Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38803190

RESUMO

Melanin, particularly eumelanin, is commonly viewed as an efficient antioxidant and photoprotective pigment. Nonetheless, the ability of melanin to photogenerate reactive oxygen species and sensitize the formation of cyclobutane pyrimidine dimers may contribute to melanin-dependent phototoxicity. The phototoxic potential of melanin depends on a variety of factors, including molecular composition, redox state, and degree of aggregation. Using complementary spectroscopic and analytical methods we analyzed the physicochemical properties of Dopa-melanin, a synthetic model of eumelanin, subjected to oxidative degradation induced by aerobic photolysis or exposure to 0.1 M hydrogen peroxide. Both modes of oxidative degradation were accompanied by dose-dependent bleaching of melanin and irreversible modifications of its paramagnetic, ion- and electron-exchange and antioxidant properties. Bleached melanin exhibited enhanced efficiency to photogenerate singlet oxygen in both UVA and short-wavelength visible light. Although chemical changes of melanin subunits, including a relative increase of DHICA content and disruption of melanin polymer induced by oxidative degradation were considered, these two mechanisms may not be sufficient for a satisfactory explanation of the elevated photosensitizing ability of the bleached eumelanin. This study points out possible adverse changes in the photoprotective and antioxidant properties of eumelanin that could occur in pigmented tissues after exposure to high doses of intense solar radiation.

2.
Pigment Cell Melanoma Res ; 37(4): 462-479, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38560773

RESUMO

Research on new ingredients that can prevent excessive melanin production in the skin while considering efficacy, safety but also environmental impact is of great importance to significantly improve the profile of existing actives on the market and avoid undesirable side effects. Here, the discovery of an innovative technology for the management of hyperpigmentation is described. High-throughput screening tests on a wide chemical diversity of molecules and in silico predictive methodologies were essential to design an original thiopyridinone backbone and select 2-mercaptonicotinoyl glycine (2-MNG) as exhibiting the most favorable balance between the impact on water footprint, skin penetration potential and performance. The effectiveness of 2-MNG was confirmed by topical application on pigmented reconstructed epidermis and human skin explants. In addition, experiments have shown that unlike most melanogenesis inhibitors on the market, this molecule is not a tyrosinase inhibitor. 2-MNG binds to certain melanin precursors, preventing their integration into growing melanin and leading to inhibition of eumelanin and pheomelanin synthesis, without compromising the integrity of melanocytes.


Assuntos
Glicina , Melaninas , Melanócitos , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melaninas/biossíntese , Melaninas/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Glicina/química , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Melanogênese
3.
Pigment Cell Melanoma Res ; 37(4): 430-437, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38439523

RESUMO

Tietz albinism-deafness syndrome (TADS) is a rare and severe manifestation of Waardenburg syndrome that is primarily linked to mutations in MITF. In this report, we present a case of TADS resulting from a novel c.637G>C mutation in MITF (p.Glu213Gln; GenBank Accession number: NM_000248). A 3-year-old girl presented with congenital generalized hypopigmentation of the hair, skin, and irides along with complete sensorineural hearing loss. Histopathological and electron microscopy investigations indicated that this variant did not alter the number of melanocytes in the skin but significantly impaired melanosome maturation within melanocytes. Comprehensive melanin analysis revealed marked reductions in both eumelanin (EM) and pheomelanin (PM) rather than changes in the EM-to-PM ratio observed in oculocutaneous albinism. We conducted an electrophoretic mobility shift assay to investigate the binding capability of the identified variant to DNA sequences containing the E-box motif along with other known variants (p.Arg217del and p.Glu213Asp). Remarkably, all three variants exhibited dominant-negative effects, thus providing novel insights into the pathogenesis of TADS. This study sheds light on the genetic mechanisms underlying TADS and offers a deeper understanding of this rare condition and its associated mutations in MITF.


Assuntos
Fator de Transcrição Associado à Microftalmia , Mutação , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Feminino , Pré-Escolar , Mutação/genética , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/patologia , Melaninas/metabolismo , Surdez/genética , Surdez/patologia , Genes Dominantes , Melanossomas/metabolismo , Melanossomas/ultraestrutura , Melanossomas/genética , Melanócitos/patologia , Melanócitos/metabolismo
4.
Pigment Cell Melanoma Res ; 37(2): 276-285, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37920136

RESUMO

Epidermal melanocytes are continuously exposed to sunlight-induced reactive oxygen species (ROS) and oxidative stress generated during the synthesis of melanin. Therefore, they have developed mechanisms that maintain normal redox homeostasis. Cytoglobin (CYGB), a ubiquitously expressed intracellular iron hexacoordinated globin, exhibits antioxidant activity and regulates the redox state of mammalian cells through its activities as peroxidase and nitric oxide (NO) dioxygenase. We postulated that CYGB functions in the melanogenic process as a regulator that maintains oxidative stress within a physiological level. This was examined by characterizing normal human melanocytes with the knockdown (KD) of CYGB using morphological and molecular biological criteria. CYGB-KD cells were larger, had more dendrites, and generated more melanin granules in the advanced stages of melanogenesis than control cells. The expression levels of major melanogenesis-associated genes and proteins were higher in CYGB-KD melanocytes than in wild type (WT) cells. As expected, CYGB-KD melanocytes generated more ROS and NO than WT cells. In conclusion, CYGB physiologically contributes to maintaining redox homeostasis in the melanogenic activity of normal melanocytes by controlling the intracellular levels of ROS and NO.


Assuntos
Melaninas , Melanogênese , Animais , Humanos , Citoglobina/genética , Citoglobina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo , Oxirredução , Mamíferos/metabolismo
5.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38069120

RESUMO

Superficial discolored spots on Atlantic salmon (Salmo salar) fillets are a serious quality problem for commercial seafood farming. Previous reports have proposed that the black spots (called melanized focal changes (MFCs)) may be melanin, but no convincing evidence has been reported. In this study, we performed chemical characterization of MFCs and of red pigment (called red focal changes (RFCs)) from salmon fillets using alkaline hydrogen peroxide oxidation and hydroiodic acid hydrolysis. This revealed that the MFCs contain 3,4-dihydroxyphenylalanine (DOPA)-derived eumelanin, whereas the RFCs contain only trace amounts of eumelanin. Therefore, it is probable that the black color of the MFCs can be explained by the presence of eumelanin from accumulated melanomacrophages. For the red pigment, we could not find a significant signature of either eumelanin or pheomelanin; the red color is probably predominantly hemorrhagic in nature. However, we found that the level of pigmentation in RFCs increased together with some melanogenic metabolites. Comparison with a "mimicking experiment", in which a mixture of a salmon homogenate + DOPA was oxidized with tyrosinase, suggested that the RFCs include conjugations of DOPAquinone and/or DOPAchrome with salmon muscle tissue proteins. In short, the results suggest that melanogenic metabolites in MFCs and RFCs derive from different chemical pathways, which would agree with the two different colorations deriving from distinct cellular origins, namely melanomacrophages and red blood cells, respectively.


Assuntos
Melaninas , Salmo salar , Animais , Melaninas/metabolismo , Salmo salar/metabolismo , Di-Hidroxifenilalanina , Pigmentação
6.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176019

RESUMO

The melanin pigments eumelanin (EM) and pheomelanin (PM), which are dark brown to black and yellow to reddish-brown, respectively, are widely found among vertebrates. They are produced in melanocytes in the epidermis, hair follicles, the choroid, the iris, the inner ear, and other tissues. The diversity of colors in animals is mainly caused by the quantity and quality of their melanin, such as by the ratios of EM versus PM. We have developed micro-analytical methods to simultaneously measure EM and PM and used these to study the biochemical and genetic fundamentals of pigmentation. The photoreactivity of melanin has become a major focus of research because of the postulated relevance of EM and PM for the risk of UVA-induced melanoma. Our biochemical methods have found application in many clinical studies on genetic conditions associated with alterations in pigmentation. Recently, besides chemical degradative methods, other methods have been developed for the characterization of melanin, and these are also discussed here.


Assuntos
Melaninas , Melanoma , Animais , Melaninas/análise , Melanócitos , Pigmentação , Epiderme , Melanoma/química
8.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36982309

RESUMO

N-propionyl-4-S-cysteaminylphenol (N-Pr-4-S-CAP) is a substrate for tyrosinase, which is a melanin biosynthesis enzyme and has been shown to be selectively incorporated into melanoma cells. It was found to cause selective cytotoxicity against melanocytes and melanoma cells after selective incorporation, resulting in the induction of anti-melanoma immunity. However, the underlying mechanisms for the induction of anti-melanoma immunity remain unclear. This study aimed to elucidate the cellular mechanism for the induction of anti-melanoma immunity and clarify whether N-Pr-4-S-CAP administration could be a new immunotherapeutic approach against melanoma, including local recurrence and distant metastasis. A T cell depletion assay was used for the identification of the effector cells responsible for N-Pr-4-S-CAP-mediated anti-melanoma immunity. A cross-presentation assay was carried out by using N-Pr-4-S-CAP-treated B16-OVA melanoma-loaded bone marrow-derived dendritic cells (BMDCs) and OVA-specific T cells. Administration of N-Pr-4-S-CAP induced CD8+ T cell-dependent anti-melanoma immunity and inhibited the growth of challenged B16F1 melanoma cells, indicating that the administration of N-Pr-4-S-CAP can be a prophylactic therapy against recurrence and metastasis of melanoma. Moreover, intratumoral injection of N-Pr-4-S-CAP in combination with BMDCs augmented the tumor growth inhibition when compared with administration of N-Pr-4-S-CAP alone. BMDCs cross-presented a melanoma-specific antigen to CD8+ T cells through N-Pr-4-S-CAP-mediated melanoma cell death. Combination therapy using N-Pr-4-S-CAP and BMDCs elicited a superior anti-melanoma effect. These results suggest that the administration of N-Pr-4-S-CAP could be a new strategy for the prevention of local recurrence and distant metastasis of melanoma.


Assuntos
Linfócitos T CD8-Positivos , Melanoma Experimental , Animais , Camundongos , Fenóis/farmacologia , Cisteamina/farmacologia , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos C57BL , Melanoma Maligno Cutâneo
9.
J Neural Transm (Vienna) ; 130(5): 611-625, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36939908

RESUMO

The dark pigment neuromelanin (NM) is abundant in cell bodies of dopamine (DA) neurons in the substantia nigra (SN) and norepinephrine (NE) neurons in the locus coeruleus (LC) in the human brain. During the progression of Parkinson's disease (PD), together with the degeneration of the respective catecholamine (CA) neurons, the NM levels in the SN and LC markedly decrease. However, questions remain among others on how NM is associated with PD and how it is synthesized. The biosynthesis pathway of NM in the human brain has been controversial because the presence of tyrosinase in CA neurons in the SN and LC has been elusive. We propose the following NM synthesis pathway in these CA neurons: (1) Tyrosine is converted by tyrosine hydroxylase (TH) to L-3,4-dihydroxyphenylalanine (L-DOPA), which is converted by aromatic L-amino acid decarboxylase to DA, which in LC neurons is converted by dopamine ß-hydroxylase to NE; (2) DA or NE is autoxidized to dopamine quinone (DAQ) or norepinephrine quinone (NEQ); and (3) DAQ or NEQ is converted to eumelanic NM (euNM) and pheomelanic NM (pheoNM) in the absence and presence of cysteine, respectively. This process involves proteins as cysteine source and iron. We also discuss whether the NM amounts per neuromelanin-positive (NM+) CA neuron are higher in PD brain, whether NM quantitatively correlates with neurodegeneration, and whether an active lifestyle may reduce NM formation.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Cisteína/metabolismo , Melaninas/metabolismo , Catecolaminas/metabolismo , Norepinefrina/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo
10.
Prog Neurobiol ; 223: 102414, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36746222

RESUMO

Neuromelanin (NM) in dopaminergic neurons of human substantia nigra (SN) has a melanic component that consists of pheomelanin and eumelanin moieties and has been proposed as a key factor contributing to dopaminergic neuron vulnerability in Parkinson's disease (PD). While eumelanin is considered as an antioxidant, pheomelanin and related oxidative stress are associated with compromised drug and metal ion binding and melanoma risk. Using postmortem SN from patients with PD or Alzheimer's disease (AD) and unaffected controls, we identified increased L-3,4-dihydroxyphenylalanine (DOPA) pheomelanin and increased ratios of dopamine (DA) pheomelanin markers to DA in PD SN compared to controls. Eumelanins derived from both DOPA and DA were reduced in PD group. In addition, we report an increase in DOPA pheomelanin relative to DA pheomelanin in PD SN. In AD SN, we observed unaltered melanin markers despite reduced DOPA compared to controls. Furthermore, synthetic DOPA pheomelanin induced neuronal cell death in vitro while synthetic DOPA eumelanin showed no significant effect on cell viability. Our findings provide insights into the different roles of pheomelanin and eumelanin in PD pathophysiology. We anticipate our study will lead to further investigations on pheomelanin and eumelanin individually as biomarkers and possibly therapeutic targets for PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Melaninas/metabolismo , Di-Hidroxifenilalanina/metabolismo , Di-Hidroxifenilalanina/farmacologia , Di-Hidroxifenilalanina/uso terapêutico , Dopamina/metabolismo , Substância Negra/metabolismo
11.
J Neural Transm (Vienna) ; 130(1): 29-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527527

RESUMO

Dopamine (DA) is a precursor of neuromelanin (NM) synthesized in the substantia nigra of the brain. NM is known to contain considerable levels of Fe and Cu. However, how Fe and Cu ions affect DA oxidation to DA-eumelanin (DA-EM) and modify its structure is poorly understood. EMs were prepared from 500 µM DA, dopaminechrome (DAC), or 5,6-dihydroxyindole (DHI). Autoxidation was carried out in the absence or presence of 50 µM Fe(II) or Cu(II) at pH 7.4 and 37 â„ƒ. EMs were characterized by Soluene-350 solubilization analyzing absorbances at 500 nm (A500) and 650 nm (A650) and alkaline hydrogen peroxide oxidation (AHPO) yielding various pyrrole carboxylic acids. Pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) served as a molecular marker of cross-linked DHI units. Importantly, Fe and Cu accelerated DA oxidation to DA-EM and DHI oxidation to DHI-EM several-fold, whereas these metals only weakly affected the production of DAC-EM. The A500 values indicated that DA-EM contains considerable portions of uncyclized DA units. Analysis of the A650/A500 ratios suggests that Fe and Cu caused some degradation of DHI units of DA-EM during 72-h incubation. Results with AHPO were consistent with the A500 values and additionally revealed that (1) DA-EM is less cross-linked than DAC-EM and DHI-EM and (2) Fe and Cu promote cross-linking of DHI units. In conclusion, Fe and Cu not only accelerate the oxidation of DA to DA-EM but also promote cross-linking and degradation of DHI units. These results help to understand how Fe and Cu in the brain affect the production and properties of NM.


Assuntos
Dopamina , Ferro , Dopamina/metabolismo , Ferro/metabolismo , Cobre , Melaninas/metabolismo , Oxirredução , Peróxido de Hidrogênio/química
12.
J Invest Dermatol ; 143(2): 317-327.e6, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36063887

RESUMO

Palmitoylation is a lipid modification involving the attachment of palmitic acid to a cysteine residue, thereby affecting protein function. We investigated the effect of palmitoylation of tyrosinase, the rate-limiting enzyme in melanin synthesis, using a human three-dimensional skin model system and melanocyte culture. The palmitoylation inhibitor, 2-bromopalmitate, increased melanin content and tyrosinase protein levels in melanogenic cells by suppressing tyrosinase degradation. The palmitoylation site was Cysteine500 in the C-terminal cytoplasmic tail of tyrosinase. The nonpalmitoylatable mutant, tyrosinase (C500A), was slowly degraded and less ubiquitinated than wild-type tyrosinase. Screening for the Asp-His-His-Cys (DHHC) family of proteins for tyrosinase palmitoylation suggested that DHHC2, 3, 7, and 15 are involved in tyrosinase palmitoylation. Knockdown of DHHC2, 3, or 15 increased tyrosinase protein levels and melanin content. Determination of their subcellular localization in primary melanocytes revealed that DHHC2, 3, and 15 were localized in the endoplasmic reticulum, Golgi apparatus, and/or melanosomes, whereas only DHHC2 was localized in the melanosomes. Immunoprecipitation showed that DHHC2 and DHHC3 predominantly bind to mature and immature tyrosinase, respectively. Taken together, tyrosinase palmitoylation at Cysteine500 by DHHC2, 3, and/or 15, especially DHHC2 in trans-Golgi apparatus and melanosomes and DHHC3 in the endoplasmic reticulum and cis-Golgi apparatus, regulate melanogenesis by modulating tyrosinase protein levels.


Assuntos
Cisteína , Monofenol Mono-Oxigenase , Humanos , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Lipoilação , Aciltransferases/metabolismo , Melaninas/metabolismo , Melanócitos/metabolismo
13.
J Dermatol Sci ; 108(2): 77-86, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36567223

RESUMO

BACKGROUND: Chemical leukoderma is a skin depigmentation disorder induced through contact with certain chemicals, most of which have a p-substituted phenol structure similar to the melanin precursor tyrosine. The tyrosinase-catalyzed oxidation of phenols to highly reactive o-quinone metabolites is a critical step in inducing leukoderma through the production of melanocyte-specific damage and immunological responses. OBJECTIVE: Our aim was to find an effective method to evaluate the formation of o-quinone by human tyrosinase and subsequent cellular reactions. METHODS: Human tyrosinase-expressing 293T cells were exposed to various phenolic compounds, after which the reactive o-quinones generated were identified as adducts of cellular thiols. We further examined whether the o-quinone formation induces reductions in cellular GSH or viability. RESULTS: Among the chemicals tested, all 7 leukoderma-inducing phenols/catechol (rhododendrol, raspberry ketone, monobenzone, 4-tert-butylphenol, 4-tert-butylcatechol, 4-S-cysteaminylphenol and p-cresol) were oxidized to o-quinone metabolites and were detected as adducts of cellular glutathione and cysteine, leading to cellular glutathione reduction, whereas 2-S-cysteaminylphenol and 4-n-butylresorcinol were not. In vitro analysis using a soluble variant of human tyrosinase revealed a similar substrate-specificity. Some leukoderma-inducing phenols exhibited tyrosinase-dependent cytotoxicity in this cell model and in B16BL6 melanoma cells where tyrosinase expression was effectively modulated by siRNA knockdown. CONCLUSION: We developed a cell-based metabolite analytical method to detect human tyrosinase-catalyzed formation of o-quinone from phenolic compounds by analyzing their thiol-adducts. The detailed analysis of each metabolite was superior in sensitivity and specificity compared to cytotoxicity assays for detecting known leukoderma-inducing phenols, providing an effective strategy for safety evaluation of chemicals.


Assuntos
Hipopigmentação , Monofenol Mono-Oxigenase , Humanos , Monofenol Mono-Oxigenase/metabolismo , Ativação Metabólica , Fenóis/toxicidade , Hipopigmentação/induzido quimicamente , Quinonas/análise , Quinonas/química , Quinonas/metabolismo , Glutationa/metabolismo
14.
Cancers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428680

RESUMO

Malignant melanoma is one of the most malignant of all cancers. Melanoma occurs at the epidermo-dermal interface of the skin and mucosa, where small vessels and lymphatics are abundant. Consequently, from the onset of the disease, melanoma easily metastasizes to other organs throughout the body via lymphatic and blood circulation. At present, the most effective treatment method is surgical resection, and other attempted methods, such as chemotherapy, radiotherapy, immunotherapy, targeted therapy, and gene therapy, have not yet produced sufficient results. Since melanogenesis is a unique biochemical pathway that functions only in melanocytes and their neoplastic counterparts, melanoma cells, the development of drugs that target melanogenesis is a promising area of research. Melanin consists of small-molecule derivatives that are always synthesized by melanoma cells. Amelanosis reflects the macroscopic visibility of color changes (hypomelanosis). Under microscopy, melanin pigments and their precursors are present in amelanotic melanoma cells. Tumors can be easily targeted by small molecules that chemically mimic melanogenic substrates. In addition, small-molecule melanin metabolites are toxic to melanocytes and melanoma cells and can kill them. This review describes our development of chemo-thermo-immunotherapy based on the synthesis of melanogenesis-based small-molecule derivatives and conjugation to magnetite nanoparticles. We also introduce the other melanogenesis-related chemotherapy and thermal medicine approaches and discuss currently introduced targeted therapies with immune checkpoint inhibitors for unresectable/metastatic melanoma.

15.
Cancers (Basel) ; 14(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36291795

RESUMO

TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.

16.
Pigment Cell Melanoma Res ; 35(6): 622-626, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35933709

RESUMO

Human skin contains two distinct components: brown to black, insoluble eumelanin and light colored, alkaline-soluble pheomelanin. Eumelanin consists of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) moieties, while pheomelanin consists of benzothiazine (BT) and benzothiazole (BZ) moieties. These melanin monomer units can be quantitatively analyzed through specific degradation products by high-performance liquid chromatography (HPLC). Alkaline hydrogen peroxide oxidation (AHPO) of eumelanin gives rise to pyrrole-2,3,5-tricarboxylic acid (PTCA) and pyrrole-2,3-dicarboxylic acid (PDCA) as specific degradation products of the DHICA and DHI moieties, respectively. BZ moiety in pheomelanin can be analyzed as thiazole-2,4,5-tricarboxylic acid (TTCA). By reductive hydrolysis with hydroiodic acid, BT moieties in pheomelanin can be analyzed as 4-amino-3-hydroxyphenylalanine (4-AHP). As a recently improved AHPO-HPLC method enabled a better characterization of PDCA, this prompted us to address the question of DHI to DHICA ratio in human skin samples with varying degrees of constitutive pigmentation ranging from very light to dark. Results showed for the first time the ratio of 4 moieties: DHI 35%, DHICA 41%, BZ 20%, and BT 4%. The ratio is constant regardless of the degree of pigmentation. The high content of DHICA moiety may impart an antioxidant property to the epidermis melanin.


Assuntos
Peróxido de Hidrogênio , Melaninas , Humanos , Melaninas/metabolismo , Antioxidantes , Pigmentação , Pirróis , Benzotiazóis , Ácidos Tricarboxílicos
17.
J Clin Endocrinol Metab ; 107(9): e3699-e3704, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35737586

RESUMO

OBJECTIVE: Patients with pro-opiomelanocortin (POMC) defects generally present with early-onset obesity, hyperphagia, hypopigmentation and adrenocorticotropin (ACTH) deficiency. Rodent models suggest that adequate cleavage of ACTH to α-melanocortin-stimulating hormone (α-MSH) and desacetyl-α-melanocortin-stimulating hormone (d-α-MSH) by prohormone convertase 2 at the KKRR region is required for regulating food intake and energy balance. METHODS: We present 2 sisters with a novel POMC gene variant, leading to an ACTH defect at the prohormone convertase 2 cleavage site, and performed functional studies of this variant. RESULTS: The patients had obesity, hyperphagia and hypocortisolism, with markerly raised levels of ACTH but unaffected pigmentation. Their ACTH has reduced potency to stimulate the melanocortin (MC) 2 receptor, explaining their hypocortisolism. CONCLUSION: The hyperphagia and obesity support evidence that adequate cleavage of ACTH to α-MSH and d-α-MSH is also required in humans for feeding control.


Assuntos
Hormônio Adrenocorticotrópico , Pró-Opiomelanocortina , Insuficiência Adrenal , Humanos , Hiperfagia/genética , Obesidade/genética , Pró-Opiomelanocortina/genética , Pró-Proteína Convertase 2 , alfa-MSH
18.
Antioxidants (Basel) ; 11(6)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35740103

RESUMO

Constitutive pigmentation determines the response to sun exposure and the risk for melanoma, an oxidative stress-driven tumor. Using primary cultures of human melanocytes, we compared the effects of constitutive pigmentation on their antioxidant response to solar UV. The quantitation of eumelanin and pheomelanin showed that the eumelanin content and eumelanin to pheomelanin ratio correlated inversely with the basal levels of reactive oxygen species (ROS). Irradiation with 7 J/cm2 solar UV increased ROS generation without compromising melanocyte viability. Among the antioxidant enzymes tested, the basal levels of heme oxygenase-1 (HO-1) and the glutamate cysteine ligase catalytic subunit and modifier subunit (GCLC and GCLM) correlated directly with the eumelanin and total melanin contents. The levels of HO-1 and GCLM decreased at 6 h but increased at 24 h post-solar UV. Consistent with the GCLC and GCLM levels, the basal glutathione (GSH) content was significantly lower in light than in dark melanocytes. The expression of HMOX1, GCLC, GCLM, and CAT did not correlate with the melanin content and was reduced 3 h after solar UV irradiation, particularly in lightly pigmented melanocytes. Solar UV increased p53 and lipid peroxidation, which correlated inversely with the eumelanin and total melanin contents. These intrinsic differences between light and dark melanocytes should determine their antioxidant response and melanoma risk.

19.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742905

RESUMO

A major advance in drug discovery and targeted therapy directed at cancer cells may be achieved by the exploitation and immunomodulation of their unique biological properties. This review summarizes our efforts to develop novel chemo-thermo-immunotherapy (CTI therapy) by conjugating a melanogenesis substrate, N-propionyl cysteaminylphenol (NPrCAP: amine analog of tyrosine), with magnetite nanoparticles (MNP). In our approach, NPrCAP provides a unique drug delivery system (DDS) because of its selective incorporation into melanoma cells. It also functions as a melanoma-targeted therapeutic drug because of its production of highly reactive free radicals (melanoma-targeted chemotherapy). Moreover, the utilization of MNP is a platform to develop thermo-immunotherapy because of heat shock protein (HSP) expression upon heat generation in MNP by exposure to an alternating magnetic field (AMF). This comprehensive review covers experimental in vivo and in vitro mouse melanoma models and preliminary clinical trials with a limited number of advanced melanoma patients. We also discuss the future directions of CTI therapy.


Assuntos
Nanopartículas de Magnetita , Melanoma , Animais , Sistemas de Liberação de Medicamentos , Humanos , Imunoterapia , Campos Magnéticos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Melanoma/metabolismo , Camundongos
20.
Pigment Cell Melanoma Res ; 35(2): 212-219, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34870899

RESUMO

Oculocutaneous albinism (OCA) 6 is a non-syndromic type of OCA that has distinct ocular symptoms and variable cutaneous hypopigmentation. The causative gene of OCA6 is SLC24A5, which encodes NCKX5, a K+ -dependent Na+ /Ca2+ exchanger 5. NCKX5 is involved in the maturation of melanosomes, but its function is still unclear. In this study, we characterized a Japanese patient with OCA6. Genetic analysis revealed compound heterozygous variants in SLC24A5, c.590 + 1dupG, and c.598G>A (p.G200R). To clarify the functional significance of the missense variant, we generated a knock-in (KI) mouse model carrying the mouse homolog of the G200R variant using the CRISPR/Cas9 system. Chemical analysis showed decreased amounts of eumelanin in the hair and skin of KI mice, while levels of benzothiazine units in pheomelanin were significantly increased in their hair. Retinal pigment was also decreased in KI mice. Notably, a histopathologic study revealed a significant pigment loss in the retinal pigment epithelium (RPE) but not in the choroid. Immunohistochemically, the expression of NCKX5 in the RPE was decreased but was maintained in the choroid of KI mice. These findings could explain the difference in phenotypic severity between eye symptoms and hypopigmentation in the skin/hair.


Assuntos
Albinismo Oculocutâneo , Hipopigmentação , Epitélio Pigmentado da Retina , Trocador de Sódio e Cálcio , Albinismo Oculocutâneo/genética , Animais , Humanos , Hipopigmentação/genética , Japão , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Trocador de Sódio e Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA