Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cancers (Basel) ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672675

RESUMO

Diet-induced obesity (DIO) promotes pancreatic ductal adenocarcinoma (PDAC) in mice expressing KRasG12D in the pancreas (KC mice), but the precise mechanisms remain unclear. Here, we performed multiplex quantitative proteomic and phosphoproteomic analysis by liquid chromatography-tandem mass spectrometry and further bioinformatic and spatial analysis of pancreas tissues from control-fed versus DIO KC mice after 3, 6, and 9 months. Normal pancreatic parenchyma and associated proteins were steadily eliminated and the novel proteins, phosphoproteins, and signaling pathways associated with PDAC tumorigenesis increased until 6 months, when most males exhibited cancer, but females did not. Differentially expressed proteins and phosphoproteins induced by DIO revealed the crucial functional role of matrisomal proteins, which implies the roles of upstream regulation by TGFß, extracellular matrix-receptor signaling to downstream PI3K-Akt-mTOR-, MAPK-, and Yap/Taz activation, and crucial effects in the tumor microenvironment such as metabolic alterations and signaling crosstalk between immune cells, cancer-associated fibroblasts (CAFs), and tumor cells. Staining tissues from KC mice localized the expression of several prognostic PDAC biomarkers and elucidated tumorigenic features, such as robust macrophage infiltration, acinar-ductal metaplasia, mucinous PanIN, distinct nonmucinous atypical flat lesions (AFLs) surrounded by smooth muscle actin-positive CAFs, invasive tumors with epithelial-mesenchymal transition arising close to AFLs, and expanding deserted areas by 9 months. We next used Nanostring GeoMX to characterize the early spatial distribution of specific immune cell subtypes in distinct normal, stromal, and PanIN areas. Taken together, these data richly contextualize DIO promotion of Kras-driven PDAC tumorigenesis and provide many novel insights into the signaling pathways and processes involved.

2.
J Transl Med ; 22(1): 8, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167321

RESUMO

BACKGROUND: No single marker of bladder cancer (BC) exists in urine samples with sufficient accuracy for disease diagnosis and treatment monitoring. The multiplex Oncuria BC assay noninvasively quantifies the concentration of 10 protein analytes in voided urine samples to quickly generate a unique molecular profile with proven BC diagnostic and treatment-tracking utility. Test adoption by diagnostic and research laboratories mandates reliably reproducible assay performance across a variety of instrumentation platforms used in different laboratories. METHODS: We compared the performance of the clinically validated Oncuria BC multiplex immunoassay when data output was generated on three different analyzer systems. Voided urine samples from 36 subjects (18 with BC and 18 Controls) were reacted with Oncuria test reagents in three 96-well microtiter plates on Day 1, and consecutively evaluated on the LED/image-based MagPix, and laser/flow-based Luminex 200 and FlexMap 3D (all xMAP instruments from Luminex Corp., Austin, TX) on Day 2. The BC assay uses magnetic bead-based fluorescence technology (xMAP, Multi-analyte profiling; Luminex) to simultaneously quantify 10 protein analytes in urine specimens [i.e., angiogenin (ANG), apolipoprotein E (ApoE), carbonic anhydrase IX (CA9), CXCL8/interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-10 (MMP-10), serpin A1/alpha-1 anti-trypsin (A1AT), serpin E1/plasminogen activator inhibitor-1 (PAI-1), CD138/syndecan-1 (SDC1), and vascular endothelial growth factor-A (VEGF-A)]. All three analyzers quantify fluorescence signals generated by the Oncuria assay. RESULTS: All three platforms categorized all 10 analytes in identical samples at nearly identical concentrations, with variance across systems typically < 5%. While the most contemporary instrument, the FlexMap 3D, output higher raw fluorescence values than the two comparator systems, standard curve slopes and analyte concentrations determined in urine samples were concordant across all three units. Forty-four percent of BC samples registered ≥ 1 analyte above the highest standard concentration, i.e., A1AT (n = 7/18), IL-8 (n = 5), and/or ANG (n = 2), while only one control sample registered an analyte (A1AT) above the highest standard concentration. CONCLUSION: Multiplex BC assays generate detailed molecular signatures useful for identifying BC, predicting treatment responsiveness, and tracking disease progression and recurrence. The similar performance of the Oncuria assay across three different analyzer systems supports test adaptation by clinical and research laboratories using existing xMAP platforms. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov as NCT04564781, NCT03193528, NCT03193541, and NCT03193515.


Assuntos
Interleucina-8 , Neoplasias da Bexiga Urinária , Humanos , Fator A de Crescimento do Endotélio Vascular , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/urina , Imunoensaio , Urinálise , Medição de Risco
3.
Res Sq ; 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38045238

RESUMO

Background: No single marker of bladder cancer (BC) exists in urine samples with sufficient accuracy for disease diagnosis and treatment monitoring. The multiplex Oncuria BC assay noninvasively quantifies the concentration of 10 protein analytes in voided urine samples to quickly generate a unique molecular profile with proven BC diagnostic and treatment-tracking utility. Test adoption by diagnostic and research laboratories mandates reliably reproducible assay performance across a variety of instrumentation platforms used in different laboratories. Methods: We compared the performance of the clinically validated Oncuria BC multiplex immunoassay when data output was generated on three different analyzer systems. Voided urine samples from 36 subjects (18 with BC and 18 Controls) were reacted with Oncuria test reagents in three 96-well microtiter plates on Day 1, and consecutively evaluated on the LED/image-based MagPix, and laser/flow based Luminex 200 and FlexMap 3D (all xMAP instruments from Luminex Corp., Austin, TX) on Day 2. The BC assay uses magnetic bead-based fluorescence technology (xMAP, Multi-analyte profiling; Luminex) to simultaneously quantify 10 protein analytes in urine specimens [i.e., angiogenin (ANG), apolipoprotein E (ApoE), carbonic anhydrase IX (CA9), CXCL8/interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9), matrix metalloproteinase-10 (MMP-10), serpin A1/alpha-1 anti-trypsin (A1AT), serpin E1/plasminogen activator inhibitor-1 (PAI-1), CD138/syndecan-1 (SDC1), and vascular endothelial growth factor-A (VEGF-A)]. Results: All three platforms categorized all 10 analytes in identical samples at nearly identical concentrations, with variance across systems typically <5%. While the most contemporary instrument, the FlexMap 3D, output higher raw fluorescence values than the two comparator systems, standard curve slopes and analyte concentrations determined in urine samples were concordant across all three units. Forty-four percent of BC samples registered ≥1 analyte above the highest standard concentration, i.e., A1AT (n=7/18), IL-8 (n=5), and/or ANG (n=2). In Controls, A1AT was higher in one sample. Conclusion: Multiplex BC assays generate detailed molecular signatures useful for identifying BC, predicting treatment esponsiveness, and tracking disease progression and recurrence. The similar performance of the Oncuria assay across three different analyzer systems supports test adaptation by clinical and research laboratories using existing xMAP platforms. Trial Registration: This study was registered at ClinicalTrials.gov as NCT04564781, NCT03193528, NCT03193541, and NCT03193515.

4.
Sci Rep ; 13(1): 16144, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752238

RESUMO

Pancreatic ductal adenocarcinoma (PDAC), a highly lethal disease with limited therapeutic options, may benefit from repurposing of FDA-approved drugs in preventive or interceptive strategies in high-risk populations. Previous animal studies demonstrated that the use of metformin and statins as single agents at relatively high doses restrained PDAC development. Here, four-week-old mice expressing KrasG12D in all pancreatic lineages (KC mice) and fed an obesogenic high fat, high calorie diet that promotes early PDAC development were randomized onto low dosage metformin, simvastatin, or both drugs in combination administered orally. Dual treatment attenuated weight gain, fibro-inflammation, and development of advanced PDAC precursor lesions (pancreatic intraepithelial neoplasia [PanIN]-3) in male KC mice, without significant effect in females or when administered individually. Dual-treated KC mice had reduced proliferation of PanIN cells and decreased transcriptional activity of the Hippo effectors, YAP and TAZ, which are important regulators of PDAC development. Metformin and simvastatin also synergistically inhibited colony formation of pancreatic cancer cells in vitro. Together, our data demonstrated that a combination of low doses of metformin and simvastatin inhibits PDAC development and imply that both drugs are promising agents for being tested in clinical trials for preventing pancreatic cancer progression.


Assuntos
Adenocarcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Masculino , Feminino , Animais , Camundongos , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/prevenção & controle , Obesidade/complicações , Obesidade/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/prevenção & controle , Neoplasias Pancreáticas
5.
Am J Respir Cell Mol Biol ; 68(3): 302-313, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36318668

RESUMO

Loss of epithelial integrity, bronchiolarization, and fibroblast activation are key characteristics of idiopathic pulmonary fibrosis (IPF). Prolonged accumulation of basal-like cells in IPF may impact the fibrotic niche to promote fibrogenesis. To investigate their role in IPF, basal cells were isolated from IPF explant and healthy donor lung tissues. Single-cell RNA sequencing was used to assess differentially expressed genes in basal cells. Basal cell and niche interaction was demonstrated with the sLP-mCherry niche labeling system. Luminex assays were used to assess cytokines secreted by basal cells. The role of basal cells in fibroblast activation was studied. Three-dimensional organoid culture assays were used to interrogate basal cell effects on AEC2 (type 2 alveolar epithelial cell) renewal capacity. Perturbation was used to investigate WNT7A function in vitro and in a repetitive bleomycin model in vivo. We found that WNT7A is highly and specifically expressed in basal-like cells. Proteins secreted by basal cells can be captured by neighboring fibroblasts and AEC2s. Basal cells or basal cell-conditioned media activate fibroblasts through WNT7A. Basal cell-derived WNT7A inhibits AEC2 progenitor cell renewal in three-dimensional organoid cultures. Neutralizing antibodies against WNT7A or a small molecule inhibitor of Frizzled signaling abolished basal cell-induced fibroblast activation and attenuated lung fibrosis in mice. In summary, basal cells and basal cell-derived WNT7A are key components of the fibrotic niche, providing a unique non-stem cell function of basal cells in IPF progression and a novel targeting strategy for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Camundongos , Bleomicina/farmacologia , Fibroblastos/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/patologia , Transdução de Sinais
6.
Pancreas ; 51(7): 723-732, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395395

RESUMO

OBJECTIVES: Chronic pancreatitis (CP) is a chronic fibroinflammatory condition of the pancreas difficult to diagnose in early stages. Novel biomarkers useful to facilitate early diagnosis or treatment responses may be found in biofluids. Although saliva can be easily and noninvasively collected from patients, useful salivary biomarkers from CP patients have not yet been identified. METHODS: Here, we analyzed the proteome by quantitative proteomics, cytokine/chemokine levels by Luminex analysis, prostaglandin E2 (PGE2) levels by a mass spectrometry-based assay, and bacterial species diversity by 16S ribosomal ribonucleic acid sequencing in saliva samples from confirmed CP patients and healthy controls. RESULTS: Our results indicate the presence of various differentially expressed proteins, cytokines/chemokines, and a loss of oral bacterial diversity in the saliva of CP patients. The PGE2 levels trend toward elevation in CP patients. Area under the receiver operating characteristic curve models for proteomic, cytokine, and PGE2 assays ranged from 0.59 to 0.90. CONCLUSIONS: Collectively, our studies identify a range of putative CP biomarkers and alterations in human saliva requiring further validation. The biomarker discovery approaches we used might lead to identification of biomarkers useful for CP diagnosis and monitoring.


Assuntos
Dinoprostona , Pancreatite Crônica , Humanos , Proteômica/métodos , Citocinas , Biomarcadores Tumorais/metabolismo , Pancreatite Crônica/diagnóstico
7.
Pancreatology ; 21(2): 323-333, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33558189

RESUMO

BACKGROUND: Chronic pancreatitis (CP) does not have diagnostic or prognostic biomarkers. CP is the end stage of a progressive inflammatory syndrome that is diagnosed at late stages by morphologic features. To diagnose earlier stages of the disease, a new mechanistic definition was established based on identifying underlying pathogenic processes and biomarker evidence of disease activity and stage. Although multiple risk factors are known, the corresponding biomarkers needed to make a highly accurate diagnosis of earlier disease stages have not been established. The goal of this study is to systematically analyze the literature to identify the most likely candidates for development into biomarkers of CP. METHODS: We conducted a systematic review of candidate analytes from easily accessible biological fluids and identified 67 studies that compared CP to nonpancreatic-disease controls. We then ranked candidate biomarkers for sensitivity and specificity by area under the receiver operator curves (AUROCs). RESULTS: Five biomarkers had a large effect size (an AUROC > 0.96), whereas 30 biomarkers had a moderate effect size (an AUROC between 0.96 and 0.83) for distinguishing CP cases from controls or other diseases. However, the studies reviewed had marked variability in design, enrollment criteria, and biospecimen sample handling and collection. CONCLUSIONS: Several biomarkers have the potential for evaluation in prospective cohort studies and should be correlated with risk factors, clinical features, imaging studies and outcomes. The Consortium for the Study of Chronic Pancreatitis, Diabetes and Pancreas Cancer provides recommendations for avoiding design biases and heterogeneity in sample collection and handling in future studies.


Assuntos
Pancreatite Crônica/sangue , Pancreatite Crônica/metabolismo , Biomarcadores/sangue , Humanos , Pancreatite Crônica/diagnóstico , Pancreatite Crônica/patologia
8.
Cancers (Basel) ; 12(6)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516943

RESUMO

BACKGROUND: Although cyclic AMP-response element binding protein-binding protein (CBP)/ß-catenin signaling is known to promote proliferation and fibrosis in various organ systems, its role in the activation of pancreatic stellate cells (PSCs), the key effector cells of desmoplasia in pancreatic cancer and fibrosis in chronic pancreatitis, is largely unknown. METHODS: To investigate the role of the CBP/ß-catenin signaling pathway in the activation of PSCs, we have treated mouse and human PSCs with the small molecule specific CBP/ß-catenin antagonist ICG-001 and examined the effects of treatment on parameters of activation. RESULTS: We report for the first time that CBP/ß-catenin antagonism suppresses activation of PSCs as evidenced by their decreased proliferation, down-regulation of "activation" markers, e.g., α-smooth muscle actin (α-SMA/Acta2), collagen type I alpha 1 (Col1a1), Prolyl 4-hydroxylase, and Survivin, up-regulation of peroxisome proliferator activated receptor gamma (Ppar-γ) which is associated with quiescence, and reduced migration; additionally, CBP/ß-catenin antagonism also suppresses PSC-induced migration of cancer cells. CONCLUSION: CBP/ß-catenin antagonism represents a novel therapeutic strategy for suppressing PSC activation and may be effective at countering PSC promotion of pancreatic cancer.

9.
Front Physiol ; 10: 1467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849712

RESUMO

Background: Yes-associated protein 1 (YAP), a transcriptional co-activator and major effector of the Hippo pathway, regulates cell differentiation and morphology in many cell types and supports aberrant tumor growth. Recent studies showed that YAP is expressed in pancreas tissues in pancreatic ductal adenocarcinoma (PDAC) patients and experimental models of PDAC, with YAP largely found in cancer cells and pancreatic stellate cells (PaSC) in the stroma. Methods and Results: We studied here the role of YAP in the activated phenotype of PaSC. We found that YAP is expressed at low levels in normal mouse pancreas, but protein levels significantly increased after pancreas inflammatory damage induced by repeated cerulein administration in wild-type mice or upon initiation of neoplastic transformation of the pancreas parenchyma in Ptf1-Cre;LSL-KrasG12D/+ (KC) mice. In these animal models, YAP upregulation occurred in parallel with activation and proliferation of PaSC. Consistent with these findings, we found robust YAP expression in culture-activated mouse and human PaSC but not in quiescent, freshly isolated cells. Fully activated PaSC isolated from KC mice or PDAC patient tissues exhibited robust nuclear YAP suggesting YAP transcriptional activity. Agents that induce quiescence such as the Bromodomain and Extra-Terminal (BET) inhibitor iBET151 and the p38 MAPK inhibitor SB203580 reduced YAP levels in PaSC. Stimulation of PaSC with the potent mitogen PDGF elicited marked YAP Ser127 phosphorylation. However, unexpectedly, this effect did not diminish YAP nuclear localization, suggesting that YAP phosphorylation at this site does not govern YAP cellular localization in PaSC. siRNA-mediated knockdown of YAP reduced PDGF-induced PaSC expansion in culture and blunted the persistent activation of Akt and ERK elicited by PDGF stimulation, supporting a role for YAP in PDGF-induced cell growth. YAP knockdown also blunted fibroinflammatory gene expression responses both in unstimulated and transforming growth factor beta 1 (TGFß1)-stimulated PaSC. Conclusion: Our data suggest a central role for YAP in sustaining the activated phenotype and fibroinflammatory responses in PaSC. Moreover, our findings indicate that a complex crosstalk between YAP, TGFß1, and PDGF pathways regulates PaSC activity and growth.

10.
Cell Mol Gastroenterol Hepatol ; 5(4): 479-497, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29930975

RESUMO

BACKGROUND & AIMS: Heavy alcohol drinking is associated with pancreatitis, whereas moderate intake lowers the risk. Mice fed ethanol long term show no pancreas damage unless adaptive/protective responses mediating proteostasis are disrupted. Pancreatic acini synthesize digestive enzymes (largely serine hydrolases) in the endoplasmic reticulum (ER), where perturbations (eg, alcohol consumption) activate adaptive unfolded protein responses orchestrated by spliced X-box binding protein 1 (XBP1). Here, we examined ethanol-induced early structural changes in pancreatic ER proteins. METHODS: Wild-type and Xbp1+/- mice were fed control and ethanol diets, then tissues were homogenized and fractionated. ER proteins were labeled with a cysteine-reactive probe, isotope-coded affinity tag to obtain a novel pancreatic redox ER proteome. Specific labeling of active serine hydrolases in ER with fluorophosphonate desthiobiotin also was characterized proteomically. Protein structural perturbation by redox changes was evaluated further in molecular dynamic simulations. RESULTS: Ethanol feeding and Xbp1 genetic inhibition altered ER redox balance and destabilized key proteins. Proteomic data and molecular dynamic simulations of Carboxyl ester lipase (Cel), a unique serine hydrolase active within ER, showed an uncoupled disulfide bond involving Cel Cys266, Cel dimerization, ER retention, and complex formation in ethanol-fed, XBP1-deficient mice. CONCLUSIONS: Results documented in ethanol-fed mice lacking sufficient spliced XBP1 illustrate consequences of ER stress extended by preventing unfolded protein response from fully restoring pancreatic acinar cell proteostasis during ethanol-induced redox challenge. In this model, orderly protein folding and transport to the secretory pathway were disrupted, and abundant molecules including Cel with perturbed structures were retained in ER, promoting ER stress-related pancreas pathology.

11.
Am J Pathol ; 187(12): 2726-2743, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28935577

RESUMO

Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1ß, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.


Assuntos
Células Acinares , Técnicas de Cultura de Células , Pancreatite , Células Acinares/citologia , Células Acinares/metabolismo , Cadáver , Células Cultivadas , Humanos , Pâncreas/citologia , Pâncreas/metabolismo , Pancreatite/metabolismo , Pancreatite/patologia , Proteômica
12.
PLoS One ; 12(9): e0184455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28886117

RESUMO

Epidemiologic data has linked obesity to a higher risk of pancreatic cancer, but the underlying mechanisms are poorly understood. To allow for detailed mechanistic studies in a relevant model mimicking diet-induced obesity and pancreatic cancer, a high-fat, high-calorie diet (HFCD) was given to P48+/Cre;LSL-KRASG12D (KC) mice carrying a pancreas-specific oncogenic Kras mutation. The mice were randomly allocated to a HFCD or control diet (CD). Cohorts were sacrificed at 3, 6, and 9 months and tissues were harvested for further analysis. Compared to CD-fed mice, HFCD-fed animals gained significantly more weight. Importantly, the cancer incidence was remarkably increased in HFCD-fed KC mice, particularly in male KC mice. In addition, KC mice fed the HFCD showed more extensive inflammation and fibrosis, and more advanced PanIN lesions in the pancreas, compared to age-matched CD-fed animals. Interestingly, we found that the HFCD reduced autophagic flux in PanIN lesions in KC mice. Further, exome sequencing of isolated murine PanIN lesions identified numerous genetic variants unique to the HFCD. These data underscore the role of sustained inflammation and dysregulated autophagy in diet-induced pancreatic cancer development and suggest that diet-induced genetic alterations may contribute to this process. Our findings provide a better understanding of the mechanisms underlying the obesity-cancer link in males and females, and will facilitate the development of interventions targeting obesity-associated pancreatic cancer.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Ingestão de Energia , Mutação , Neoplasias Pancreáticas/etiologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Substituição de Aminoácidos , Animais , Autofagia/genética , Peso Corporal , Códon , Biologia Computacional/métodos , Modelos Animais de Doenças , Exoma , Matriz Extracelular/metabolismo , Feminino , Fibrose , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Inflamação/etiologia , Inflamação/patologia , Masculino , Camundongos , Neoplasias Pancreáticas/patologia
13.
Gastroenterology ; 153(6): 1674-1686, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847752

RESUMO

BACKGROUND & AIMS: Smoking, an independent risk factor for pancreatitis, accelerates the development of alcoholic pancreatitis. Alcohol feeding of mice induces up-regulation of spliced X-box binding protein 1 (XBP1s), which regulates the endoplasmic reticulum (ER) unfolded protein response and promotes cell survival upon ER stress. We examined whether smoking affects the adaptive mechanisms induced by alcohol and accelerates disorders of the ER in pancreatic acinar cells. METHODS: We studied the combined effects of ethanol (EtOH) and cigarette smoke extract (CSE) on ER stress and cell death responses in mouse and human primary acini and the acinar cell line AR42J. Cells were incubated with EtOH (50 mmol/L), CSE (20-40 µg/mL), or both (CSE+EtOH), and analyzed by immunoblotting, quantitative reverse-transcription polymerase chain reaction, and cell death assays. Some cells were incubated with MKC-3946, an inhibitor of endoplasmic reticulum to nucleus signaling 1 (ERN1, also called IRE1) that blocks XBP1s formation. Male Sprague-Dawley rats were fed isocaloric amounts of an EtOH-containing (Lieber-DeCarli) or control diet for 11 weeks and exposed to cigarette smoke or room air in an exposure chamber for 2 hours each day. During the last 3 weeks, a subset of rats received intravenous injections of lipopolysaccharide (LPS, 3 mg/kg per week) to induce pancreatitis or saline (control). Pancreatic tissues were collected and analyzed by histology and immunostaining techniques. RESULTS: In AR42J and primary acini, CSE+EtOH induced cell death (necrosis and apoptosis), but neither agent alone had this effect. Cell death was associated with a significant decrease in expression of XBP1s. CSE+EtOH, but neither agent alone, slightly decreased adenosine triphosphate levels in AR42J cells, but induced oxidative stress and sustained activation (phosphorylation) of eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3, also called PERK) and increased protein levels of DNA damage inducible transcript 3 (DDIT3, also called CHOP). CHOP regulates transcription to promote apoptosis. Incubation of AR42J or primary mouse or human acinar cells with MKC-3946 reduced expression of XBP1s, increased levels of CHOP, and induced cell death. In rats fed an EtOH diet, exposure to cigarette smoke increased ER stress in acinar cells and sensitized the pancreas to LPS-induced pathology. CONCLUSIONS: Cigarette smoke promotes cell death and features of pancreatitis in EtOH-sensitized acinar cells by suppressing the adaptive unfolded protein response signaling pathway. It also activates ER stress pathways that promote acinar cell death.


Assuntos
Células Acinares/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/efeitos adversos , Fumar Cigarros/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Etanol/toxicidade , Pâncreas Exócrino/efeitos dos fármacos , Pancreatite Alcoólica/etiologia , Fumaça/efeitos adversos , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Estresse Oxidativo/efeitos dos fármacos , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Pancreatite Alcoólica/metabolismo , Pancreatite Alcoólica/patologia , Ratos Sprague-Dawley , Fatores de Risco , Fatores de Tempo , Técnicas de Cultura de Tecidos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
15.
Am J Physiol Gastrointest Liver Physiol ; 311(4): G675-G687, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27609771

RESUMO

Epidemiological studies support strong links between obesity, diabetes, and pancreatic disorders including pancreatitis and pancreatic adenocarcinoma (PDAC). Type 2 diabetes (T2DM) is associated with insulin resistance, hyperglycemia, and hyperinsulinemia, the latter due to increased insulin secretion by pancreatic beta-cells. We reported that high-fat diet-induced PDAC progression in mice is associated with hyperglycemia, hyperinsulinemia, and activation of pancreatic stellate cells (PaSC). We investigated here the effects of high concentrations of insulin and glucose on mouse and human PaSC growth and fibrosing responses. We found that compared with normal, pancreata from T2DM patients displayed extensive collagen deposition and activated PaSC in islet and peri-islet exocrine pancreas. Mice fed a high-fat diet for up to 12 mo similarly displayed increasing peri-islet fibrosis compared with mice fed control diet. Both quiescent and activated PaSC coexpress insulin (IR; mainly A type) and IGF (IGF-1R) receptors, and both insulin and glucose modulate receptor expression. In cultured PaSC, insulin induced rapid tyrosine autophosphorylation of IR/IGF-1R at specific kinase domain activation loop sites, activated Akt/mTOR/p70S6K signaling, and inactivated FoxO1, a transcription factor that restrains cell growth. Insulin did not promote activation of quiescent PaSC in either 5 mM or 25 mM glucose containing media. However, in activated PaSC, insulin enhanced cell proliferation and augmented production of extracellular matrix proteins, and these effects were abolished by specific inhibition of mTORC1 and mTORC2. In conclusion, our data support the concept that increased local glucose and insulin concentrations associated with obesity and T2DM promote PaSC growth and fibrosing responses.


Assuntos
Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/patologia , Fibrose/patologia , Glucose/farmacologia , Insulina/farmacologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Animais , Células Cultivadas , Colágeno/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Feminino , Fibrose/metabolismo , Humanos , Camundongos , Pessoa de Meia-Idade , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Fosforilação/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo
16.
PLoS One ; 11(2): e0148999, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26849807

RESUMO

Activated pancreatic stellate cells (PaSC) are key participants in the stroma of pancreatic cancer, secreting extracellular matrix proteins and inflammatory mediators. Tumors are poorly vascularized, creating metabolic stress conditions in cancer and stromal cells that necessitate adaptive homeostatic cellular programs. Activation of autophagy and the endoplasmic reticulum unfolded protein response (UPR) have been described in hepatic stellate cells, but the role of these processes in PaSC responses to metabolic stress is unknown. We reported that the PI3K/mTOR pathway, which AMPK can regulate through multiple inputs, modulates PaSC activation and fibrogenic potential. Here, using primary and immortalized mouse PaSC, we assess the relative contributions of AMPK/mTOR signaling, autophagy and the UPR to cell fate responses during metabolic stress induced by mitochondrial dysfunction. The mitochondrial uncoupler rottlerin at low doses (0.5-2.5 µM) was added to cells cultured in 10% FBS complete media. Mitochondria rapidly depolarized, followed by altered mitochondrial dynamics and decreased cellular ATP levels. This mitochondrial dysfunction elicited rapid, sustained AMPK activation, mTOR pathway inhibition, and blockade of autophagic flux. Rottlerin treatment also induced rapid, sustained PERK/CHOP UPR signaling. Subsequently, high doses (>5 µM) induced loss of cell viability and cell death. Interestingly, AMPK knock-down using siRNA did not prevent rottlerin-induced mTOR inhibition, autophagy, or CHOP upregulation, suggesting that AMPK is dispensable for these responses. Moreover, CHOP genetic deletion, but not AMPK knock-down, prevented rottlerin-induced apoptosis and supported cell survival, suggesting that UPR signaling is a major modulator of cell fate in PaSC during metabolic stress. Further, short-term rottlerin treatment reduced both PaSC fibrogenic potential and IL-6 mRNA expression. In contrast, expression levels of the angiogenic factors HGF and VEGFα were unaffected, and the immune modulator IL-4 was markedly upregulated. These data imply that metabolic stress-induced PaSC reprogramming differentially modulates neighboring cells in the tumor microenvironment.


Assuntos
Autofagia , Mitocôndrias/metabolismo , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Microambiente Tumoral , Resposta a Proteínas não Dobradas , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Ativação Enzimática/genética , Interleucina-4/biossíntese , Interleucina-4/genética , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Regulação para Cima/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
17.
Front Physiol ; 5: 426, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426078

RESUMO

Pancreatic cancer carries a poor prognosis as most patients present with advanced disease and preferred chemotherapy regimens offer only modest effects on survival. Risk factors include smoking, obesity, heavy alcohol, and chronic pancreatitis. Pancreatic cancer has a complex relationship with diabetes, as diabetes can be both a risk factor for pancreatic cancer and a result of pancreatic cancer. Insulin, insulin-like growth factor-1 (IGF-1), and certain hormones play an important role in promoting neoplasia in diabetics. Metformin appears to reduce risk for pancreatic cancer and improve survival in diabetics with pancreatic cancer primarily by decreasing insulin/IGF signaling, disrupting mitochondrial respiration, and inhibiting the mammalian target of rapamycin (mTOR) pathway. Other potential anti-tumorigenic effects of metformin include the ability to downregulate specificity protein transcription factors and associated genes, alter microRNAs, decrease cancer stem cell proliferation, and reduce DNA damage and inflammation. Here, we review the most recent knowledge on risk factors and treatment of pancreatic cancer and the relationship between diabetes, pancreatic cancer, and metformin as a potential therapy.

18.
Am J Physiol Gastrointest Liver Physiol ; 307(5): G550-63, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25035113

RESUMO

Understanding the regulation of death pathways, necrosis and apoptosis, in pancreatitis is important for developing therapies directed to the molecular pathogenesis of the disease. Protein kinase Cε (PKCε) has been previously shown to regulate inflammatory responses and zymogen activation in pancreatitis. Furthermore, we demonstrated that ethanol specifically activated PKCε in pancreatic acinar cells and that PKCε mediated the sensitizing effects of ethanol on inflammatory response in pancreatitis. Here we investigated the role of PKCε in the regulation of death pathways in pancreatitis. We found that genetic deletion of PKCε resulted in decreased necrosis and severity in the in vivo cerulein-induced pancreatitis and that inhibition of PKCε protected the acinar cells from CCK-8 hyperstimulation-induced necrosis and ATP reduction. These findings were associated with upregulation of mitochondrial Bak and Bcl-2/Bcl-xL, proapoptotic and prosurvival members in the Bcl-2 family, respectively, as well as increased mitochondrial cytochrome c release, caspase activation, and apoptosis in pancreatitis in PKCε knockout mice. We further confirmed that cerulein pancreatitis induced a dramatic mitochondrial translocation of PKCε, suggesting that PKCε regulated necrosis in pancreatitis via mechanisms involving mitochondria. Finally, we showed that PKCε deletion downregulated inhibitors of apoptosis proteins, c-IAP2, survivin, and c-FLIPs while promoting cleavage/inactivation of receptor-interacting protein kinase (RIP). Taken together, our findings provide evidence that PKCε activation during pancreatitis promotes necrosis through mechanisms involving mitochondrial proapoptotic and prosurvival Bcl-2 family proteins and upregulation of nonmitochondrial pathways that inhibit caspase activation and RIP cleavage/inactivation. Thus PKCε is a potential target for prevention and/or treatment of acute pancreatitis.


Assuntos
Apoptose , Deleção de Genes , Pâncreas/metabolismo , Pancreatite/metabolismo , Proteína Quinase C-épsilon/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Ceruletídeo/toxicidade , Citocromos c/metabolismo , Etanol/farmacologia , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite/genética , Pancreatite/patologia , Proteína Quinase C-épsilon/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Sincalida/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
19.
Gastroenterology ; 144(2): 437-446.e6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23103769

RESUMO

BACKGROUND & AIMS: Opening of the mitochondrial permeability transition pore (MPTP) causes loss of the mitochondrial membrane potential (ΔΨm) and, ultimately, adenosine triphosphate depletion and necrosis. Cells deficient in cyclophilin D (CypD), a component of the MPTP, are resistant to MPTP opening, loss of ΔΨm, and necrosis. Alcohol abuse is a major risk factor for pancreatitis and is believed to sensitize the pancreas to stressors, by poorly understood mechanisms. We investigated the effects of ethanol on the pancreatic MPTP, the mechanisms of these effects, and their role in pancreatitis. METHODS: We measured ΔΨm in mouse pancreatic acinar cells incubated with ethanol alone and in combination with physiologic and pathologic concentrations of cholecystokinin-8 (CCK). To examine the role of MPTP, we used ex vivo and in vivo models of pancreatitis, induced in wild-type and CypD(-/-) mice by a combination of ethanol and CCK. RESULTS: Ethanol reduced basal ΔΨm and converted a transient depolarization, induced by physiologic concentrations of CCK, into a sustained decrease in ΔΨm, resulting in reduced cellular adenosine triphosphate and increased necrosis. The effects of ethanol and CCK were mediated by MPTP because they were not observed in CypD(-/-) acinar cells. Ethanol and CCK activated MPTP through different mechanisms-ethanol by reducing the ratio of oxidized nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide, as a result of oxidative metabolism, and CCK by increasing cytosolic Ca(2+). CypD(-/-) mice developed a less-severe form of pancreatitis after administration of ethanol and CCK. CONCLUSIONS: Oxidative metabolism of ethanol sensitizes pancreatic mitochondria to activate MPTP, leading to mitochondrial failure; this makes the pancreas susceptible to necrotizing pancreatitis.


Assuntos
Etanol/farmacocinética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Estresse Oxidativo , Pancreatite Necrosante Aguda/metabolismo , Pancreatite Alcoólica/metabolismo , Células Acinares/efeitos dos fármacos , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Modelos Animais de Doenças , Etanol/toxicidade , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Poro de Transição de Permeabilidade Mitocondrial , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite Necrosante Aguda/etiologia , Pancreatite Necrosante Aguda/patologia , Pancreatite Alcoólica/complicações , Pancreatite Alcoólica/patologia
20.
Biochem Biophys Res Commun ; 391(1): 63-8, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19896460

RESUMO

Recently, CID755673 was reported to act as a highly selective inhibitor of protein kinase D (PKD). In the course of experiments using CID755673, we noticed that it exerted unexpected stimulatory effects on [(3)H]thymidine incorporation and cell cycle progression in Swiss 3T3 cells stimulated by bombesin, a Gq-coupled receptor agonist, phorbol 12,13-dibutyrate (PDBu), a biologically active tumor promoting phorbol ester and epidermal growth factor (EGF). These stimulatory effects could be dissociated from the inhibitory effect of CID755673 on PKD activity, since enhancement of DNA synthesis was still evident in cells with severely down-regulated PKD1 after transfection of siRNA targeting PKD1. A major point raised by our study is that CID755673 can not be considered a specific inhibitor of PKD and it should be used with great caution in experiments attempting to elucidate the role of PKD family members in cellular regulation, particularly cell cycle progression from G(1)/G(o) to S phase.


Assuntos
Azepinas/farmacologia , Benzofuranos/farmacologia , Bombesina/farmacologia , Ciclo Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Dibutirato de 12,13-Forbol/farmacologia , Proteína Quinase C/antagonistas & inibidores , Células 3T3 , Animais , DNA/biossíntese , Replicação do DNA/efeitos dos fármacos , Camundongos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Quinase C/metabolismo , Fator de Crescimento Transformador alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA