Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798522

RESUMO

Background: NK cells are being extensively studied as a cell therapy for cancer. Their effector functions are induced by the recognition of ligands on tumor cells and by various cytokines. IL-15 is broadly used to stimulate endogenous and adoptively transferred NK cells in cancer patients. These stimuli activate the membrane protease ADAM17, which then cleaves assorted receptors on the surface of NK cells as a negative feedback loop to limit their activation and function. We have shown that ADAM17 inhibition can enhance IL-15-mediated NK cell proliferation in vitro and in vivo . In this study, we investigated the underlying mechanism of this process. Methods: PBMCs or enriched NK cells from human peripheral blood, either unlabeled or labeled with a cell proliferation dye, were cultured for up to 7 days in the presence of rhIL-15 +/- an ADAM17 function-blocking antibody. Different versions of the antibody were generated; Medi-1 (IgG1), Medi-4 (IgG4), Medi-PGLALA, Medi-F(ab') 2 , and TAB16 (anti-ADAM17 and anti-CD16 bispecific) to modulate CD16A engagement on NK cells. Flow cytometry was used to assess NK cell proliferation and phenotypic markers, immunoblotting to examine CD16A signaling, and IncuCyte-based live cell imaging to measure NK cell anti-tumor activity. Results: The ADAM17 function-blocking mAb Medi-1 markedly increased initial NK cell activation by IL-15. Using different engineered versions of the antibody revealed that the activating Fcγ receptor CD16A, a well-described ADAM17 substrate, was critical for enhancing IL-15 stimulation. Hence, Medi-1 bound to ADAM17 on NK cells can be engaged by CD16A and block its shedding, inducing and prolonging its signaling. This process did not promote evident NK cell fratricide, phagocytosis, or dysfunction. Synergistic activity by Medi-1 and IL-15 enhanced the upregulation of CD137 on CD16A + NK cells and augmented their proliferation in the presence of PBMC accessory cells. Conclusions: Our data reveal for the first time that CD16A and CD137 underpin Medi-1 enhancement of IL-15-driven NK cell activation and proliferation, respectively. The use of Medi-1 represents a novel strategy to enhance IL-15-driven NK cell proliferation, and it may be of therapeutic importance by increasing the anti-tumor activity of NK cells in cancer patients. What is already known on this topic: NK cell therapies are being broadly investigated to treat cancer. NK cell stimulation by IL-15 prolongs their survival in cancer patients. Various stimuli including IL-15 activate ADAM17 in NK cells, a membrane protease that regulates the cell surface density of various receptors as a negative feedback mechanism. What this study adds: Treating NK cells with the ADAM17 function-blocking mAb Medi-1 markedly enhanced their activation and proliferation. Our study reveals that the Fc and Fab regions of Medi-1 function synergistically with IL-15 in NK cell activation. Medi-1 treatment augments the upregulation of CD137 by NK cells, which enhances their proliferation in the presence of PBMC accessory cells. How this study might affect research practice or policy: Our study is of translational importance as Medi-1 treatment in combination with IL-15 could potentially augment the proliferation and function of endogenous or adoptively transferred NK cells in cancer patients.

2.
Cytotherapy ; 26(3): 252-260, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38127030

RESUMO

BACKGROUND AIMS: Natural killer (NK) cell transfer is a promising cellular immunotherapy for cancer. Previously, we developed a robust method to generate large NK cell numbers from CD34+ hematopoietic stem and progenitor cells (HSPCs), which exhibit strong anti-tumor activity. However, since these cells express low levels of the Fc receptor CD16a in vitro, antibody-dependent cellular cytotoxicity (ADCC) by these cells is limited. To broaden clinical applicability of our HSPC-NK cells toward less NK-sensitive malignancies, we aimed to improve ADCC through CD16a transduction. METHODS: Using wildtype and S197P mutant greater-affinity (both with V158) CD16a retroviral transgenes (i.e., a cleavable and noncleavable CD16a upon stimulation), we generated CD16a HSPC-transduced NK cells, with CD34+ cells isolated from umbilical cord blood (UCB) or peripheral blood after G-CSF stem cell mobilization (MPB). CD16a expressing NK cells were enriched using flow cytometry-based cell sorting. Subsequently, phenotypic analyses and functional assays were performed to investigate natural cytotoxicity and ADCC activity. RESULTS: Mean transduction efficiency was 34% for UCB-derived HSPCs and 20% for MPB-derived HSPCs, which was enriched by flow cytometry-based cell sorting to >90% for both conditions. Expression of the transgene remained stable during the entire NK expansion cell generation process. Proliferation and differentiation of HSPCs were not hampered by the transduction process, resulting in effectively differentiated CD56+ NK cells after 5 weeks. Activation of the HSPC-derived NK cells resulted in significant shedding of wildtype CD16a transcribed from the endogenous gene, but not of the noncleavable mutant CD16a protein expressed from the transduced construct. The mean increase of CD107+IFNγ+ expressing NK cells after inducing ADCC was tenfold in enriched noncleavable CD16a HSPC-NK cells. Killing capacity of CD16a-transduced NK cells was significantly improved after addition of a tumor-targeting antibody in tumor cell lines and primary B-cell leukemia and lymphoma cells compared to unmodified HSPC-NK cells. CONCLUSIONS: Together, these data demonstrate that the applicability of adoptive NK cell immunotherapy may be broadened to less NK-sensitive malignancies by upregulation of CD16a expression in combination with the use of tumor-targeting monoclonal antibodies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Receptores de IgG , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais , Receptores Fc/metabolismo , Humanos
3.
J Immunother Cancer ; 11(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056893

RESUMO

BACKGROUND: Antibody therapies can direct natural killer (NK) cells to tumor cells, tumor-associated cells, and suppressive immune cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This antigen-specific effector function of human NK cells is mediated by the IgG Fc receptor CD16A (FcγRIIIA). Preclinical and clinical studies indicate that increasing the binding affinity and avidity of CD16A for antibodies improves the therapeutic potential of ADCC. CD64 (FcγRI), expressed by myeloid cells but not NK cells, is the only high affinity IgG Fc receptor and is uniquely capable of stably binding to free monomeric IgG as a physiological function. We have reported on the generation of the FcγR fusion CD64/16A, consisting of the extracellular region of CD64 and the transmembrane and cytoplasmic regions from CD16A, retaining its signaling and cellular activity. Here, we generated induced pluripotent stem cell (iPSC)-derived NK (iNK) cells expressing CD64/16A as a potential adoptive NK cell therapy for increased ADCC potency. METHODS: iPSCs were engineered to express CD64/16A as well as an interleukin (IL)-15/IL-15Rα fusion (IL-15RF) protein and differentiated into iNK cells. iNK cells and peripheral blood NK cells were expanded using irradiated K562-mbIL21-41BBL feeder cells and examined. NK cells, ovarian tumor cell lines, and therapeutic monoclonal antibodies were used to assess ADCC in vitro, performed by a DELFIA EuTDA assay or in real-time by IncuCyte assays, and in vivo. For the latter, we developed a xenograft mouse model with high circulating levels of human IgG for more physiological relevance. RESULTS: We demonstrate that (1) iNK-CD64/16A cells after expansion or thaw from cryopreservation can be coupled to therapeutic antibodies, creating armed iNK cells; (2) antibody-armed iNK-CD64/16A cells can be redirected by added antibodies to target new tumor antigens, highlighting additional potential of these cells; (3) cytokine-autonomous activity by iNK-CD64/16A cells engineered to express IL-15RF; and that (4) antibody-armed iNK-CD64/16A cells thawed from cryopreservation are capable of sustained and robust ADCC in vitro and in vivo, as determined by using a modified tumor xenograft model with high levels of competing human IgG. CONCLUSIONS: iNK cells expressing CD64/16A provide an off-the-shelf multiantigen targeting platform to address tumor heterogeneity and mitigate antigen escape.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de IgG , Humanos , Animais , Camundongos , Receptores de IgG/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Matadoras Naturais , Linhagem Celular Tumoral , Imunoglobulina G
4.
Nat Commun ; 13(1): 7341, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446823

RESUMO

Allogeneic natural killer (NK) cell adoptive transfer is a promising treatment for several cancers but is less effective for the treatment of multiple myeloma. In this study, we report on quadruple gene-engineered induced pluripotent stem cell (iPSC)-derived NK cells designed for mass production from a renewable source and for dual targeting against multiple myeloma through the introduction of an NK cell-optimized chimeric antigen receptor (CAR) specific for B cell maturation antigen (BCMA) and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity when combined with therapeutic anti-CD38 antibodies. Additionally, these cells express a membrane-bound interleukin-15 fusion molecule to enhance function and persistence along with knock out of CD38 to prevent antibody-mediated fratricide and enhance NK cell metabolic fitness. In various preclinical models, including xenogeneic adoptive transfer models, quadruple gene-engineered NK cells consistently demonstrate durable antitumor activity independent of exogenous cytokine support. Results presented here support clinical translation of this off-the-shelf strategy for effective treatment of multiple myeloma.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Células Matadoras Naturais , Antígeno de Maturação de Linfócitos B , Receptores de Células Matadoras Naturais , Subfamília D de Receptores Semelhantes a Lectina de Células NK
5.
Blood ; 140(23): 2451-2462, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-35917442

RESUMO

Substantial numbers of B cell leukemia and lymphoma patients relapse due to antigen loss or heterogeneity after anti-CD19 chimeric antigen receptor (CAR) T cell therapy. To overcome antigen escape and address antigen heterogeneity, we engineered induced pluripotent stem cell-derived NK cells to express both an NK cell-optimized anti-CD19 CAR for direct targeting and a high affinity, non-cleavable CD16 to augment antibody-dependent cellular cytotoxicity. In addition, we introduced a membrane-bound IL-15/IL-15R fusion protein to promote in vivo persistence. These engineered cells, termed iDuo NK cells, displayed robust CAR-mediated cytotoxic activity that could be further enhanced with therapeutic antibodies targeting B cell malignancies. In multiple in vitro and xenogeneic adoptive transfer models, iDuo NK cells exhibited robust anti-lymphoma activity. Furthermore, iDuo NK cells effectively eliminated both CD19+ and CD19- lymphoma cells and displayed a unique propensity for targeting malignant cells over healthy cells that expressed CD19, features not achievable with anti-CAR19 T cells. iDuo NK cells combined with therapeutic antibodies represent a promising approach to prevent relapse due to antigen loss and tumor heterogeneity in patients with B cell malignancies.


Assuntos
Leucemia , Neoplasias , Humanos , Deriva e Deslocamento Antigênicos , Leucemia/terapia , Células Matadoras Naturais
6.
Front Immunol ; 13: 918881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35757773

RESUMO

Angiotensin Converting Enzyme 2 (ACE2) is the primary cell entry receptor for SARS-CoV and SARS-CoV-2 viruses. A disintegrin and metalloproteinase 17 (ADAM17) is a protease that cleaves ectodomains of transmembrane proteins, including that of ACE2 and the proinflammatory cytokine TNF-α, from cell surfaces upon cellular activation. We hypothesized that blockade of ADAM17 activity would alter COVID-19 pathogenesis. To assess this pathway, we blocked the function of ADAM17 using the monoclonal antibody MEDI3622 in the K18-hACE2 transgenic mouse model of COVID-19. Antibody-treated mice were healthier, less moribund, and had significantly lower lung pathology than saline-treated mice. However, the viral burden in the lungs of MEDI3622-treated mice was significantly increased. Thus, ADAM17 appears to have a critical anti-viral role, but also may promote inflammatory damage. Since the inflammatory cascade is ultimately the reason for adverse outcomes in COVID-19 patients, there may be a therapeutic application for the MEDI3622 antibody.


Assuntos
Proteína ADAM17 , Anticorpos Neutralizantes , COVID-19 , SARS-CoV-2 , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/imunologia , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/imunologia , Carga Viral
7.
Front Immunol ; 13: 841859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281028

RESUMO

Human natural killer (NK) cells can target tumor cells in an antigen-specific manner by the recognition of cell bound antibodies. This process induces antibody-dependent cell-mediated cytotoxicity (ADCC) and is exclusively mediated by the low affinity IgG Fc receptor CD16A (FcγRIIIA). Exploiting ADCC by NK cells is a major area of emphasis for advancing cancer immunotherapies. CD64 (FcγRI) is the only high affinity IgG FcR and it binds to the same IgG isotypes as CD16A, but it is not expressed by human NK cells. We have generated engineered human NK cells expressing recombinant CD64 with the goal of increasing their ADCC potency. Preclinical testing of this approach is essential for establishing efficacy and safety of the engineered NK cells. The dog provides particular advantages as a model, which includes spontaneous development of cancer in the setting of an intact and outbred immune system. To advance this immunotherapy model, we cloned canine CD16A and CD64 and generated specific mAbs. We report here for the first time the expression patterns of these FcγRs on dog peripheral blood leukocytes. CD64 was expressed by neutrophils and monocytes, but not lymphocytes, while canine CD16A was expressed at high levels by a subset of monocytes and lymphocytes. These expression patterns are similar to that of human leukocytes. Based on phenotypic characteristics, the CD16A+ lymphocytes consisted of T cells (CD3+ CD8+ CD5dim α/ß TCR+) and NK cells (CD3- CD5- CD94+), but not B cells. Interestingly, the majority of canine CD16A+ lymphocytes were from the T cell population. Like human CD16A, canine CD16A was downregulated by a disintegrin and metalloproteinase 17 (ADAM17) upon leukocyte activation, revealing a conserved means of regulation. We also directly demonstrate that both canine CD16A and CD64 can induce ADCC when expressed in the NK cell line NK-92. These findings pave the way to engineering canine NK cells or T cells with high affinity recombinant canine CD64 to maximize ADCC and to test their safety and efficacy to benefit both humans and dogs.


Assuntos
Neoplasias , Receptores Fc , Animais , Citotoxicidade Celular Dependente de Anticorpos , Cães , Imunoglobulina G/metabolismo , Células Matadoras Naturais , Leucócitos/metabolismo , Receptores Fc/metabolismo
8.
Cancers (Basel) ; 13(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34771609

RESUMO

The ability to kill tumor cells while maintaining an acceptable safety profile makes Natural Killer (NK) cells promising assets for cancer therapy. Strategies to enhance the preferential accumulation and activation of NK cells in the tumor microenvironment can be expected to increase the efficacy of NK cell-based therapies. In this study, we show binding of a novel bispecific single domain antibody (VHH) to both CD16 (FcRγIII) on NK cells and the epidermal growth factor receptor (EGFR) on tumor cells of epithelial origin. The bispecific VHH triggered CD16- and EGFR-dependent activation of NK cells and subsequent lysis of tumor cells, regardless of the KRAS mutational status of the tumor. Enhancement of NK cell activation by the bispecific VHH was also observed when NK cells of colorectal cancer (CRC) patients were co-cultured with EGFR expressing tumor cells. Finally, higher levels of cytotoxicity were found against patient-derived metastatic CRC cells in the presence of the bispecific VHH and autologous peripheral blood mononuclear cells or allogeneic CD16 expressing NK cells. The anticancer activity of CD16-EGFR bispecific VHHs reported here merits further exploration to assess its potential therapeutic activity either alone or in combination with adoptive NK cell-based therapeutic approaches.

9.
Cell Stem Cell ; 28(12): 2062-2075.e5, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34525347

RESUMO

Select subsets of immune effector cells have the greatest propensity to mediate antitumor responses. However, procuring these subsets is challenging, and cell-based immunotherapy is hampered by limited effector-cell persistence and lack of on-demand availability. To address these limitations, we generated a triple-gene-edited induced pluripotent stem cell (iPSC). The clonal iPSC line was engineered to express a high affinity, non-cleavable version of the Fc receptor CD16a and a membrane-bound interleukin (IL)-15/IL-15R fusion protein. The third edit was a knockout of the ecto-enzyme CD38, which hydrolyzes NAD+. Natural killer (NK) cells derived from these uniformly engineered iPSCs, termed iADAPT, displayed metabolic features and gene expression profiles mirroring those of cytomegalovirus-induced adaptive NK cells. iADAPT NK cells persisted in vivo in the absence of exogenous cytokine and elicited superior antitumor activity. Our findings suggest that unique subsets of the immune system can be modeled through iPSC technology for effective treatment of patients with advanced cancer.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Células Cultivadas , Humanos , Imunoterapia , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/terapia
10.
Front Immunol ; 12: 711621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367174

RESUMO

Natural killer (NK) cells are innate cytotoxic lymphocytes that can recognize assorted determinants on tumor cells and rapidly kill these cells. Due to their anti-tumor effector functions and potential for allogeneic use, various NK cell platforms are being examined for adoptive cell therapies. However, their limited in vivo persistence is a current challenge. Cytokine-mediated activation of these cells is under extensive investigation and interleukin-15 (IL-15) is a particular focus since it drives their activation and proliferation. IL-15 efficacy though is limited in part by its induction of regulatory checkpoints. A disintegrin and metalloproteinase-17 (ADAM17) is broadly expressed by leukocytes, including NK cells, and it plays a central role in cleaving cell surface receptors, a process that regulates cell activation and cell-cell interactions. We report that ADAM17 blockade with a monoclonal antibody markedly increased human NK cell proliferation by IL-15 both in vitro and in a xenograft mouse model. Blocking ADAM17 resulted in a significant increase in surface levels of the homing receptor CD62L on proliferating NK cells. We show that NK cell proliferation in vivo by IL-15 and the augmentation of this process upon blocking ADAM17 are dependent on CD62L. Hence, our findings reveal for the first time that ADAM17 activation in NK cells by IL-15 limits their proliferation, presumably functioning as a feedback system, and that its substrate CD62L has a key role in this process in vivo. ADAM17 blockade in combination with IL-15 may provide a new approach to improve NK cell persistence and function in cancer patients.


Assuntos
Proteína ADAM17/metabolismo , Interleucina-15/farmacologia , Células Matadoras Naturais/citologia , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/imunologia , Transferência Adotiva , Animais , Divisão Celular , Ativação Enzimática , Feminino , Xenoenxertos , Humanos , Interleucina-15/metabolismo , Células Matadoras Naturais/enzimologia , Selectina L/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes/farmacologia
11.
Cancer Immunol Res ; 9(11): 1270-1282, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34452926

RESUMO

Metastatic castration-resistant prostate cancer (mCRPC) has been largely resistant to immunotherapy. Natural killer (NK) cells are cytotoxic lymphocytes that detect and kill transformed cells without prior sensitization, and their infiltration into prostate tumors corresponds with an increased overall survival among patients with mCRPC. We sought to harness this knowledge to develop an approach to NK-cell based immunotherapy for mCRPC. We engineered an NK cell line (NK-92MI) to express CD64, the sole human high-affinity IgG Fcγ receptor (FcγR1), and bound these cells with antibodies to provide interchangeable tumor-targeting elements. NK-92MICD64 cells were evaluated for cell-activation mechanisms and antibody-dependent cell-mediated cytotoxicity (ADCC). A combination of mAbs was used to target the prostate tumor antigen tumor-associated calcium signal transducer 2 (TROP2) and the cancer-associated fibroblast marker fibroblast activation protein alpha (FAP). We found that CD64, which is normally expressed by myeloid cells and associates with the adaptor molecule FcRγ, can be expressed by NK-92MI cells and mediate ADCC through an association with CD3ζ. Cytotoxicity from the combination approach was two-fold higher compared to treatment with NK-92MICD64 cells and either mAb alone, and seven-fold higher than NK-92MICD64 cells alone at an effector-target cell ratio of 20:1. The cytotoxic effect was lost when using isotype control antibodies, indicating a selective targeting mechanism. The combination approach demonstrated efficacy in vivo as well and significantly reduced tumor growth compared with the saline control. This combination therapy presents a potential approach for treating mCRPC and could improve immunotherapy response.


Assuntos
Anticorpos Monoclonais/metabolismo , Células Matadoras Naturais/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Receptores de IgG/metabolismo , Engenharia Tecidual/métodos , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/mortalidade , Análise de Sobrevida
12.
Cancers (Basel) ; 13(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467027

RESUMO

Tumor-targeting monoclonal antibodies (mAbs) are the most widely used and characterized immunotherapy for hematologic and solid tumors. The significance of this therapy is their direct and indirect effects on tumor cells, facilitated by the antibody's antigen-binding fragment (Fab) and fragment crystallizable region (Fc region), respectively. The Fab can modulate the function of cell surface markers on tumor cells in an agonistic or antagonistic manner, whereas the Fc region can be recognized by an Fc receptor (FcR) on leukocytes through which various effector functions, including antibody-dependent cell-mediated cytotoxicity (ADCC), can be elicited. This process is a key cytolytic mechanism of natural killer (NK) cells. These innate lymphocytes in the human body recognize tumor-bound antibodies exclusively by the IgG Fc receptor CD16A (FcγRIIIA). Two allelic versions of CD16A bind IgG with either lower or higher affinity. Cancer patients homozygous for the higher affinity allele of CD16A have been reported to respond significantly better to mAb therapies for various malignancies. These studies revealed that mAb therapy efficacy positively correlates with higher affinity binding to CD16A. Approaches to enhance tumor antigen targeting by NK cells by modifying the Fc portion of antibodies or the FcR on NK cells are the focus of this review.

13.
Vet Immunol Immunopathol ; 231: 110162, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33264689

RESUMO

ADAM17 is a transmembrane protease expressed by most cells in humans and mice that cleaves cell surface substrates primarily in a cis manner, a process referred to as ectodomain shedding. ADAM17 has numerous substrates and plays a broad role in various physiological processes, including as a key regulator of inflammation. At this time, little is known about ADAM17 expression and function in dogs. A well-established ADAM17 substrate is the leukocyte adhesion protein CD62L (L-selectin). We show that a selective inhibitor of ADAM17, but not an inhibitor of its most closely related family member ADAM10, blocks CD62L shedding upon canine neutrophil activation. We also tested several anti-human ADAM17 monoclonal antibodies (mAbs) for staining canine neutrophils. Although most did not recognize canine neutrophils, the mAbs MEDI3622 and D1(A12) did. They also blocked the downregulation of CD62L upon neutrophil activation. MEDI3622 is a human IgG antibody and we found that a canine chimeric version of this mAb also blocked CD62L shedding by canine leukocytes. Taken together, our findings provide the first direct evidence of ADAM17 expression and sheddase activity in dogs, establishing a potential therapeutic target for various inflammatory disorders.


Assuntos
Proteína ADAM17/metabolismo , Cães/sangue , Neutrófilos/metabolismo , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/imunologia , Proteína ADAM17/fisiologia , Animais , Anticorpos Monoclonais/imunologia , Regulação para Baixo , Selectina L/metabolismo
14.
Int J Mol Sci ; 21(18)2020 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-32932701

RESUMO

Sepsis is the culmination of hyperinflammation and immune suppression in response to severe infection. Neutrophils are critical early responders to bacterial infection but can become highly dysfunctional during sepsis and other inflammatory disorders. The transmembrane protease ADAM17 (a disintegrin and metalloproteinase 17) is expressed by leukocytes and most other cells and has many substrates that regulate inflammation. We have reported that conditional knockout mice lacking ADAM17 in all leukocytes had a survival advantage during sepsis, which was associated with improved neutrophil effector functions. These and other findings indicate aberrant ADAM17 activity during sepsis. For this study, we evaluated for the first time the effects of an ADAM17 function blocking monoclonal antibody (mAb) on the pathogenesis of polymicrobial sepsis. Mice treated with the ADAM17 mAb MEDI3622 prior to sepsis induction exhibited significantly decreased mortality. When the ADAM17 mAb was combined with antibiotic administration, sepsis survival was markedly enhanced compared to either intervention alone, which was associated with a significant reduction in plasma levels of various inflammation-related factors. MEDI3622 and antibiotic administration after sepsis induction also significantly improved survival. Our results indicate that the combination of blocking ADAM17 as an immune modulator and appropriate antibiotics may provide a new therapeutic avenue for sepsis treatment.


Assuntos
Proteína ADAM17/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Sepse/tratamento farmacológico , Animais , Antibacterianos/farmacologia , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Leucócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/efeitos dos fármacos
15.
Blood ; 135(6): 399-410, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31856277

RESUMO

Antibody-dependent cellular cytotoxicity (ADCC) is a key effector mechanism of natural killer (NK) cells that is mediated by therapeutic monoclonal antibodies (mAbs). This process is facilitated by the Fc receptor CD16a on human NK cells. CD16a appears to be the only activating receptor on NK cells that is cleaved by the metalloprotease a disintegrin and metalloproteinase-17 upon stimulation. We previously demonstrated that a point mutation of CD16a prevents this activation-induced surface cleavage. This noncleavable CD16a variant is now further modified to include the high-affinity noncleavable variant of CD16a (hnCD16) and was engineered into human induced pluripotent stem cells (iPSCs) to create a renewable source for human induced pluripotent stem cell-derived NK (hnCD16-iNK) cells. Compared with unmodified iNK cells and peripheral blood-derived NK (PB-NK) cells, hnCD16-iNK cells proved to be highly resistant to activation-induced cleavage of CD16a. We found that hnCD16-iNK cells were functionally mature and exhibited enhanced ADCC against multiple tumor targets. In vivo xenograft studies using a human B-cell lymphoma demonstrated that treatment with hnCD16-iNK cells and anti-CD20 mAb led to significantly improved regression of B-cell lymphoma compared with treatment utilizing anti-CD20 mAb with PB-NK cells or unmodified iNK cells. hnCD16-iNK cells, combined with anti-HER2 mAb, also mediated improved survival in an ovarian cancer xenograft model. Together, these findings show that hnCD16-iNK cells combined with mAbs are highly effective against hematologic malignancies and solid tumors that are typically resistant to NK cell-mediated killing, demonstrating the feasibility of producing a standardized off-the-shelf engineered NK cell therapy with improved ADCC properties to treat malignancies that are otherwise refractory.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Citotoxicidade Celular Dependente de Anticorpos , Células Matadoras Naturais/transplante , Linfoma de Células B/terapia , Neoplasias Ovarianas/terapia , Receptores de IgG/imunologia , Animais , Antígenos CD20/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Linfoma de Células B/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Ovarianas/imunologia
16.
Mol Ther ; 28(1): 52-63, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704085

RESUMO

Enhancing natural killer (NK) cell cytotoxicity by blocking inhibitory signaling could lead to improved NK-based cancer immunotherapy. Thus, we have developed a highly efficient method for editing the genome of human NK cells using CRISPR/Cas9 to knock out inhibitory signaling molecules. Our method efficiently edits up to 90% of primary peripheral blood NK cells. As a proof-of-principle we demonstrate highly efficient knockout of ADAM17 and PDCD1, genes that have a functional impact on NK cells, and demonstrate that these gene-edited NK cells have significantly improved activity, cytokine production, and cancer cell cytotoxicity. Furthermore, we were able to expand cells to clinically relevant numbers, without loss of activity. We also demonstrate that our CRISPR/Cas9 method can be used for efficient knockin of genes by delivering homologous recombination template DNA using recombinant adeno-associated virus serotype 6 (rAAV6). Our platform represents a feasible method for generating engineered primary NK cells as a universal therapeutic for cancer immunotherapy.


Assuntos
Transferência Adotiva/métodos , Engenharia Celular/métodos , Engenharia Genética/métodos , Células Matadoras Naturais/imunologia , Neoplasias Ovarianas/terapia , Proteína ADAM17/genética , Animais , Sistemas CRISPR-Cas , Citotoxicidade Imunológica/genética , Dependovirus , Feminino , Técnicas de Inativação de Genes , Voluntários Saudáveis , Humanos , Células K562 , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Ovarianas/patologia , Parvovirinae/genética , Receptor de Morte Celular Programada 1/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Expert Opin Biol Ther ; 19(12): 1229-1232, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31510805

RESUMO

Introduction: ADCC by natural killer (NK) cells is a key mechanism for several clinically successful tumor-targeting therapeutic antibodies. Most patients, however, have limited responses to this therapy and/or develop resistance. NK cells exclusively recognize IgG by their low-affinity FcγR CD16A.Areas covered: We describe in this editorial a novel recombinant FcγR that consists of CD64, the only high affinity IgG receptor, and the transmembrane and cytoplasmic regions of CD16A, a potent activating receptor. CD64/16A was expressed in engineered iPSCs that were differentiated into NK cells (referred to as iNK cells).Expert opinion: iNK-CD64/16A cells in combination with therapeutic antibodies provide a universal tumor antigen targeting approach and potential off-the-shelf cell therapy to treat various malignancies.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células Matadoras Naturais/imunologia , Receptores de IgG/imunologia , Humanos , Neoplasias/terapia
18.
PLoS One ; 14(6): e0217868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31166958

RESUMO

BACKGROUND: Pancreatic tumor cells may avoid immune surveillance by releasing the transmembrane major histocompatibility complex class I chain-related A (MICA) protein in soluble form (s-MICA). We hypothesized that the presence of the A5.1 polymorphism in the MICA gene, which encodes a truncated MICA protein, is associated with higher s-MICA levels and increased pancreatic cancer risk. METHODS: MICA alleles and s-MICA levels were measured in 121 pancreatic cancer cases and 419 controls. General linear regression with a log transformation assessed geometric means of s-MICA levels across MICA alleles. Unconditional logistic regression was used to calculate the odds ratio (OR) and 95% confidence intervals (CI) for pancreatic cancer associated with MICA alleles. RESULTS: After multivariate adjustment, participants with at least one copy of the A5.1 allele versus no A5.1 allele had 1.35 (95% CI: 1.05-1.74) times greater s-MICA levels (1.65 times higher for cases and 1.28, for controls) and increased risk of pancreatic cancer (OR = 1.91, 95% CI: 1.05-3.48). CONCLUSIONS: Our study suggests higher risk of pancreatic cancer among those with the MICA A5.1 polymorphism, which may be explained by an increase in s-MICA secretion and impaired immune response. IMPACT: These findings provide further evidence at the genetic and molecular level of the important role of MICA in pancreatic cancer development, and may have important implications with regards to pancreatic cancer screening.


Assuntos
Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe I/genética , Neoplasias Pancreáticas/genética , Polimorfismo Genético , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Repetições de Microssatélites/genética , Fatores de Risco , Solubilidade
19.
J Leukoc Biol ; 105(6): 1297-1303, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30786043

RESUMO

Human NK cell antitumor activities involve Ab-dependent cell-mediated cytotoxicity (ADCC), which is a key mechanism of action for several clinically successful tumor-targeting therapeutic mAbs. Human NK cells exclusively recognize these Abs by the Fcγ receptor CD16A (FcγRIIIA), one of their most potent activating receptors. Unlike other activating receptors on NK cells, CD16A undergoes a rapid down-regulation in expression by a proteolytic process following NK cell activation with various stimuli. In this review, the role of a disintegrin and metalloproteinase-17 (ADAM17) in CD16A cleavage and as a regulatory checkpoint is discussed. Several studies have examined the effects of inhibiting ADAM17 or CD16A cleavage directly during NK cell engagement of Ab-coated tumor cells, which resulted in strengthened Ab tethering, decreased tumor cell detachment, and enhanced CD16A signaling and cytokine production. However, the effects of either manipulation on ADCC have varied between studies, which may be due to dissimilar assays and the contribution of different killing processes by NK cells. Of importance is that NK cells under various circumstances, including in the tumor microenvironment of patients, down-regulate CD16A and this appears to impair their function. Considerable progress has been made in the development of ADAM17 inhibitors, including human mAbs that have advantages of high specificity and increased half-life in vivo. These inhibitors may provide a therapeutic means of increasing ADCC potency and/or antitumor cytokine production by NK cells in an immunosuppressive tumor microenvironment, and if used in combination with tumor-targeting Abs or NK cell-based adoptive immunotherapies may improve their efficacy.


Assuntos
Proteína ADAM17 , Transferência Adotiva , Antineoplásicos Imunológicos/uso terapêutico , Células Matadoras Naturais , Proteínas de Neoplasias , Neoplasias , Receptores de IgG , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/transplante , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Receptores de IgG/antagonistas & inibidores , Receptores de IgG/imunologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
20.
Front Immunol ; 9: 2873, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574146

RESUMO

Anti-tumor mAbs are the most widely used and characterized cancer immunotherapy. Despite having a significant impact on some malignancies, most cancer patients respond poorly or develop resistance to this therapy. A known mechanism of action of these therapeutic mAbs is antibody-dependent cell-mediated cytotoxicity (ADCC), a key effector function of human NK cells. CD16A on human NK cells has an exclusive role in binding to tumor-bound IgG antibodies. Though CD16A is a potent activating receptor, it is also a low affinity IgG Fc receptor (FcγR) that undergoes a rapid downregulation in expression by a proteolytic process involving ADAM17 upon NK cell activation. These regulatory processes are likely to limit the efficacy of tumor-targeting therapeutic mAbs in the tumor environment. We sought to enhance NK cell binding to anti-tumor mAbs by engineering these cells with a recombinant FcγR consisting of the extracellular region of CD64, the highest affinity FcγR expressed by leukocytes, and the transmembrane and cytoplasmic regions of CD16A. This novel recombinant FcγR (CD64/16A) was expressed in the human NK cell line NK92 and in induced pluripotent stem cells from which primary NK cells were derived. CD64/16A lacked the ADAM17 cleavage region in CD16A and it was not rapidly downregulated in expression following NK cell activation during ADCC. CD64/16A on NK cells facilitated conjugation to antibody-treated tumor cells, ADCC, and cytokine production, demonstrating functional activity by its two components. Unlike NK cells expressing CD16A, CD64/16A captured soluble therapeutic mAbs and the modified NK cells mediated tumor cell killing. Hence, CD64/16A could potentially be used as a docking platform on engineered NK cells for therapeutic mAbs and IgG Fc chimeric proteins, allowing for switchable targeting elements and a novel cancer cellular therapy.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Receptores de IgG/imunologia , Proteínas Recombinantes de Fusão/imunologia , Anticorpos Monoclonais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Técnicas de Cultura de Células , Linhagem Celular , Humanos , Imunoterapia/métodos , Células-Tronco Pluripotentes Induzidas , Células Matadoras Naturais/metabolismo , Neoplasias/terapia , Engenharia de Proteínas , Receptores de IgG/genética , Receptores de IgG/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA