Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 40(11): 1558-1564, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30828828

RESUMO

Human acetyl-coenzyme A carboxylase 2 catalyzes the carboxylation of acetyl coenzyme A to form malonyl coenzyme A, along with the conversion of magnesium-adenosine triphosphate complex to magnesium-adenosine diphosphate complex. A simple off-column capillary electrophoresis assay for human acetyl-coenzyme A carboxylase 2 was developed based on the separation of magnesium-adenosine triphosphate complex, magnesium-adenosine diphosphate complex, acetyl coenzyme A and malonyl coenzyme A with detection by ultraviolet absorption at 256 nm. When Mg2+ was absent from the separation buffer, the zones due to magnesium-adenosine triphosphate complex and magnesium-adenosine diphosphate complex both split and migrated as two separate peaks. With Mg2+ added to the separation buffer, magnesium-adenosine triphosphate complex and magnesium-adenosine diphosphate complex produced single peaks, and the reproducibility of peak shape and area improved for human acetyl-coenzyme A carboxylase 2 assay components. The final separation buffer used was 30.0 mM HEPES, 3.0 mM MgCl2 , 2.5 mM KHCO3 , and 2.5 mM potassium citrate at pH 7.50. The same buffer was used for the enzyme-catalyzed reaction (off-column). Inhibition of human acetyl-coenzyme A carboxylase 2 by CP-640186, a known inhibitor, was detected using the capillary electrophoresis assay.


Assuntos
Acetil-CoA Carboxilase/análise , Eletroforese Capilar/métodos , Soluções Tampão , Desenho de Equipamento , Humanos , Magnésio/química , Morfolinas/farmacologia , Piperidinas/farmacologia
2.
Biochemistry ; 54(24): 3860-70, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26020841

RESUMO

Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1'-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1'-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin.


Assuntos
Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Biotina/química , Carbono-Nitrogênio Ligases/química , Haemophilus influenzae/enzimologia , Modelos Moleculares , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Bicarbonatos/química , Bicarbonatos/metabolismo , Biocatálise , Biotina/análogos & derivados , Biotina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Foscarnet/química , Foscarnet/metabolismo , Conformação Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo
3.
Anal Biochem ; 447: 1-5, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24444856

RESUMO

An assay was developed for phosphofructokinase-1 (PFK-1) using capillary electrophoresis (CE). In the glycolytic pathway, this enzyme catalyzes the rate-limiting step from fructose-6-phosphate and magnesium-bound adenosine triphosphate (Mg-ATP) to fructose-1,6-bisphosphate and magnesium-bound adenosine diphosphate (Mg-ADP). This enzyme has recently become a research target because of the importance of glycolysis in cancer and obesity. The CE assay for PFK-1 is based on the separation and detection by ultraviolet (UV) absorbance at 260 nm of Mg-ATP and Mg-ADP. The separation was enhanced by the addition of Mg²âº to the separation buffer. Inhibition studies of PFK-1 by aurintricarboxylic acid and palmitoyl coenzyme A were also performed. An IC50 value was determined for aurintricarboxylic acid, and this value matched values in the literature obtained using coupled spectrophotometric assays. This assay for PFK-1 directly monitors the enzyme-catalyzed reaction, and the CE separation reduces the potential of spectral interference by inhibitors.


Assuntos
Eletroforese Capilar/métodos , Ensaios Enzimáticos/métodos , Fosfofrutoquinase-1/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Fosfofrutoquinase-1/antagonistas & inibidores , Coelhos
4.
Anal Biochem ; 437(1): 32-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23435309

RESUMO

A simple off-column capillary electrophoretic (CE) assay for measuring acetyl coenzyme A carboxylase holoenzyme (holo-ACC) activity and inhibition was developed. The two reactions catalyzed by the holo-ACC components, biotin carboxylase (BC) and carboxyltransferase (CT), were simultaneously monitored in this assay. Acetyl coenzyme A (CoA), malonyl-CoA, adenosine triphosphate (ATP), and adenosine diphosphate (ADP) were separated by capillary electrophoresis, and the depletion of ATP and acetyl-CoA as well as the production of ADP and malonyl-CoA were monitored. Inhibition of holo-ACC by the BC inhibitor, 2-amino-N,N-dibenzyloxazole-5-carboxamide, and the carboxyltransferase inhibitor, andrimid, was confirmed using this assay. A previously reported off-column CE assay for only the CT component of ACC was optimized, and an off-column CE assay for the BC component of ACC also was developed.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Eletroforese Capilar/métodos , Ensaios Enzimáticos/métodos , Acetilcoenzima A/metabolismo , Acetil-CoA Carboxilase/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Biocatálise , Carbono-Nitrogênio Ligases/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Holoenzimas/metabolismo
5.
Protein Sci ; 21(11): 1597-619, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22969052

RESUMO

Biotin is the major cofactor involved in carbon dioxide metabolism. Indeed, biotin-dependent enzymes are ubiquitous in nature and are involved in a myriad of metabolic processes including fatty acid synthesis and gluconeogenesis. The cofactor, itself, is composed of a ureido ring, a tetrahydrothiophene ring, and a valeric acid side chain. It is the ureido ring that functions as the CO2 carrier. A complete understanding of biotin-dependent enzymes is critically important for translational research in light of the fact that some of these enzymes serve as targets for anti-obesity agents, antibiotics, and herbicides. Prior to 1990, however, there was a dearth of information regarding the molecular architectures of biotin-dependent enzymes. In recent years there has been an explosion in the number of three-dimensional structures reported for these proteins. Here we review our current understanding of the structures and functions of biotin-dependent enzymes. In addition, we provide a critical analysis of what these structures have and have not revealed about biotin-dependent catalysis.


Assuntos
Biotina/metabolismo , Dióxido de Carbono/metabolismo , Carboxiliases/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biotina/química , Dióxido de Carbono/química , Carboxiliases/química , Carboxil e Carbamoil Transferases/química , Catálise , Humanos , Modelos Moleculares , Conformação Proteica
6.
Proteins ; 79(2): 622-32, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21120858

RESUMO

The enzyme biotin carboxylase (BC) uses adenosine triphosphate (ATP) to carboxylate biotin and is involved in fatty acid synthesis. Structural evidence suggests that the B domain of BC undergoes a large hinge motion of ∼45° when binding and releasing substrates. Escherichia coli BC can function as a natural homodimer and as a mutant monomer. Using molecular dynamics simulations, we evaluate the free energy profile along a closure angle of the B domain of E. coli BC for three cases: a monomer without bound Mg(2)ATP, a monomer with bound Mg(2)ATP, and a homodimer with bound Mg(2)ATP in one subunit. The simulation results show that a closed state is the most probable for the monomer with or without bound Mg(2)ATP. For the dimer with Mg(2)ATP in one of its subunits, communication between the two subunits was observed. Specifically, in the dimer, the opening of the subunit without Mg(2)ATP caused the other subunit to open, and hysteresis was observed upon reclosing it. The most stable state of the dimer is one in which the B domain of both subunits is closed; however, the open state for the B domain without Mg(2)ATP is only approximately 2k(B)T higher in free energy than the closed state. A simple diffusion model indicates that the mean times for opening and closing of the B domain in the monomer with and without Mg(2)ATP are much smaller than the overall reaction time, which is on the order of seconds.


Assuntos
Trifosfato de Adenosina/química , Carbono-Nitrogênio Ligases/química , Escherichia coli/enzimologia , Magnésio/química , Algoritmos , Sítios de Ligação , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
7.
Nucleic Acids Res ; 38(4): 1217-27, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19965770

RESUMO

Acetyl-CoA Carboxylase catalyzes the first committed step in fatty acid synthesis. Escherichia coli acetyl-CoA carboxylase is composed of biotin carboxylase, carboxyltransferase and biotin carboxyl carrier protein functions. The accA and accD genes that code for the alpha- and beta-subunits, respectively, are not in an operon, yet yield an alpha(2)beta(2) carboxyltransferase. Here, we report that carboxyltransferase regulates its own translation by binding the mRNA encoding its subunits. This interaction is mediated by a zinc finger on the beta-subunit; mutation of the four cysteines to alanine diminished nucleic acid binding and catalytic activity. Carboxyltransferase binds the coding regions of both subunit mRNAs and inhibits translation, an inhibition that is relieved by the substrate acetyl-CoA. mRNA binding reciprocally inhibits catalytic activity. Preferential binding of carboxyltransferase to RNA in situ was shown using fluorescence resonance energy transfer. We propose an unusual regulatory mechanism by which carboxyltransferase acts as a 'dimmer switch' to regulate protein production and catalytic activity, while sensing the metabolic state of the cell through acetyl-CoA concentration.


Assuntos
Acetil-CoA Carboxilase/genética , Carboxil e Carbamoil Transferases/genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Biossíntese de Proteínas , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/metabolismo , Sítios de Ligação , Carboxil e Carbamoil Transferases/química , Carboxil e Carbamoil Transferases/metabolismo , Catálise , DNA/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Dedos de Zinco
8.
J Phys Chem B ; 113(30): 10097-103, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19585972

RESUMO

Biotin carboxylase is a homodimer that utilizes ATP to carboxylate biotin. Studies of the enzyme using X-ray crystallography revealed a prominent conformational change upon binding ATP. To determine the importance of this closing motion, the potential of mean force with the closure angle as a reaction coordinate was calculated using molecular dynamics simulations and umbrella sampling for a monomer of Escherichia coli biotin carboxylase in water with restraints to simulate attachment to a surface. The result suggests that the most stable state for the enzyme is a closed state different from both the ATP-bound and open state X-ray crystallography structures. There is also a significant motion of a region near the dimer interface not predicted by considering only open and closed configurations, which may have implications for the dynamics and activity of the dimer.


Assuntos
Trifosfato de Adenosina/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Estabilidade Enzimática , Escherichia coli/enzimologia , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Soluções
9.
Proteins ; 74(4): 808-19, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18704941

RESUMO

Biotin carboxylase from Escherichia coli catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase, which catalyzes the committed step in long-chain fatty acid synthesis. Comparison of the crystal structures of biotin carboxylase in the absence and presence of ATP showed a central B-domain closure when ATP was bound. Peptidic NH groups from two active site glycine residues (Gly165 and Gly166) that form hydrogen bonds to the phosphate oxygens of ATP were postulated to act as a "trigger" for movement of the B-domain. The function of these two glycine residues in the catalytic mechanism was studied by disruption of the hydrogen bonds using site-directed mutagenesis. Both single (G165V) and (G166V) and double mutants (G165V-G166V) were constructed. The mutations did not affect the maximal velocity of a partial reaction, the bicarbonate-dependent ATPase activity. This suggests that the peptidic NH groups of Gly165 and Gly166 are not triggers for domain movement. However, the K(m) values for ATP for each of the mutants was increased over 40-fold when compared with wild-type indicating the peptidic NH groups of Gly165 and Gly166 play a role in binding ATP. Consistent with ATP binding, the maximal velocity for the biotin-dependent ATPase activity (i.e. the complete reaction) was decreased over 100-fold suggesting the mutations have misaligned the reactants for optimal catalysis. Molecular dynamics studies confirm perturbation of the hydrogen bonds from the mutated residues to ATP, whereas the double mutant exhibits antagonistic effects such that hydrogen bonding from residues 165 and 166 to ATP is similar to that in the wild-type. Consistent with the site-directed mutagenesis results the molecular dynamics studies show that ATP is misaligned in the mutants.


Assuntos
Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Simulação por Computador , Glicina/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Sítios de Ligação , Carbono-Nitrogênio Ligases/metabolismo , Dicroísmo Circular , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Glicina/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação
10.
Biochem Mol Biol Educ ; 37(1): 11-5, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21567682

RESUMO

Most general biochemistry textbooks present enzyme inhibition by showing how the basic Michaelis-Menten parameters K(m) and V(max) are affected mathematically by a particular type of inhibitor. This approach, while mathematically rigorous, does not lend itself to understanding how inhibition patterns are used to determine the kinetic aspects of an enzyme. The discussion here describes a qualitative approach to teaching enzyme inhibition that allows for a physical or mechanistic understanding. This qualitative approach to enzyme inhibition starts by recognizing that the two fundamental kinetic parameters of an enzyme catalyzed reaction are V(max) and V(max) /K(m) , which correspond to the apparent rates of reaction at very high and very low concentrations of substrate, respectively. It just so happens that the reciprocals of V(max) and V(max) /K(m) correspond to the y-intercept and slope of the Lineweaver-Burk plot, respectively. Thus, an inhibitor that affects the y-intercept binds to the enzyme at very high substrate concentrations, and thus binds to the enzyme-substrate complex, while an inhibitor that affects the slope binds to the enzyme at very low substrate concentrations, and thus binds only to free enzyme. These simple precepts can be used to interpret the basic inhibition patterns, competitive, uncompetitive and noncompetitive, and more importantly, derive mechanistic information, especially in multisubstrate reactions. The application of these principles is illustrated by using an example from cancer chemotherapy, the inhibition of thymidylate synthase by 5-fluorouracil and leucovorin.

11.
Protein Sci ; 17(10): 1706-18, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18725455

RESUMO

Bacterial acetyl-CoA carboxylase is a multifunctional biotin-dependent enzyme that consists of three separate proteins: biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT). Acetyl-CoA carboxylase is a potentially attractive target for novel antibiotics because it catalyzes the first committed step in fatty acid biosynthesis. In the first half-reaction, BC catalyzes the ATP-dependent carboxylation of BCCP. In the second half-reaction, the carboxyl group is transferred from carboxybiotinylated BCCP to acetyl-CoA to produce malonyl-CoA. A series of structures of BC from several bacteria crystallized in the presence of various ATP analogs is described that addresses three major questions concerning the catalytic mechanism. The structure of BC bound to AMPPNP and the two catalytically essential magnesium ions resolves inconsistencies between the kinetics of active-site BC mutants and previously reported BC structures. Another structure of AMPPNP bound to BC shows the polyphosphate chain folded back on itself, and not in the correct (i.e., extended) conformation for catalysis. This provides the first structural evidence for the hypothesis of substrate-induced synergism, which posits that ATP binds nonproductively to BC in the absence of biotin. The BC homodimer has been proposed to exhibit half-sites reactivity where the active sites alternate or "flip-flop" their catalytic cycles. A crystal structure of BC showed the ATP analog AMPPCF(2)P bound to one subunit while the other subunit was unliganded. The liganded subunit was in the closed or catalytic conformation while the unliganded subunit was in the open conformation. This provides the first structural evidence for half-sites reactivity in BC.


Assuntos
Biotina/química , Carbono-Nitrogênio Ligases/química , Sítios de Ligação , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Catálise , Cristalização , Cristalografia por Raios X , Escherichia coli/enzimologia , Magnésio/química , Nucleotídeos/química , Pseudomonas aeruginosa/enzimologia , Staphylococcus aureus/enzimologia
12.
J Phys Chem B ; 112(10): 3149-56, 2008 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-18271571

RESUMO

Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis in all organisms. Biotin carboxylase from Escherichia coli, whose crystal structures with and without ATP bound have been determined, has served as a model system for this component of the acetyl-CoA carboxylase complex. The two crystal structures revealed a large conformational change of one domain relative to the other domains when ATP is bound. Unfortunately, the crystal structure with ATP bound was obtained with an inactive site-directed mutant of the enzyme. As a consequence the structure with ATP bound lacked key structural information such as for the Mg2+ ions and contained altered conformations of key active-site residues. Therefore, nanosecond molecular dynamics studies of the wild-type biotin carboxylase were undertaken to supplant and amend the results of the crystal structures. Specifically, the protein-metal interactions of the two catalytically critical Mg2+ ions bound in the active site are presented along with a reevaluation of the conformations of active-site residues bound to ATP. In addition, the regions of the polypeptide chain that serve as hinges for the large conformational change were identified. The results of the hinge analysis complemented a covariance analysis that identified the individual structural elements of biotin carboxylase that change their conformation in response to ATP binding.


Assuntos
Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Escherichia coli/enzimologia , Ligação de Hidrogênio , Íons/química , Magnésio/química , Modelos Moleculares , Oxigênio/química , Estrutura Terciária de Proteína
13.
J Theor Biol ; 246(1): 167-75, 2007 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17266990

RESUMO

Biotin carboxylase catalyzes the ATP-dependent carboxylation of biotin and is one component of the multienzyme complex acetyl-CoA carboxylase that catalyzes the first committed step in fatty acid synthesis in all organisms. In Escherichia coli, biotin carboxylase exists as a homodimer where each subunit contains a complete active site. In a previous study (Janiyani, K., Bordelon, T., Waldrop, G.L., Cronan Jr., J.E., 2001. J. Biol. Chem. 276, 29864-29870), hybrid dimers were constructed where one subunit was wild-type and the other contained an active site mutation that reduced activity at least 100-fold. The activity of the hybrid dimers was only slightly greater than the activity of the mutant homodimers and far less than the expected 50% activity for completely independent active sites. Thus, there is communication between the two subunits of biotin carboxylase. The dominant negative effect of the mutations on the wild-type active site was interpreted as alternating catalytic cycles of the active sites in the homodimer. In order to test the hypothesis of oscillating catalytic cycles, mathematical modeling and numerical simulations of the kinetics of wild-type, hybrid dimers, and mutant homodimers of biotin carboxylase were performed. Numerical simulations of biotin carboxylase kinetics were the most similar to the experimental data when an oscillating active site model was used. In contrast, alternative models where the active sites were independent did not agree with the experimental data. Thus, the numerical simulations of the proposed kinetic model support the hypothesis that the two active sites of biotin carboxylase alternate their catalytic cycles.


Assuntos
Trifosfato de Adenosina/metabolismo , Biotina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Simulação por Computador , Modelos Químicos , Animais , Sítios de Ligação/genética , Carbono-Nitrogênio Ligases/genética , Dimerização , Mutação
14.
Artigo em Inglês | MEDLINE | ID: mdl-16872855

RESUMO

A serine protease inhibitor was purified from plasma of the eastern oyster, Crassostrea virginica. The inhibitor is a 7609.6 Da protein consisting of 71 amino acids with 12 cysteine residues that are postulated to form 6 intra-chain disulfide bridges. Sequencing of the cloned cDNA identified an open reading frame encoding a polypeptide of 90 amino acids, with the 19 N-terminal amino acids forming a signal peptide. No sequence similarity with known proteins was found in sequence databases. The protein inhibited the serine proteases subtilisin A, trypsin and perkinsin, the major extracellular protease of the oyster protozoan parasite, Perkinsus marinus, in a slow binding manner. The mechanism of inhibition involves a rapid binding of inhibitor to the enzyme to form a weak enzyme-inhibitor complex followed by a slow isomerization to form a very tight binding enzyme-inhibitor complex. The overall dissociation constants K(i) with subtilisin A, perkinsin and trypsin were 0.29 nM, 13.7 nM and 17.7 nM, respectively. No inhibition of representatives of the other protease classes was detected. This is the first protein inhibitor of proteases identified from a bivalve mollusk and it represents a new protease inhibitor family. Its tight binding to subtilisin and perkinsin suggests it plays a role in the oyster host defense against P. marinus.


Assuntos
Crassostrea/metabolismo , Eucariotos/enzimologia , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Crassostrea/citologia , Crassostrea/parasitologia , DNA Complementar/química , Cinética , Dados de Sequência Molecular , Inibidores de Serina Proteinase/sangue , Inibidores de Serina Proteinase/isolamento & purificação , Subtilisina/metabolismo
15.
Prog Lipid Res ; 41(5): 407-35, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12121720

RESUMO

Acetyl-CoA carboxylase (ACC) catalyses the first committed step of fatty acid synthesis, the carboxylation of acetyl-CoA to malonyl-CoA. Two physically distinct types of enzymes are found in nature. Bacterial and most plant chloroplasts contain a multi-subunit ACC (MS-ACC) enzyme that is readily dissociated into its component proteins. Mammals, fungi, and plant cytosols contain the second type of ACC, a single large multifunctional polypeptide. This review will focus on the structures, regulation, and enzymatic mechanisms of the bacterial and plant MS-ACCs.


Assuntos
Acetil-CoA Carboxilase/fisiologia , Acetil-CoA Carboxilase/química , Acetil-CoA Carboxilase/genética , Proteínas de Transporte/química , Catálise , Escherichia coli/enzimologia , Ácido Graxo Sintase Tipo II , Humanos , Mutação , Plantas/enzimologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA