Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571421

RESUMO

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Assuntos
Neoplasias , Humanos , Neoplasias/genética
3.
Genome Med ; 15(1): 29, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127652

RESUMO

BACKGROUND: Medulloblastoma (MB) is a malignant tumour of the cerebellum which can be classified into four major subgroups based on gene expression and genomic features. Single-cell transcriptome studies have defined the cellular states underlying each MB subgroup; however, the spatial organisation of these diverse cell states and how this impacts response to therapy remains to be determined. METHODS: Here, we used spatially resolved transcriptomics to define the cellular diversity within a sonic hedgehog (SHH) patient-derived model of MB and show that cells specific to a transcriptional state or spatial location are pivotal for CDK4/6 inhibitor, Palbociclib, treatment response. We integrated spatial gene expression with histological annotation and single-cell gene expression data from MB, developing an analysis strategy to spatially map cell type responses within the hybrid system of human and mouse cells and their interface within an intact brain tumour section. RESULTS: We distinguish neoplastic and non-neoplastic cells within tumours and from the surrounding cerebellar tissue, further refining pathological annotation. We identify a regional response to Palbociclib, with reduced proliferation and induced neuronal differentiation in both treated tumours. Additionally, we resolve at a cellular resolution a distinct tumour interface where the tumour contacts neighbouring mouse brain tissue consisting of abundant astrocytes and microglia and continues to proliferate despite Palbociclib treatment. CONCLUSIONS: Our data highlight the power of using spatial transcriptomics to characterise the response of a tumour to a targeted therapy and provide further insights into the molecular and cellular basis underlying the response and resistance to CDK4/6 inhibitors in SHH MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Diferenciação Celular , Neoplasias Cerebelares/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Transcriptoma , Quinase 6 Dependente de Ciclina/antagonistas & inibidores
4.
J Hum Genet ; 68(7): 445-453, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36864284

RESUMO

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous, debilitating conditions that include motor and cognitive disability and social deficits. The genetic factors underlying the complex phenotype of NDDs remain to be elucidated. Accumulating evidence suggest that the Elongator complex plays a role in NDDs, given that patient-derived mutations in its ELP2, ELP3, ELP4 and ELP6 subunits have been associated with these disorders. Pathogenic variants in its largest subunit ELP1 have been previously found in familial dysautonomia and medulloblastoma, with no link to NDDs affecting primarily the central nervous system. METHODS: Clinical investigation included patient history and physical, neurological and magnetic resonance imaging (MRI) examination. A novel homozygous likely pathogenic ELP1 variant was identified by whole-genome sequencing. Functional studies included in silico analysis of the mutated ELP1 in the context of the holo-complex, production and purification of the ELP1 harbouring the identified mutation and in vitro analyses using microscale thermophoresis for tRNA binding assay and acetyl-CoA hydrolysis assay. Patient fibroblasts were harvested for tRNA modification analysis using HPLC coupled to mass spectrometry. RESULTS: We report a novel missense mutation in the ELP1 identified in two siblings with intellectual disability and global developmental delay. We show that the mutation perturbs the ability of ELP123 to bind tRNAs and compromises the function of the Elongator in vitro and in human cells. CONCLUSION: Our study expands the mutational spectrum of ELP1 and its association with different neurodevelopmental conditions and provides a specific target for genetic counselling.


Assuntos
Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Fatores de Elongação da Transcrição , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Proteínas do Tecido Nervoso/genética , Fenótipo , RNA de Transferência/metabolismo , Fatores de Elongação da Transcrição/genética , Transtornos do Neurodesenvolvimento/genética
5.
Neuro Oncol ; 25(8): 1507-1517, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-36757207

RESUMO

BACKGROUND: Brain cancer is the leading cause of cancer-related death in children. Early detection and serial monitoring are essential for better therapeutic outcomes. Liquid biopsy has recently emerged as a promising approach for detecting these tumors by screening body fluids for the presence of circulating tumor DNA (ctDNA). Here we tested the limits of liquid biopsy using patient-specific somatic mutations to detect and monitor primary and metastatic pediatric brain cancer. METHODS: Somatic mutations were identified in 3 ependymoma, 1 embryonal tumor with multilayered rosettes, 1 central nervous system neuroblastoma, and 7 medulloblastoma patients. The mutations were used as liquid biomarkers for serial assessment of cerebrospinal fluid (CSF) samples using a droplet digital PCR (ddPCR) system. The findings were correlated to the imaging data and clinical assessment to evaluate the utility of the approach for clinical translation. RESULTS: We developed personalized somatic mutation ddPCR assays which we show are highly specific, sensitive, and efficient in detection and monitoring of ctDNA, with a positive correlation between presence of ctDNA, disease course, and clinical outcomes in the majority of patients. CONCLUSIONS: We demonstrate the feasibility and clinical utility of personalized mutation-based liquid biopsy for the surveillance of brain cancer in children. However, even with this specific and sensitive approach, we identified some potential false negative analyses. Overall, our results indicate that changes in ctDNA profiles over time demonstrate the great potential of our specific approach for predicting tumor progression, burden, and response to treatment.


Assuntos
Neoplasias Encefálicas , DNA Tumoral Circulante , Humanos , Criança , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Biópsia Líquida/métodos , DNA Tumoral Circulante/genética , Mutação
6.
EMBO Mol Med ; 15(2): e16418, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36448458

RESUMO

The Elongator complex was initially identified in yeast, and a variety of distinct cellular functions have been assigned to the complex. In the last decade, several research groups focussed on dissecting its structure, tRNA modification activity and role in translation regulation. Recently, Elongator emerged as a crucial factor for various human diseases, and its involvement has triggered a strong interest in the complex from numerous clinical groups. The Elongator complex is highly conserved among eukaryotes, with all six subunits (Elp1-6) contributing to its stability and function. Yet, recent studies have shown that the two subcomplexes, namely the catalytic Elp123 and accessory Elp456, may have distinct roles in the development of different neuronal subtypes. This Commentary aims to provide a brief overview and new perspectives for more systematic efforts to explore the functions of the Elongator in health and disease.


Assuntos
Saccharomyces cerevisiae , Humanos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Saccharomyces cerevisiae/genética
7.
EMBO Mol Med ; 14(7): e15608, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35698786

RESUMO

The highly conserved Elongator complex is a translational regulator that plays a critical role in neurodevelopment, neurological diseases, and brain tumors. Numerous clinically relevant variants have been reported in the catalytic Elp123 subcomplex, while no missense mutations in the accessory subcomplex Elp456 have been described. Here, we identify ELP4 and ELP6 variants in patients with developmental delay, epilepsy, intellectual disability, and motor dysfunction. We determine the structures of human and murine Elp456 subcomplexes and locate the mutated residues. We show that patient-derived mutations in Elp456 affect the tRNA modification activity of Elongator in vitro as well as in human and murine cells. Modeling the pathogenic variants in mice recapitulates the clinical features of the patients and reveals neuropathology that differs from the one caused by previously characterized Elp123 mutations. Our study demonstrates a direct correlation between Elp4 and Elp6 mutations, reduced Elongator activity, and neurological defects. Foremost, our data indicate previously unrecognized differences of the Elp123 and Elp456 subcomplexes for individual tRNA species, in different cell types and in different key steps during the neurodevelopment of higher organisms.


Assuntos
RNA de Transferência , Proteínas de Saccharomyces cerevisiae , Animais , Camundongos , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
J Exp Med ; 218(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34254999

RESUMO

Astrocytes, a major glial cell type in the brain, play a critical role in supporting the progression of medulloblastoma (MB), the most common malignant pediatric brain tumor. Through lineage tracing analyses and single-cell RNA sequencing, we demonstrate that astrocytes are predominantly derived from the transdifferentiation of tumor cells in relapsed MB (but not in primary MB), although MB cells are generally believed to be neuronal-lineage committed. Such transdifferentiation of MB cells relies on Sox9, a transcription factor critical for gliogenesis. Our studies further reveal that bone morphogenetic proteins (BMPs) stimulate the transdifferentiation of MB cells by inducing the phosphorylation of Sox9. Pharmacological inhibition of BMP signaling represses MB cell transdifferentiation into astrocytes and suppresses tumor relapse. Our studies establish the distinct cellular sources of astrocytes in primary and relapsed MB and provide an avenue to prevent and treat MB relapse by targeting tumor cell transdifferentiation.


Assuntos
Astrócitos/patologia , Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/farmacologia , Transdiferenciação Celular/efeitos dos fármacos , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos Transgênicos , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Fosforilação , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fatores de Transcrição SOX9/metabolismo , Análise de Célula Única , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cancer Res ; 19(11): 1831-1839, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34330843

RESUMO

Medulloblastoma is the most common malignant pediatric brain tumor and there is an urgent need for molecularly targeted and subgroup-specific therapies. The stem cell factor SOX9, has been proposed as a potential therapeutic target for the treatment of Sonic Hedgehog medulloblastoma (SHH-MB) subgroup tumors, given its role as a downstream target of Hedgehog signaling and in functionally promoting SHH-MB metastasis and treatment resistance. However, the functional requirement for SOX9 in the genesis of medulloblastoma remains to be determined. Here we report a previously undocumented level of SOX9 expression exclusively in proliferating granule cell precursors (GCP) of the postnatal mouse cerebellum, which function as the medulloblastoma-initiating cells of SHH-MBs. Wild-type GCPs express comparatively lower levels of SOX9 than neural stem cells and mature astroglia and SOX9low GCP-like tumor cells constitute the bulk of both infant (Math1Cre:Ptch1lox/lox ) and adult (Ptch1LacZ/+ ) SHH-MB mouse models. Human medulloblastoma single-cell RNA data analyses reveal three distinct SOX9 populations present in SHH-MB and noticeably absent in other medulloblastoma subgroups: SOX9 + MATH1 + (GCP), SOX9 + GFAP + (astrocytes) and SOX9 + MATH1 + GFAP + (potential tumor-derived astrocytes). To functionally address whether SOX9 is required as a downstream effector of Hedgehog signaling in medulloblastoma tumor cells, we ablated Sox9 using a Math1Cre model system. Surprisingly, targeted ablation of Sox9 in GCPs (Math1Cre:Sox9lox/lox ) revealed no overt phenotype and loss of Sox9 in SHH-MB (Math1Cre:Ptch1lox/lox;Sox9lox/lox ) does not affect tumor formation. IMPLICATIONS: Despite preclinical data indicating SOX9 plays a key role in SHH-MB biology, our data argue against SOX9 as a viable therapeutic target.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Fatores de Transcrição SOX9/metabolismo , Animais , Proliferação de Células , Modelos Animais de Doenças , Humanos , Meduloblastoma/fisiopatologia , Camundongos , Transdução de Sinais
10.
Genome Med ; 13(1): 103, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154646

RESUMO

BACKGROUND: Medulloblastoma (MB) is the most common malignant paediatric brain tumour and a leading cause of cancer-related mortality and morbidity. Existing treatment protocols are aggressive in nature resulting in significant neurological, intellectual and physical disabilities for the children undergoing treatment. Thus, there is an urgent need for improved, targeted therapies that minimize these harmful side effects. METHODS: We identified candidate drugs for MB using a network-based systems-pharmacogenomics approach: based on results from a functional genomics screen, we identified a network of interactions implicated in human MB growth regulation. We then integrated drugs and their known mechanisms of action, along with gene expression data from a large collection of medulloblastoma patients to identify drugs with potential to treat MB. RESULTS: Our analyses identified drugs targeting CDK4, CDK6 and AURKA as strong candidates for MB; all of these genes are well validated as drug targets in other tumour types. We also identified non-WNT MB as a novel indication for drugs targeting TUBB, CAD, SNRPA, SLC1A5, PTPRS, P4HB and CHEK2. Based upon these analyses, we subsequently demonstrated that one of these drugs, the new microtubule stabilizing agent, ixabepilone, blocked tumour growth in vivo in mice bearing patient-derived xenograft tumours of the Sonic Hedgehog and Group 3 subtype, providing the first demonstration of its efficacy in MB. CONCLUSIONS: Our findings confirm that this data-driven systems pharmacogenomics strategy is a powerful approach for the discovery and validation of novel therapeutic candidates relevant to MB treatment, and along with data validating ixabepilone in PDX models of the two most aggressive subtypes of medulloblastoma, we present the network analysis framework as a resource for the field.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais , Neoplasias Cerebelares/etiologia , Desenvolvimento de Medicamentos , Meduloblastoma/etiologia , Farmacogenética/métodos , Animais , Antineoplásicos/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Neoplasias Cerebelares/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes , Humanos , Meduloblastoma/tratamento farmacológico , Meduloblastoma/metabolismo , Camundongos , Camundongos Transgênicos , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Biologia de Sistemas/métodos , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Exp Med ; 218(5)2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33656514

RESUMO

Vincristine is an important component of many regimens used for pediatric and adult malignancies, but it causes a dose-limiting sensorimotor neuropathy for which there is no effective treatment. This study aimed to delineate the neuro-inflammatory mechanisms contributing to the development of mechanical allodynia and gait disturbances in a murine model of vincristine-induced neuropathy, as well as to identify novel treatment approaches. Here, we show that vincristine-induced peripheral neuropathy is driven by activation of the NLRP3 inflammasome and subsequent release of interleukin-1ß from macrophages, with mechanical allodynia and gait disturbances significantly reduced in knockout mice lacking NLRP3 signaling pathway components, or after treatment with the NLRP3 inhibitor MCC950. Moreover, treatment with the IL-1 receptor antagonist anakinra prevented the development of vincristine-induced neuropathy without adversely affecting chemotherapy efficacy or tumor progression in patient-derived medulloblastoma xenograph models. These results detail the neuro-inflammatory mechanisms leading to vincristine-induced peripheral neuropathy and suggest that repurposing anakinra may be an effective co-treatment strategy to prevent vincristine-induced peripheral neuropathy.


Assuntos
Hiperalgesia/genética , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Doenças do Sistema Nervoso Periférico/genética , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/administração & dosagem , Antirreumáticos/administração & dosagem , Cisplatino/administração & dosagem , Furanos/administração & dosagem , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Indenos/administração & dosagem , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxaliplatina/administração & dosagem , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Sulfonamidas/administração & dosagem , Vincristina
12.
Genome Med ; 13(1): 19, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549134

RESUMO

BACKGROUND: Basal cell carcinoma (BCC) of the skin is the most common form of human cancer, with more than 90% of tumours presenting with clear genetic activation of the Hedgehog pathway. However, polygenic risk factors affecting mechanisms such as DNA repair and cell cycle checkpoints or which modulate the tumour microenvironment or host immune system play significant roles in determining whether genetic mutations culminate in BCC development. We set out to define background genetic factors that play a role in influencing BCC susceptibility via promoting or suppressing the effects of oncogenic drivers of BCC. METHODS: We performed genome-wide association studies (GWAS) on 17,416 cases and 375,455 controls. We subsequently performed statistical analysis by integrating data from population-based genetic studies of multi-omics data, including blood- and skin-specific expression quantitative trait loci and methylation quantitative trait loci, thereby defining a list of functionally relevant candidate BCC susceptibility genes from our GWAS loci. We also constructed a local GWAS functional interaction network (consisting of GWAS nearest genes) and another functional interaction network, consisting specifically of candidate BCC susceptibility genes. RESULTS: A total of 71 GWAS loci and 46 functional candidate BCC susceptibility genes were identified. Increased risk of BCC was associated with the decreased expression of 26 susceptibility genes and increased expression of 20 susceptibility genes. Pathway analysis of the functional candidate gene regulatory network revealed strong enrichment for cell cycle, cell death, and immune regulation processes, with a global enrichment of genes and proteins linked to TReg cell biology. CONCLUSIONS: Our genome-wide association analyses and functional interaction network analysis reveal an enrichment of risk variants that function in an immunosuppressive regulatory network, likely hindering cancer immune surveillance and effective antitumour immunity.


Assuntos
Carcinoma Basocelular/genética , Carcinoma Basocelular/imunologia , Redes Reguladoras de Genes , Predisposição Genética para Doença , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Linfócitos T Reguladores/imunologia , Bancos de Espécimes Biológicos , Carcinoma Basocelular/sangue , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Especificidade de Órgãos/genética , Mapas de Interação de Proteínas/genética , Locos de Características Quantitativas/genética , Neoplasias Cutâneas/sangue
13.
Neuro Oncol ; 23(5): 732-742, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33258962

RESUMO

BACKGROUND: Novel targeted therapies for children diagnosed with medulloblastoma (MB), the most common malignant pediatric brain tumor, are urgently required. A major hurdle in the development of effective therapies is the impaired delivery of systemic therapies to tumor cells due to a specialized endothelial blood-brain barrier (BBB). Accordingly, the integrity of the BBB is an essential consideration in any preclinical model used for assessing novel therapeutics. This study sought to assess the functional integrity of the BBB in several preclinical mouse models of MB. METHODS: Dynamic contrast enhancement magnetic resonance imaging (MRI) was used to evaluate blood-brain-tumor barrier (BBTB) permeability in a murine genetically engineered mouse model (GEMM) of Sonic Hedgehog (SHH) MB, patient-derived orthotopic xenograft models of MB (SHH and Gp3), and orthotopic transplantation of GEMM tumor cells, enabling a comparison of the direct effects of transplantation on the integrity of the BBTB. Immunofluorescence analysis was performed to compare the structural and subcellular features of tumor-associated vasculature in all models. RESULTS: Contrast enhancement was observed in all transplantation models of MB. No contrast enhancement was observed in the GEMM despite significant tumor burden. Cellular analysis of BBTB integrity revealed aberrancies in all transplantation models, correlating to the varying levels of BBTB permeability observed by MRI in these models. CONCLUSIONS: These results highlight functional differences in the integrity of the BBTB and tumor vessel phenotype between commonly utilized preclinical models of MB, with important implications for the preclinical evaluation of novel therapeutic agents for MB.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Barreira Hematoencefálica , Linhagem Celular Tumoral , Criança , Proteínas Hedgehog , Xenoenxertos , Humanos , Camundongos
14.
J Am Soc Nephrol ; 29(2): 532-544, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29109083

RESUMO

Intrinsic ureteropelvic junction obstruction is the most common cause of congenital hydronephrosis, yet the underlying pathogenesis is undefined. Hedgehog proteins control morphogenesis by promoting GLI-dependent transcriptional activation and inhibiting the formation of the GLI3 transcriptional repressor. Hedgehog regulates differentiation and proliferation of ureteric smooth muscle progenitor cells during murine kidney-ureter development. Histopathologic findings of smooth muscle cell hypertrophy and stroma-like cells, consistently observed in obstructing tissue at the time of surgical correction, suggest that Hedgehog signaling is abnormally regulated during the genesis of congenital intrinsic ureteropelvic junction obstruction. Here, we demonstrate that constitutively active Hedgehog signaling in murine intermediate mesoderm-derived renal progenitors results in hydronephrosis and failure to develop a patent pelvic-ureteric junction. Tissue obstructing the ureteropelvic junction was marked as early as E13.5 by an ectopic population of cells expressing Ptch2, a Hedgehog signaling target. Constitutive expression of GLI3 repressor in Ptch1-deficient mice rescued ectopic Ptch2 expression and obstructive hydronephrosis. Whole transcriptome analysis of isolated Ptch2+ cells revealed coexpression of genes characteristic of stromal progenitor cells. Genetic lineage tracing indicated that stromal cells blocking the ureteropelvic junction were derived from intermediate mesoderm-derived renal progenitors and were distinct from the smooth muscle or epithelial lineages. Analysis of obstructive ureteric tissue resected from children with congenital intrinsic ureteropelvic junction obstruction revealed a molecular signature similar to that observed in Ptch1-deficient mice. Together, these results demonstrate a Hedgehog-dependent mechanism underlying mammalian intrinsic ureteropelvic junction obstruction.


Assuntos
Proteínas Hedgehog/genética , Hidronefrose/genética , Proteínas do Tecido Nervoso/genética , Receptor Patched-1/genética , Receptor Patched-2/genética , Transdução de Sinais , Obstrução Ureteral/genética , Proteína Gli3 com Dedos de Zinco/genética , Aldeído Oxirredutases/genética , Animais , Linhagem da Célula , Criança , Feminino , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Hidronefrose/congênito , Hidronefrose/patologia , Hibridização In Situ , Pelve Renal/embriologia , Pelve Renal/metabolismo , Masculino , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Transcriptoma , Regulação para Cima , Ureter/embriologia , Ureter/metabolismo , Obstrução Ureteral/congênito , Obstrução Ureteral/patologia , Proteína Gli3 com Dedos de Zinco/metabolismo
15.
Oncotarget ; 8(48): 84006-84018, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137400

RESUMO

Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1, the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes.

16.
Clin Cancer Res ; 23(19): 5802-5813, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637687

RESUMO

Purpose: Bioinformatics analysis followed by in vivo studies in patient-derived xenograft (PDX) models were used to identify and validate CDK 4/6 inhibition as an effective therapeutic strategy for medulloblastoma, particularly group 3 MYC-amplified tumors that have the worst clinical prognosis.Experimental Design: A protein interaction network derived from a Sleeping Beauty mutagenesis model of medulloblastoma was used to identify potential novel therapeutic targets. The top hit from this analysis was validated in vivo using PDX models of medulloblastoma implanted subcutaneously in the flank and orthotopically in the cerebellum of mice.Results: Informatics analysis identified the CDK4/6/CYCLIN D/RB pathway as a novel "druggable" pathway for multiple subgroups of medulloblastoma. Palbociclib, a highly specific inhibitor of CDK4/6, was found to inhibit RB phosphorylation and cause G1 arrest in PDX models of medulloblastoma. The drug caused rapid regression of Sonic hedgehog (SHH) and MYC-amplified group 3 medulloblastoma subcutaneous tumors and provided a highly significant survival advantage to mice bearing MYC-amplified intracranial tumors.Conclusions: Inhibition of CDK4/6 is potentially a highly effective strategy for the treatment of SHH and MYC-amplified group 3 medulloblastoma. Clin Cancer Res; 23(19); 5802-13. ©2017 AACR.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Meduloblastoma/tratamento farmacológico , Terapia de Alvo Molecular , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Animais , Proliferação de Células/efeitos dos fármacos , Ciclina D/genética , Quinase 4 Dependente de Ciclina/genética , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Fosforilação , Prognóstico , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Genetics ; 202(3): 1105-18, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26773048

RESUMO

The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies.


Assuntos
RNA Helicases DEAD-box/fisiologia , Proteínas Hedgehog/fisiologia , MicroRNAs/fisiologia , Neurônios/citologia , Receptor Patched-1/fisiologia , Ribonuclease III/fisiologia , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Cerebelo/anormalidades , Cerebelo/citologia , Cerebelo/patologia , RNA Helicases DEAD-box/genética , Deficiências do Desenvolvimento/patologia , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Introdução de Genes , Genes Supressores de Tumor , Meduloblastoma/patologia , Camundongos , Camundongos Transgênicos , Malformações do Sistema Nervoso/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Ribonuclease III/genética
18.
Cerebellum ; 14(6): 688-98, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25910616

RESUMO

MicroRNAs (miRNAs) are important regulators of cerebellar function and homeostasis. Their deregulation results in cerebellar neuronal degeneration and spinocerebellar ataxia type 1 and contributes to medulloblastoma. Canonical miRNA processing involves Dicer, which cleaves precursor miRNAs into mature double-stranded RNA duplexes. In order to address the role of miRNAs in cerebellar granule cell precursor development, loxP-flanked exons of Dicer1 were conditionally inactivated using the granule cell precursor-specific Atoh1-Cre recombinase. A reduction of 87% in Dicer1 transcript was achieved in this conditional Dicer knockdown model. Although knockdown resulted in normal survival, mice had disruptions to the cortical layering of the anterior cerebellum, which resulted from the premature differentiation of granule cell precursors in this region during neonatal development. This defect manifested as a thinner external granular layer with ectopic mature granule cells, and a depleted internal granular layer. We found that expression of the activator components of the Hedgehog-Patched pathway, the Gli family of transcription factors, was perturbed in conditional Dicer knockdown mice. We propose that loss of Gli2 mRNA mediated the anterior-restricted defect in conditional Dicer knockdown mice and, as proof of principle, were able to show that miR-106b positively regulated Gli2 mRNA expression. These findings confirm the importance of miRNAs as positive mediators of Hedgehog-Patched signalling during granule cell precursor development.


Assuntos
Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiologia , RNA Helicases DEAD-box/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Neurônios/fisiologia , Ribonuclease III/metabolismo , Animais , Cerebelo/patologia , RNA Helicases DEAD-box/genética , Técnicas de Silenciamento de Genes , Fatores de Transcrição Kruppel-Like/genética , Camundongos Transgênicos , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/patologia , Tamanho do Órgão , Fenótipo , RNA Mensageiro/metabolismo , Ribonuclease III/genética , Proteína Gli2 com Dedos de Zinco
19.
J Invest Dermatol ; 134(7): 1981-1990, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24492243

RESUMO

The Patched 1 (Ptch1) receptor has a pivotal role in inhibiting the activity of the Hedgehog (Hh) pathway and is therefore critical in preventing the onset of many human developmental disorders and tumor formation. However, the functional role of the mammalian Ptch2 paralogue remains elusive, particularly the extent to which it contributes to regulating the spatial and temporal activity of Hh signaling. Here we demonstrate in three independent mouse models of epidermal development that in vivo ablation of both Ptch receptors results in a more severe phenotype than loss of Ptch1 alone. Our studies indicate that concomitant loss of Ptch1 and Ptch2 activity inhibits epidermal lineage specification and differentiation. These results reveal that repression of Hh signaling through a dynamic Ptch regulatory network is a crucial event in lineage fate determination in the skin. In general, our findings implicate Ptch receptor redundancy as a key issue in elucidating the cellular origin of Hh-induced tumors.


Assuntos
Células Epidérmicas , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Cutâneas , Animais , Animais não Endogâmicos , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Epiderme/embriologia , Epiderme/metabolismo , Feminino , Folículo Piloso/citologia , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Proteínas Hedgehog/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos SCID , Receptores Patched , Receptor Patched-1 , Receptor Patched-2 , Gravidez , Receptores de Superfície Celular/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Transplante de Pele
20.
Int J Cancer ; 134(1): 21-31, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23775842

RESUMO

The canonical Sonic Hedgehog (Shh)/Gli pathway plays multiples roles during central nervous system (CNS) development. To elucidate the molecular repertoire of Shh mediators, we have recently described novel transcriptional targets in response to Shh pathway modulation. Among them, we were able to identify Neogenin1 (Neo1), a death dependence receptor, as a new direct Shh downstream regulator in neural precursor proliferation. As appropriate Shh signaling is required for cerebellar growth and alterations cause Shh-driven medulloblastoma (MB), here we have addressed the role of the Shh/Neogenin1 interaction in the context of cerebellar development and cancer. We demonstrate that the Shh pathway regulates Neogenin1 expression in mouse models that recapitulate the Shh MB subtype. We show that the canonical Shh pathway directly regulates the Neo1 gene acting through an upstream sequence in its promoter both in vitro and in vivo in granule neuron precursor cells. We also identified and characterized a functional Gli-binding site in the first intron of the human NEO1 gene. Gene expression profiling of more than 300 MB shows that NEO1 is indeed upregulated in SHH tumors compared to the other MB subgroups. Finally, we provide evidence that NEO1 is necessary for cell cycle progression in a human MB cell line, because a loss of function of NEO1 arrests cells in the G2/M phase. Taken together, these results highlight Neogenin1 as a novel downstream effector of the Shh pathway in MB and a possible therapeutic target.


Assuntos
Neoplasias Cerebelares/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Neoplasias Cerebelares/patologia , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Meduloblastoma/patologia , Camundongos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA