Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Commun Biol ; 6(1): 295, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941341

RESUMO

Prolactin (PRL) is elevated in B-cell-mediated lymphoproliferative diseases and promotes B-cell survival. Whether PRL or PRL receptors drive the evolution of B-cell malignancies is unknown. We measure changes in B cells after knocking down the pro-proliferative, anti-apoptotic long isoform of the PRL receptor (LFPRLR) in vivo in systemic lupus erythematosus (SLE)- and B-cell lymphoma-prone mouse models, and the long plus intermediate isoforms (LF/IFPRLR) in human B-cell malignancies. To knockdown LF/IFPRLRs without suppressing expression of the counteractive short PRLR isoforms (SFPRLRs), we employ splice-modulating DNA oligomers. In SLE-prone mice, LFPRLR knockdown reduces numbers and proliferation of pathogenic B-cell subsets and lowers the risk of B-cell transformation by downregulating expression of activation-induced cytidine deaminase. LFPRLR knockdown in lymphoma-prone mice reduces B-cell numbers and their expression of BCL2 and TCL1. In overt human B-cell malignancies, LF/IFPRLR knockdown reduces B-cell viability and their MYC and BCL2 expression. Unlike normal B cells, human B-cell malignancies secrete autocrine PRL and often express no SFPRLRs. Neutralization of secreted PRL reduces the viability of B-cell malignancies. Knockdown of LF/IFPRLR reduces the growth of human B-cell malignancies in vitro and in vivo. Thus, LF/IFPRLR knockdown is a highly specific approach to block the evolution of B-cell neoplasms.


Assuntos
Lúpus Eritematoso Sistêmico , Linfoma de Células B , Camundongos , Humanos , Animais , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo , Prolactina/genética , Isoformas de Proteínas/genética , Linfoma de Células B/genética , Proteínas Proto-Oncogênicas c-bcl-2
2.
Cancer Cell Int ; 22(1): 351, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376929

RESUMO

BACKGROUND: Asymmetric dimethylarginine (ADMA), which is significantly elevated in the plasma of cancer patients, is formed via intracellular recycling of methylated proteins and serves as a precursor for resynthesis of arginine. However, the cause of ADMA elevation in cancers and its impact on the regulation of tumor immunity is not known. METHODS: Three mouse breast cell lines (normal breast epithelial HC11, breast cancer EMT6 and triple negative breast cancer 4T1) and their equivalent 3D stem cell culture were used to analyze the secretion of ADMA using ELISA and their responses to ADMA. Bone marrow-derived macrophages and/or RAW264.7 cells were used to determine the impact of increased extracellular ADMA on macrophage-tumor interactions. Gene/protein expression was analyzed through RNAseq, qPCR and flow cytometry. Protein functional analyses were conducted via fluorescent imaging (arginine uptake, tumor phagocytosis) and enzymatic assay (arginase activity). Cell viability was measured via MTS assay and/or direct cell counting using Countess III FL system. RESULTS: For macrophages, ADMA impaired proliferation and phagocytosis of tumor cells, and even caused death in cultures incubated without arginine. ADMA also led to an unusual macrophage phenotype, with increased expression of arginase, cd163 and cd206 but decreased expression of il10 and dectin-1. In contrast to the severely negative impacts on macrophages, ADMA had relatively minor effects on proliferation and survival of mouse normal epithelial HC11 cells, mouse breast cancer EMT6 and 4T1 cells, but there was increased expression of the mesenchymal markers, vimentin and snail2, and decreased expression of the epithelial marker, mucin-1 in EMT6 cells. When tumor cells were co-cultured ex vivo with tumor antigen in vivo-primed splenocytes, the tumor cells secreted more ADMA and there were alterations in the tumor cell arginine metabolic landscape, including increased expression of genes involved in arginine uptake, metabolism and methylation, and decreased expression of a gene that is responsible for arginine demethylation. Additionally, interferon-gamma, a cytokine involved in immune challenge, increased secretion of ADMA in tumor cells, a process attenuated by an autophagy inhibitor. CONCLUSION: Our results suggest initial immune attack promotes autophagy in tumor cells, which then secrete ADMA to manipulate macrophage polarization favoring tumor tolerance.

3.
Genes Cancer ; 13: 46-48, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051750
4.
BMC Res Notes ; 15(1): 101, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272680

RESUMO

OBJECTIVE: In a study of potential prostate cancer therapeutics, glycerol was used to increase the density of one solution. Glycerol alone was therefore one of the controls. Tumors of human PC3 castrate-resistant prostate cancer cells were initiated in male nude mice and grown for 12 days. Mice were then sorted such that mean tumor weights were the same in each group, and osmotic minipumps delivering 0.25 µL/h of either saline or glycerol were then implanted subcutaneously. RESULTS: Contrary to our initial assumption that glycerol would be without effect, tumors grew more rapidly in the glycerol group such that tumors were twice the size of those in the saline group after 4 weeks. Given the dose delivered, analysis of the literature suggests this effect was not via the conversion of glycerol to glucose but possibly via a reduction in oxidative damage in the growing tumor. Our data demonstrate that amounts of glycerol that could reasonably be derived from the diet promote the growth of these tumors. Given the increasing use of glycerol in foods and beverages, we present these data to stimulate interest in an epidemiological study in the human population examining glycerol consumption and the aggressiveness of prostate cancer.


Assuntos
Glicerol , Neoplasias da Próstata , Animais , Aditivos Alimentares , Glicerol/farmacologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias da Próstata/patologia
5.
Cell Mol Neurobiol ; 42(7): 2171-2186, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33821330

RESUMO

Prolactin (PRL) is a pleiotropic hormone with multiple functions in several tissues and organs, including the brain. PRL decreases lesion-induced microgliosis and modifies gene expression related to microglial functions in the hippocampus, thereby providing a possible mechanism through which it might participate in neuroimmune modulatory responses and prevent neuronal cell damage. However, the direct contribution of microglial cells to PRL-mediated neuroprotection is still unclear and no studies have yet documented whether PRL can directly activate cellular pathways in microglial cells. The aim of this study is to elucidate in vitro actions of PRL on the immortalized SIM-A9 microglia cell line in basal and LPS-stimulated conditions. PRL alone induced a time-dependent extracellular signal-regulated kinase 1/2 (ERK1/2) activation. Pretreatment with PRL attenuated LPS (200 ng/ml) stimulated pro-inflammatory markers: nitric oxide (NO) levels, inducible nitric oxide synthase (iNOS), interleukins (IL)-6, -1ß and tumor necrosis factor (TNF-α) expression at 20 nM dosage. PRL suppressed LPS-induced nuclear factor (NF)-κappaB (NF-κB) p65 subunit phosphorylation and its upstream p-ERK1/2 activity. In conclusion, PRL exhibits anti-inflammatory effects in LPS-stimulated SIM-A9 microglia by downregulating pro-inflammatory mediators corresponding to suppression of LPS-activated ERK1/2 and NF-κB phosphorylation.


Assuntos
Microglia , NF-kappa B , Anti-Inflamatórios , Humanos , Interleucina-6 , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno , Doenças Neuroinflamatórias , Óxido Nítrico , Óxido Nítrico Sintase Tipo II , Prolactina , Fator de Necrose Tumoral alfa
6.
J Vis Exp ; (177)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34806701

RESUMO

Mouse model systems are unmatched for the analysis of disease processes because of their genetic manipulability and the low cost of experimental treatments. However, because of their small body size, some structures, such as the oviduct with a diameter of 200-400 µm, have proven to be relatively difficult to study except by immunohistochemistry. Recently, immunohistochemical studies have uncovered more complex differences in oviduct segments than were previously recognized; thus, the oviduct is divided into four functional segments with different ratios of seven distinct epithelial cell types. The different embryological origins and ratios of the epithelial cell types likely make the four functional regions differentially susceptible to disease. For example, precursor lesions to serous intraepithelial carcinomas arise from the infundibulum in mouse models and from the corresponding fimbrial region in the human fallopian tube. The protocol described here details a method for microdissection to subdivide the oviduct in such a way to yield a sufficient amount and purity of RNA necessary for downstream analysis such as reverse transcription-quantitative PCR (RT-qPCR) and RNA sequencing (RNAseq). Also described is a mostly non-enzymatic tissue dissociation method appropriate for flow cytometry or single cell RNAseq analysis of fully differentiated oviductal cells. The methods described will facilitate further research utilizing the murine oviduct in the field of reproduction, fertility, cancer, and immunology.


Assuntos
Tubas Uterinas , Microdissecção , Animais , Separação Celular , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Oviductos
7.
Transl Oncol ; 14(11): 101195, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34375938

RESUMO

Previous work has shown systemic knockdown of the long form prolactin receptor (LFPRLR) in vivo markedly reduced metastasis in mouse models of breast cancer, but whether this translated to prolonged survival was unknown. Here we show that LFPRLR knockdown in the highly metastatic, immunocompetent 4T1 model prolonged survival and reduced recruitment of T regulatory cells (Tregs) to the tumor through effects on the production of CCL17. For the Tregs still recruited to the primary tumor, LFPRLR knockdown both directly and indirectly reduced their ability to promote tumor parenchymal epithelial to mesenchymal transition. Importantly, effects of prolactin on expression of mesenchymal genes by the tumor parenchyma were very different in the absence and presence of Tregs. While systemic knockdown of the LFPRLR downregulated transcripts important for immune synapse function in the remaining tumor Tregs, splenic Tregs seemed unaffected by LFPRLR knockdown, as demonstrated by their continued ability to suppress anti-CD3/CD28-stimulated effector cell proliferation at 1-5 months. These results demonstrate that knockdown of the LFPRLR achieves intra-tumor immunotherapeutic effects and suggest this occurs with reduced likelihood of peripheral inflammatory/autoimmune sequelae.

8.
Front Endocrinol (Lausanne) ; 12: 582614, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122327

RESUMO

We have used the four core genotypes (FCG) mouse model, which allows a distinction between effects of gonadal secretions and chromosomal complement, to determine when sex differences in the immune system first appear and what influences their development. Using splenic T cell number as a measure that could be applied to neonates with as yet immature immune responses, we found no differences among the four genotypes at postnatal day 1, but by day 7, clear sex differences were observed. These sex differences were unexpectedly independent of chromosomal complement and similar in degree to gonadectomized FCG adults: both neonatal and gonadectomized adult females (XX and XY) showed 2-fold the number of CD4+ and 7-fold the number of CD8+ T cells versus their male (XX and XY) counterparts. Appearance of this long-lived sex difference between days 1 and 7 suggested a role for the male-specific perinatal surge of testicular testosterone. Interference with the testosterone surge significantly de-masculinized the male CD4+, but not CD8+ splenic profile. Treatment of neonates demonstrated elevated testosterone limited mature cell egress from the thymus, whereas estradiol reduced splenic T cell seeding in females. Neonatal male splenic epithelium/stroma expressed aromatase mRNA, suggesting capacity for splenic conversion of perinatal testosterone into estradiol in males, which, similar to administration of estradiol in females, would result in reduced splenic T cell seeding. These sex steroid effects affected both CD4+ and CD8+ cells and yet interference with the testosterone surge only significantly de-masculinized the splenic content of CD4+ cells. For CD8+ cells, male cells in the thymus were also found to express one third the density of sphingosine-1-phosphate thymic egress receptors per cell compared to female, a male characteristic most likely an indirect result of Sry expression. Interestingly, the data also support a previously unrecognized role for non-gonadal estradiol in the promotion of intra-thymic cell proliferation in neonates of both sexes. Microarray analysis suggested the thymic epithelium/stroma as the source of this hormone. We conclude that some immune sex differences appear long before puberty and more than one mechanism contributes to differential numbers and distribution of T cells.


Assuntos
Transtornos do Desenvolvimento Sexual/imunologia , Fenômenos do Sistema Imunitário/genética , Sistema Imunitário/fisiologia , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/patologia , Feminino , Estudos de Associação Genética , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Caracteres Sexuais , Proteína da Região Y Determinante do Sexo/genética , Maturidade Sexual/genética , Maturidade Sexual/imunologia
9.
J Cancer Sci Clin Ther ; 4(4): 442-456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33179012

RESUMO

Calcitriol has been shown to have multiple anti-prostate cancer effects both in vitro and in xenograft models, and associations between low levels of calcitriol and more aggressive forms of prostate cancer have been observed clinically. However, the concentrations of calcitriol required to have a substantive anti-cancer effect in vivo are toxic. In previous work, we had observed that the selective prolactin receptor modulator, S179D PRL, sensitized prostate cancer cells in vitro to physiological concentrations of calcitriol through an ability to increase expression of the vitamin D receptor. Here, we have investigated whether administration of S179D PRL would likewise sensitize androgen-insensitive human PC3 xenografts in vivo and do so without inducing tissue damage akin to hypervitaminosis D. Using low concentrations of both S179D PRL (250 ng/h) and calcitriol (up to 220 pg/h), we found no effect of each alone or in combination on the growth rate of tumors. However, there was increased central tumor death with their combination that was more than additive at 250 ng S179D PRL and 220 pg calcitriol per hour. Both S179D PRL and calcitriol alone were antiangiogenic, but their antiangiogenic effects were not additive. Also, both S179D PRL and calcitriol alone increased the number of apoptotic cells in tumor sections, but their combination reduced the number, suggesting more effective clearance of apoptotic cells. Histopathology of the livers and kidneys showed no changes consistent with hypervitaminosis D. We conclude that dual therapy holds promise as a means to harness the anti-tumor effects of well-tolerated doses of calcitriol.

10.
Oncotarget ; 9(50): 29431-29444, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30034628

RESUMO

Matrix metalloproteinases (MMPs) are considered excellent targets for cancer therapy because of their important roles in multiple aspects of tumor growth and metastatic spread. However, not all MMPs, or even all activities of specific MMPs, promote cancer. Therefore, there is a need for highly specific inhibitors. Monoclonal antibodies provide the potential for the degree of specificity required, but the isolation of antibodies able to inhibit a specific protease with high selectivity is challenging. Proteolysis specificity lies in recognition of the substrate in or around the active site, which generally forms a concave cleft inaccessible by human IgGs. Inspired by camelid antibodies, which have convex paratopes, we have produced a recombinant human IgG, designated 3A2, which binds in the substrate cleft of MMP-14, inhibiting its activity, but not the activity of highly homologous MMPs. In the 4T1 highly metastatic, syngeneic, orthotopic model of breast cancer, IgG 3A2 markedly inhibited growth of the primary tumor, but more importantly reduced metastatic spread to the lungs and liver by 94%. Stem cells in the tumor population expressed twice as much MMP-14 mRNA as bulk tumor cells. In addition to reducing dissemination of tumor stem cells, as would be expected from inhibition of MMP-14's ability to degrade components of the extracellular matrix, IgG 3A2 also inhibited the ability of individual stem cells to proliferate and produce colonies. We conclude that it is possible to produce antibodies with sufficient specificity for development as therapeutics and that IgG 3A2 has therapeutic potential.

11.
Oncotarget ; 8(22): 36368-36382, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28422740

RESUMO

Prolactin promotes a variety of cancers by an array of different mechanisms. Here, we have investigated prolactin's inhibitory effect on expression of the cell cycle-regulating protein, p21. Using a miRNA array, we identified a number of miRNAs upregulated by prolactin treatment, but one in particular that was strongly induced by prolactin and predicted to bind to the 3'UTR of p21 mRNA, miR-106b. By creating a p21 mRNA 3'UTR-luciferase mRNA construct, we demonstrated degradation of the construct in response to prolactin in human breast, prostate and ovarian cancer cell lines. Increased expression of miR-106b replicated, and anti-miR-106b counteracted, the effects of prolactin on degradation of the 3'UTR construct, p21 mRNA levels, and cell proliferation in breast (T47D) and prostate (PC3) cancer cells. Increased expression of miR-106b also stimulated migration of the very epithelioid T47D cell line. By contrast, anti-miR-106b dramatically decreased expression of the mesenchymal markers, SNAIL-2, TWIST-2, VIMENTIN, and FIBRONECTIN. Using signaling pathway inhibitors and the 3'UTR construct, induction of miR-106b by prolactin was determined to be mediated through the MAPK/ERK and PI3K/Akt pathways and not through Jak2/Stat5 in both T47D and PC3 cells. Prolactin activation of MAPK/ERK and PI3K/Akt also activates ERα in the absence of an ERα ligand. 17ß-estradiol promoted degradation of the construct in both cell lines and pre-incubation in the estrogen antagonist, Fulvestrant, blocked the ability of both prolactin and 17ß-estradiol to induce the construct-degrading activity. Together, these data support a convergence of the prolactin and 17ß-estradiol miR-106b-elevating signaling pathways at ERα.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Estradiol/metabolismo , MicroRNAs/genética , Prolactina/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Genes Reporter , Humanos , Masculino , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Interferência de RNA , Receptores de Estrogênio/metabolismo , Transdução de Sinais
12.
J Mammary Gland Biol Neoplasia ; 22(1): 13-26, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27900586

RESUMO

Immune cells in the mammary gland play a number of important roles, including protection against infection during lactation and, after passing into milk, modulation of offspring immunity. However, little is known about the mechanism of recruitment of immune cells to the lactating gland in the absence of infection. Given the importance of prolactin to other aspects of lactation, we hypothesized it would also play a role in immune cell recruitment. Prolactin treatment of adult female mice for a period equivalent to pregnancy and the first week of lactation increased immune cell flux through the mammary gland, as reflected in the number of immune cells in mammary gland-draining, but not other lymph nodes. Conditioned medium from luminal mammary epithelial HC11 cell cultures was chemo-attractive to CD4+ and CD8+ T cells, CD4+ and CD8+ memory T cells, B cells, macrophages, monocytes, eosinophils, and neutrophils. Prolactin did not act as a direct chemo-attractant, but through effects on luminal mammary epithelial cells, increased the chemo-attractant properties of conditioned medium. Macrophages and neutrophils constitute the largest proportion of cells in milk from healthy glands. Depletion of CCL2 and CXCL1 from conditioned medium reduced chemo-attraction of monocytes and neutrophils, and prolactin increased expression of these two chemokines in mammary epithelial cells. We conclude that prolactin is an important player in the recruitment of immune cells to the mammary gland both through its activities to increase epithelial cell number as well as production of chemo-attractants on a per cell basis.


Assuntos
Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Imunidade/efeitos dos fármacos , Imunidade/imunologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/imunologia , Prolactina/farmacologia , Animais , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Lactação/efeitos dos fármacos , Lactação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Leite/efeitos dos fármacos , Leite/imunologia , Gravidez
13.
Cancer Lett ; 375(2): 293-302, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26970274

RESUMO

Even though mutations in the tumor suppressor, BRCA1, markedly increase the risk of breast and ovarian cancer, most breast and ovarian cancers express wild type BRCA1. An important question is therefore how the tumor-suppressive function of normal BRCA1 is overcome during development of most cancers. Because prolactin promotes these and other cancers, we investigated the hypothesis that prolactin interferes with the ability of BRCA1 to inhibit the cell cycle. Examining six different cancer cell lines with wild type BRCA1, and making use of both prolactin and the growth-inhibiting selective prolactin receptor modulator, S179D PRL, we demonstrate that prolactin activation of Stat5 results in the formation of a complex between phospho-Stat5 and BRCA1. Formation of this complex does not interfere with nuclear translocation or binding of BRCA1 to the p21 promoter, but does interfere with the ability of BRCA1 to transactivate the p21 promoter. Overexpression of a dominant-negative Stat5 in prolactin-stimulated cells resulted in increased p21 expression. We conclude that prolactin inhibits a major tumor-suppressive function of BRCA1 by interfering with BRCA1's upregulation of expression of the cell cycle inhibitor, p21.


Assuntos
Proteína BRCA1/biossíntese , Neoplasias da Mama/genética , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Prolactina/administração & dosagem , Fator de Transcrição STAT5/biossíntese , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , Células MCF-7 , Prolactina/antagonistas & inibidores , Regiões Promotoras Genéticas , Ligação Proteica , Receptores da Prolactina/genética , Fator de Transcrição STAT5/genética
14.
Cancer Lett ; 366(1): 84-92, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26095602

RESUMO

Controversy exists concerning the role of the long prolactin receptor (PRLR) in the progression of breast cancer. By targeting pre-mRNA splicing, we succeeded in knocking down only the long PRLR in vivo, leaving the short forms unaffected. Using two orthotopic and highly-metastatic models of breast cancer, one of which was syngeneic (mouse 4T1) to allow assessment of tumor-immune interactions and one of which was endocrinologically humanized (human BT-474) to activate human PRLRs, we examined the effect of long PRLR knockdown on disease progression. In both models, knockdown dramatically inhibited metastatic spread to the lungs and liver and resulted in increased central death in the primary tumor. In the syngeneic model, immune infiltrates in metastatic sites were changed from innate inflammatory cells to lymphocytes, with an increase in the incidence of tumor-specific cytotoxic T cells. Long PRLR knockdown in three-dimensional culture induced apoptosis of tumor-initiating/cancer stem cells (death of 95% of cells displaying stem cell markers in 15 days). We conclude that the long PRLR plays an important role in breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Receptores da Prolactina/fisiologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica/prevenção & controle , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/fisiologia , Receptores da Prolactina/antagonistas & inibidores
15.
ASN Neuro ; 7(1)2015.
Artigo em Inglês | MEDLINE | ID: mdl-25732707

RESUMO

Glioblastoma multiforme is an extremely aggressive and invasive form of central nervous system tumor commonly treated with the chemotherapeutic drug Temozolomide. Unfortunately, even with treatment, the median survival time is less than 12 months. 2,9-Di-sec-butyl-1,10-phenanthroline (SBP), a phenanthroline-based ligand originally developed to deliver gold-based anticancer drugs, has recently been shown to have significant antitumor activity in its own right. SBP is hypothesized to initiate tumor cell death via interaction with non-DNA targets, and considering most glioblastoma drugs kill tumors through DNA damage processes, SBP was tested as a potential novel drug candidate against glial-based tumors. In vitro studies demonstrated that SBP significantly inhibited the growth of rodent GL-26 and C6 glioma cells, as well as human U-87, and SW1088 glioblastomas/astrocytomas. Furthermore, using a syngeneic glioma model in mice, in vivo administration of SBP significantly reduced tumor volume and increased survival time. There was no significant toxicity toward nontumorigenic primary murine and human astrocytes in vitro, and limited toxicity was observed in ex vivo tissues obtained from noncancerous mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining and recovery assays suggest that SBP induces apoptosis in gliomas. This exploratory study suggests SBP is effective in slowing the growth of tumorigenic cells in the brain while exhibiting limited toxicity to normal cells and tissues and should therefore be further investigated for its potential in glioblastoma treatment.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Fenantrolinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Fenantrolinas/química , Temozolomida , Fatores de Tempo
16.
Cancer Lett ; 358(2): 152-160, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25527452

RESUMO

A comprehensive understanding of prolactin's (PRL's) role in breast cancer is complicated by disparate roles for alternatively-spliced PRL receptors (PRLR) and crosstalk between PRL and estrogen signaling. Among PRLRs, the short form 1b (SF1b) inhibits PRL-stimulated cell proliferation. In addition to ligand-dependent PRLRs, constitutively-active varieties, missing the S2 region of the extracellular domain (ΔS2), naturally occur. Expression analysis of the ΔS2 version of SF1b (ΔS2SF1b) showed higher expression in histologically-normal contiguous tissue versus invasive ductal carcinoma. To determine the function of ΔS2SF1b, a T47D breast cancer line with inducible expression was produced. Induction of ΔS2SF1b blocked estrogen-stimulated cell proliferation. Unlike intact SF1b, induction of ΔS2SF1b had no effect on PRL-mediated activation of Stat5a. However induction inhibited estrogen's stimulatory effects on serine-118 phosphorylation of estrogen receptor α, serine-473 phosphorylation of Akt, serine-9 phosphorylation of GSK3ß, and c-myc expression. In addition, induction of ΔS2SF1b increased expression of the cell cycle-inhibiting protein, p21. Thus, increased expression of ΔS2SF1b, such as we demonstrate occurs with the selective PRLR modulator, S179D PRL, would create a physiological state in which estrogen-stimulated proliferation was inhibited, but differentiative responses to PRL were maintained.


Assuntos
Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patologia , Estrogênios/metabolismo , Receptores da Prolactina/metabolismo , Carcinoma Ductal de Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Estradiol/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores da Prolactina/química , Receptores da Prolactina/genética
17.
Chin Med J (Engl) ; 127(6): 1077-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24622438

RESUMO

BACKGROUND: Prolactin (PRL) is a pituitary polypeptide hormone characterized by multiple biological actions including stimulation of growth in the prostate and formation of secretory alveoli and stimulation of milk protein gene expression in the mammary gland. PRL exerts its effect by dimerizing its receptor (PRLR) on the plasma membrane and regulating gene expression through the JAK-Stat signal pathway. We have previously described a natural variant of the PRLR in which the S2 subdomain of the extracellular domain is missing (Delta S2). Delta S2 PRLRs are dimerized in the absence of PRL and have constitutive activity in the promotion of breast cancer cell growth. Enhancer of zeste homolog 2 (EZH2), as one of the histone-modifying enzymes, is a key factor regulating gene expression by epigenetic modification. We hypothesized that these constitutive activated Delta S2 PRLRs played a pathogenic role in breast cancer in part through alterations in the expression of EZH2 and the trimethylation of histone 3 on lysine 27 (H3K27Me3). METHODS: In order to verify the clinical significance and to establish the link between Delta S2 PRLR expression and epigenetic change, EZH2, H3K27Me3, and Delta S2 PRLR were detected in both normal and cancerous human breast tissues. Also, overexpression of Delta S2 PRLR in breast epithelial cells was achieved by infection with adenovirus carrying the cDNA. Western blotting and chromatin immunoprecipitation (ChIP assay) and acid histone extraction were applied to detect the expression of EZH2 and the trimethylation of histone 3, respectively. RESULTS: In breast tissue, higher EZH2 expression and higher H3K27Me3 were found associated with higher Delta S2 expression in breast cancer samples. In breast epithelial cells, overexpression of Delta S2 PRLR increased EZH2 methyltransferase mRNA and protein, induced EZH2 methyltransferase recruitment to chromatin, increased the trimethylation of H3K27Me3, and decreased the expression of p53 gene. CONCLUSIONS: Delta S2 PRLR plays an important pathogenic role in breast cancer through epigenetic modification. Elevated expression of Delta S2 PRLR, achieved by alternate splicing of the pre-mRNA of the full-length form, is a new mechanism contributing to human breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Histonas/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Receptores da Prolactina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7
18.
Cancer Lett ; 346(1): 148-57, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24384092

RESUMO

We have identified a new variant of human Stat5a, found at higher ratios to full-length Stat5a in invasive ductal carcinoma versus contiguous normal tissue. The variant, missing exon 5, inhibits p21 and Bax production and increases cell number. After prolactin stimulation, only full-length Stat5a interacts with the vitamin D and retinoid X receptors, whereas only Δ5 Stat5a interacts with activating protein 1-2 and specificity protein 1. Prolactin also oppositely regulates interaction of the two Stat5a forms with ß-catenin. We propose that a change in splicing leading to upregulation of this new isoform is a pathogenic aspect of invasive ductal carcinoma.


Assuntos
Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Fator de Transcrição STAT5/genética , Proteínas Supressoras de Tumor/genética , Sequência de Bases , Western Blotting , Neoplasias da Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
19.
Int J Nanomedicine ; 8: 1609-20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637530

RESUMO

Near-infrared nanoconstructs present a potentially effective platform for site-specific and deep tissue optical imaging and phototherapy. We have engineered a polymeric nanocapsule composed of polyallylamine hydrochloride (PAH) chains cross-linked with sodium phosphate and doped with indocyanine green (ICG) toward such endeavors. The ICG-doped nanocapsules were coated covalently with polyethylene glycol (5000 daltons) through reductive amination. We administrated the constructs by tail vein injection to healthy mice. To characterize the biodistribution of the constructs, we performed in vivo quantitative fluorescence imaging and subsequently analyzed the various extracted organs. Our results suggest that encapsulation of ICG in these PEGylated constructs is an effective approach to prolong the circulation time of ICG and delay its hepatic accumulation. Increased bioavailability of ICG, due to encapsulation, offers the potential of extending the clinical applications of ICG, which are currently limited due to rapid elimination of ICG from the vasculature. Our results also indicate that PAH and ICG-doped nanocapsules (ICG-NCs) are not cytotoxic at the levels used in this study.


Assuntos
Verde de Indocianina/farmacocinética , Nanocápsulas/química , Polietilenoglicóis/química , Imagem Corporal Total/métodos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Verde de Indocianina/administração & dosagem , Verde de Indocianina/química , Camundongos , Nanocápsulas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Distribuição Tecidual
20.
Cell Tissue Res ; 346(2): 175-89, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22081226

RESUMO

Despite the important role of prolactin (PRL) in mammary gland development and function, little is known about the distribution of the different forms of the prolactin receptor (PRLR) under various physiological circumstances. Here, the distribution of the long (LF) and the short (S3 in mouse) receptor common to both mice and rats was determined by immunofluorescence on frozen sections of virgin, pregnant and lactating mouse mammary gland. Myoepithelial cells were consistently and intensely stained for both receptors. For luminal cells at all stages (ducts and alveoli), a large proportion of PRLR staining was unexpectedly present on the apical face. In the non-lactating state, no basal staining of luminal cells was detectable. During lactation, a proportion of both receptors moved to the basolateral surface. In vitro, HC11 cells showed constitutive expression of LF but expression of S3 only upon the formation of adherent junctions. Tight junction formation was accelerated by incubation in pseudo-phosphorylated PRL, as measured by transepithelial resistance and the expression and placement of the tight junction protein, zonula occludens-1. Once an intact monolayer had formed, all LF and S3 receptors were apical (akin to the non-lactating state) and only apical application of PRL activated the Jak2-STAT5 and ERK pathways. By contrast, basolateral application of PRL resulted in a reduction in basal ERK phosphorylation, suggesting an involvement of a dual specificity protein phosphatase. Normal human breast samples also showed apical PRLRs. These results demonstrate important contextual aspects of PRL-PRLR interactions with implications for the analysis of the role of PRL in breast cancer.


Assuntos
Técnicas de Cultura de Células/métodos , Polaridade Celular , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Transdução de Sinais , Animais , Western Blotting , Proliferação de Células , Feminino , Humanos , Soros Imunes/imunologia , Imuno-Histoquímica , Lactação , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Gravidez , Isoformas de Proteínas/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA