neoplásica/patologia , Obesidade/sangue , Obesidade/metabolismo , Obesidade/patologia , Retinal Desidrogenase/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
10.
Ann Surg Oncol ; 25(5): 1296-1303, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29497912

RESUMO

BACKGROUND: Current risk assessment tools to estimate the risk of nonsentinel lymph node metastases after completion lymphadenectomy for a positive sentinel lymph node (SLN) biopsy in cutaneous melanoma are based on clinical and pathologic factors. We identified a novel genetic signature that can predict non-SLN metastases in patients with cutaneous melanoma staged with a SLN biopsy. METHODS: RNA was collected for tumor-positive SLNs in patients staged by SLN biopsy for cutaneous melanoma. All patients with a tumor-positive SLN biopsy underwent completion lymphadenectomy. A 1:10 case:control series of positive and negative non-SLN patients was analyzed by microarray and quantitative RT-PCR. Candidate differentially expressed genes were validated in a 1:3 case:control separate cohort of positive and negative non-SLN patients. RESULTS: The 1:10 case:control discovery set consisted of 7 positive non-SLN cases matched to 70 negative non-SLN controls. The cases and controls were similar with regards to important clinicopathologic factors, such as gender, primary tumor site, age, ulceration, and thickness. Microarray and RT-PCR identified six potential differentially expressed genes for validation. In the 40-patient separate validation set, 10 positive non-SLN patients were matched to 30 negative non-SLN controls based on gender, ulceration, age, and thickness. Five of the six genes were differentially expressed. The five gene panel identified patients at low (7.1%) and high risk (66.7%) for non-SLN metastases. CONCLUSIONS: A novel, non-SLN gene score based on differential expressed genes in a tumor-positive SLN can identify patients at high and low risk for non-SLN metastases.


Assuntos
Melanoma/genética , Melanoma/secundário , Linfonodo Sentinela , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Transcriptoma , Adulto , Área Sob a Curva , Estudos de Casos e Controles , Feminino , Humanos , Excisão de Linfonodo , Linfonodos/patologia , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Curva ROC , Linfonodo Sentinela/patologia , Linfonodo Sentinela/cirurgia , Biópsia de Linfonodo Sentinela
11.
Toxicol Sci ; 162(2): 645-654, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29319823

RESUMO

Arsenic is a widely distributed toxic natural element. Chronic arsenic ingestion causes several cancers, especially skin cancer. Arsenic-induced cancer mechanisms are not well defined, but several studies indicate that mutation is not the driving force and that microRNA expression changes play a role. Chronic low arsenite exposure malignantly transforms immortalized human keratinocytes (HaCaT), serving as a model for arsenic-induced skin carcinogenesis. Early changes in miRNA expression in HaCaT cells chronically exposed to arsenite will reveal early steps in transformation. HaCaT cells were maintained with 0/100 nM NaAsO2 for 3 and 7 weeks. Total RNA was purified. miRNA and mRNA expression was assayed using Affymetrix microarrays. Targets of differentially expressed miRNAs were collected from TargetScan 6.2, intersected with differentially expressed mRNAs using Partek Genomic Suite software, and mapped to their pathways using MetaCore software. MDM2, HMGB1 and TP53 mRNA, and protein levels were assayed by RT-qPCR and Western blot. Numerous miRNAs and mRNAs involved in carcinogenesis pathways in other systems were differentially expressed at 3 and 7 weeks. A TP53 regulatory network including MDM2 and HMGB1 was predicted by the miRNA and mRNA networks. Total TP53 and TP53-S15-phosphorylation were induced. However, TP53-K382-hypoacetylation suggested that the induced TP53 is inactive in arsenic exposed cells. Our data provide strong evidence that early changes in miRNAs and target mRNAs may contribute to arsenic-induced carcinogenesis.


Assuntos
Arsenitos/toxicidade , Carcinógenos Ambientais/toxicidade , Transformação Celular Neoplásica/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , MicroRNAs/genética , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Linhagem Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Fosforilação
12.
PLoS One ; 12(9): e0184471, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886127

RESUMO

MicroRNAs are biomarkers and potential therapeutic targets for breast cancer. Anacardic acid (AnAc) is a dietary phenolic lipid that inhibits both MCF-7 estrogen receptor α (ERα) positive and MDA-MB-231 triple negative breast cancer (TNBC) cell proliferation with IC50s of 13.5 and 35 µM, respectively. To identify potential mediators of AnAc action in breast cancer, we profiled the genome-wide microRNA transcriptome (microRNAome) in these two cell lines altered by the AnAc 24:1n5 congener. Whole genome expression profiling (RNA-seq) and subsequent network analysis in MetaCore Gene Ontology (GO) algorithm was used to characterize the biological pathways altered by AnAc. In MCF-7 cells, 69 AnAc-responsive miRNAs were identified, e.g., increased let-7a and reduced miR-584. Fewer, i.e., 37 AnAc-responsive miRNAs were identified in MDA-MB-231 cells, e.g., decreased miR-23b and increased miR-1257. Only two miRNAs were increased by AnAc in both cell lines: miR-612 and miR-20b; however, opposite miRNA arm preference was noted: miR-20b-3p and miR-20b-5p were upregulated in MCF-7 and MDA-MB-231, respectively. miR-20b-5p target EFNB2 transcript levels were reduced by AnAc in MDA-MB-231 cells. AnAc reduced miR-378g that targets VIM (vimentin) and VIM mRNA transcript expression was increased in AnAc-treated MCF-7 cells, suggesting a reciprocal relationship. The top three enriched GO terms for AnAc-treated MCF-7 cells were B cell receptor signaling pathway and ribosomal large subunit biogenesis and S-adenosylmethionine metabolic process for AnAc-treated MDA-MB-231 cells. The pathways modulated by these AnAc-regulated miRNAs suggest that key nodal molecules, e.g., Cyclin D1, MYC, c-FOS, PPARγ, and SIN3, are targets of AnAc activity.


Assuntos
Ácidos Anacárdicos/farmacologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , MicroRNAs/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interferência de RNA , RNA Mensageiro/genética , Transcriptoma
13.
Toxicol Appl Pharmacol ; 331: 130-134, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28595984

RESUMO

BACKGROUND: Arsenic is naturally prevalent in the earth's crust and widely distributed in air and water. Chronic low arsenic exposure is associated with several cancers in vivo, including skin cancer, and with transformation in vitro of cell lines including immortalized human keratinocytes (HaCaT). Arsenic also is associated with cell cycle dysregulation at different exposure levels in multiple cell lines. In this work, we analyzed gene expression in HaCaT cells to gain an understanding of gene expression changes contributing to transformation at an early time point. METHODS: HaCaT cells were exposed to 0 or 100nM NaAsO2 for 7weeks. Total RNA was purified and analyzed by microarray hybridization. Differential expression with fold change≥|1.5| and p-value≤0.05 was determined using Partek Genomic Suite™ and pathway and network analyses using MetaCore™ software (FDR≤0.05). Cell cycle analysis was performed using flow cytometry. RESULTS: 644 mRNAs were differentially expressed. Cell cycle/cell cycle regulation pathways predominated in the list of dysregulated pathways. Genes involved in replication origin licensing were enriched in the network. Cell cycle assay analysis showed an increase in G2/M compartment in arsenite-exposed cells. CONCLUSIONS: Arsenite exposure induced differential gene expression indicating dysregulation of cell cycle control, which was confirmed by cell cycle analysis. The results suggest that cell cycle dysregulation is an early event in transformation manifested in cells unable to transit G2/M efficiently. Further study at later time points will reveal additional changes in gene expression related to transformation processes.


Assuntos
Arsenitos/toxicidade , Ciclo Celular/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Arsenitos/administração & dosagem , Ciclo Celular/fisiologia , Linhagem Celular Transformada , Relação Dose-Resposta a Droga , Humanos , Queratinócitos/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
14.
Ann Surg Oncol ; 24(1): 108-116, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27663566

RESUMO

PURPOSE: Melanoma patients with a single microscopically-positive sentinel lymph node (SLN) are classified as stage III and are often advised to undergo expensive and substantially toxic adjuvant therapy. However, the 5-year survival rate for these patients, with or without adjuvant therapy, varies from 14 to 85 %, representing a heterogeneous biological population with a variable prognosis. We aimed to identify an SLN gene signature to aid in risk stratification of patients with tumor-positive SLNs. METHODS: Microarray experiments were performed to screen SLN genes in recurrence (N = 39) versus non-recurrence (N = 58) groups in the training dataset. Quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) assay was applied to confirm the expression of selected SLN genes, which were further verified using an independent validation cohort (N = 30). Area under the receiver operating characteristic curve (AUC) was calculated to evaluate prognostic accuracy of the selected SLN gene panel, and the prognostic value of our SLN gene signature was also compared with the current American Joint Committee on Cancer (AJCC) staging system. RESULTS: We identified two SLN genes (PIGR and TFAP2A) that provided high prognostic accuracy in SLN-positive melanoma patients (AUC = 0.864). These two SLN genes, along with clinicopathological features, can differentiate the high- and low-risk groups in node-positive melanoma patients in this cohort. CONCLUSION: The two SLN genes, when combined with clinicopathological features, may offer a new tool for personalized patient risk assessment.


Assuntos
Metástase Linfática/patologia , Melanoma/genética , Melanoma/patologia , Receptores de Imunoglobulina Polimérica/genética , Linfonodo Sentinela/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fator de Transcrição AP-2/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Medição de Risco , Biópsia de Linfonodo Sentinela , Taxa de Sobrevida
15.
Genom Data ; 7: 82-5, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26981369

RESUMO

Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375.

16.
Genom Data ; 7: 240-2, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26981417

RESUMO

Myeloid-derived suppressor cells (MDSCs) are potently immunosuppressive innate immune cells that accumulate in advanced cancer patients and actively inhibit anti-tumor T lymphocyte responses [1]. Increased numbers of circulating MDSCs directly correlate with melanoma patient morbidity and reduced anti-tumor immune responses [2], [3]. Previous studies have revealed that monocyte-derived macrophage migration inhibitory factor (MIF) is necessary for the immune suppressive function of MDSCs in mouse models of melanoma [4], [5]. To investigate whether MIF participates in human melanoma-induced MDSC differentiation and/or suppressive function, we have established an in vitro MDSC induction model using primary, normal human monocytes co-cultured with human melanoma cell lines in the presence or absence of the MIF antagonist-4-IPP [4], [6], [7], [8], [9]. To identify potential mechanistic effectors, we have performed transcriptome analyses on cultured monocytes and on melanoma-induced MDSCs obtained from either untreated or 4-IPP-treated A375:monocyte co-cultures. Here, we present a detailed protocol, which can facilitate easy reproduction of the microarray results (NCBI GEO accession number GSE73333) published by Yaddanapudi et al. (2015) in Cancer Immunology Research [10].

17.
Cancer Immunol Res ; 4(2): 101-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26603621

RESUMO

Highly aggressive cancers "entrain" innate and adaptive immune cells to suppress antitumor lymphocyte responses. Circulating myeloid-derived suppressor cells (MDSC) constitute the bulk of monocytic immunosuppressive activity in late-stage melanoma patients. Previous studies revealed that monocyte-derived macrophage migration inhibitory factor (MIF) is necessary for the immunosuppressive function of tumor-associated macrophages and MDSCs in mouse models of melanoma. In the current study, we sought to determine whether MIF contributes to human melanoma MDSC induction and T-cell immunosuppression using melanoma patient-derived MDSCs and an ex vivo coculture model of human melanoma-induced MDSC. We now report that circulating MDSCs isolated from late-stage melanoma patients are reliant upon MIF for suppression of antigen-independent T-cell activation and that MIF is necessary for maximal reactive oxygen species generation in these cells. Moreover, inhibition of MIF results in a functional reversion from immunosuppressive MDSC to an immunostimulatory dendritic cell (DC)-like phenotype that is at least partly due to reductions in MDSC prostaglandin E(2) (PGE(2)). These findings indicate that monocyte-derived MIF is centrally involved in human monocytic MDSC induction/immunosuppressive function and that therapeutic targeting of MIF may provide a novel means of inducing antitumor DC responses in late-stage melanoma patients.


Assuntos
Fatores Inibidores da Migração de Macrófagos/metabolismo , Melanoma/imunologia , Melanoma/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Imunofenotipagem , Masculino , Melanoma/patologia , Camundongos , Camundongos Transgênicos , Células Mieloides/patologia , Gradação de Tumores , Estadiamento de Neoplasias , Fenótipo , Espécies Reativas de Oxigênio/metabolismo
18.
PLoS One ; 10(9): e0138065, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26371754

RESUMO

Poor survival rates from lung cancer can largely be attributed to metastatic cells that invade and spread throughout the body. The tumor microenvironment (TME) is composed of multiple cell types, as well as non-cellular components. The TME plays a critical role in the development of metastatic cancers by providing migratory cues and changing the properties of the tumor cells. The Extracellular Matrix (ECM), a main component of the TME, has been shown to change composition during tumor progression, contributing to cancer cell invasion and survival away from the primary cancer site. Although the ECM is well-known to influence the fate of tumor progression, little is known about the molecular mechanisms that are affected by the cancer cell-ECM interactions. It is imperative that these mechanisms are elucidated in order to properly understand and prevent lung cancer dissemination. However, common in vitro studies do not incorporate these interactions into everyday cell culture assays. We have adopted a model that examines decellularized human fibroblast-derived ECM as a 3-dimensional substrate for growth of lung adenocarcinoma cell lines. Here, we have characterized the effect of fibroblast-derived matrices on the properties of various lung-derived epithelial cell lines, including cancerous and non-transformed cells. This work highlights the significance of the cell-ECM interaction and its requirement for incorporation into in vitro experiments. Implementation of a fibroblast-derived ECM as an in vitro technique will provide researchers with an important factor to manipulate to better recreate and study the TME.


Assuntos
Técnicas de Cultura de Células/métodos , Matriz Extracelular/patologia , Fibroblastos/patologia , Linhagem Celular Tumoral , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/patologia , Microambiente Tumoral
19.
PLoS One ; 7(10): e46874, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056502

RESUMO

BACKGROUND: Exosomes are small membranous vesicles secreted into body fluids by multiple cell types, including tumor cells, and in various disease conditions. Tumor exosomes contain intact and functional mRNAs, small RNAs (including miRNAs), and proteins that can alter the cellular environment to favor tumor growth. Molecular profiling may increase our understanding of the role of exosomes in melanoma progression and may lead to discovery of useful biomarkers. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used mRNA array profiling to identify thousands of exosomal mRNAs associated with melanoma progression and metastasis. Similarly, miRNA array profiling identified specific miRNAs, such as hsa-miR-31, -185, and -34b, involved in melanoma invasion. We also used proteomic analysis and discovered differentially expressed melanoma exosomal proteins, including HAPLN1, GRP78, syntenin-1, annexin A1, and annexin A2. Importantly, normal melanocytes acquired invasion ability through molecules transported in melanoma cell-derived exosomes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that melanoma-derived exosomes have unique gene expression signatures, miRNA and proteomics profiles compared to exosomes from normal melanocytes. To the best of our knowledge, this is the first in-depth screening of the whole transcriptome/miRNome/proteome expression in melanoma exosomes. These results provide a starting point for future more in-depth studies of tumor-derived melanoma exosomes, which will aid our understanding of melanoma biogenesis and new drug-targets that may be translated into clinical applications, or as non-invasive biomarkers for melanoma.


Assuntos
Exossomos/metabolismo , Perfilação da Expressão Gênica , Melanoma/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteômica , Linhagem Celular Tumoral , Progressão da Doença , Chaperona BiP do Retículo Endoplasmático , Espaço Extracelular/metabolismo , Humanos , Melanócitos/citologia , Melanócitos/patologia , Melanoma/genética , Melanoma/metabolismo , Invasividade Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética
20.
J Cell Biochem ; 113(4): 1122-31, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22274952

RESUMO

Activation of PI3K/Akt signaling is sufficient to maintain the pluripotency of mouse embryonic stem cells (mESC) and results in down-regulation of Gtf2i and Gtf2ird1 encoding TFII-I family transcription factors. To investigate how these genes might be involved in the process of embryonic stem cell differentiation, we performed expression microarray profiling of mESC upon inhibition of PI3K by LY294002. This analysis revealed significant alterations in expression of genes for specific subsets of chromatin-modifying enzymes. Surprisingly, genome-wide promoter ChIP-chip mapping indicated that the majority of differently expressed genes could be direct targets of TFII-I regulation. The data support the hypothesis that upregulation of TFII-I factors leads to activation of a specific group of developmental genes during mESC differentiation.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição TFII/fisiologia , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Cromonas/farmacologia , Células-Tronco Embrionárias/enzimologia , Inibidores Enzimáticos/farmacologia , Camundongos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA