Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36756948

RESUMO

Methylation is a widely occurring modification that requires the methyl donor S-adenosylmethionine (SAM) and acts in regulation of gene expression and other processes. SAM is synthesized from methionine, which is imported or generated through the 1-carbon cycle (1 CC). Alterations in 1 CC function have clear effects on lifespan and stress responses, but the wide distribution of this modification has made identification of specific mechanistic links difficult. Exploiting a dynamic stress-induced transcription model, we find that two SAM synthases in Caenorhabditis elegans, SAMS-1 and SAMS-4, contribute differently to modification of H3K4me3, gene expression and survival. We find that sams-4 enhances H3K4me3 in heat shocked animals lacking sams-1, however, sams-1 cannot compensate for sams-4, which is required to survive heat stress. This suggests that the regulatory functions of SAM depend on its enzymatic source and that provisioning of SAM may be an important regulatory step linking 1 CC function to phenotypes in aging and stress.


Assuntos
Histonas , S-Adenosilmetionina , Animais , S-Adenosilmetionina/metabolismo , Histonas/metabolismo , Caenorhabditis elegans/fisiologia , Resposta ao Choque Térmico , Expressão Gênica
2.
PLoS Genet ; 14(11): e1007812, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30485261

RESUMO

S-adenosylmethionine (SAM) is a donor which provides the methyl groups for histone or nucleic acid modification and phosphatidylcholine production. SAM is hypothesized to link metabolism and chromatin modification, however, its role in acute gene regulation is poorly understood. We recently found that Caenorhabditis elegans with reduced SAM had deficiencies in H3K4 trimethylation (H3K4me3) at pathogen-response genes, decreasing their expression and limiting pathogen resistance. We hypothesized that SAM may be generally required for stress-responsive transcription. Here, using genetic assays, we show that transcriptional responses to bacterial or xenotoxic stress fail in C. elegans with low SAM, but that expression of heat shock genes are unaffected. We also found that two H3K4 methyltransferases, set-2/SET1 and set-16/MLL, had differential responses to survival during stress. set-2/SET1 is specifically required in bacterial responses, whereas set-16/MLL is universally required. These results define a role for SAM in the acute stress-responsive gene expression. Finally, we find that modification of metabolic gene expression correlates with enhanced survival during stress.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , S-Adenosilmetionina/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes de Helmintos , Resposta ao Choque Térmico/genética , Código das Histonas/genética , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pseudomonas aeruginosa/patogenicidade , Interferência de RNA , Estresse Fisiológico
3.
Dev Cell ; 38(1): 8-9, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27404353

RESUMO

In this issue of Developmental Cell, Chaudhari and colleagues (2016) use a novel method to create an in vitro proliferative cell line from tumorous C. elegans germ cells, and in the process discover that bacterial folates act as signals for proliferation, independent of their roles as vitamins.


Assuntos
Caenorhabditis elegans/crescimento & desenvolvimento , Proliferação de Células , Ácido Fólico/metabolismo , Células Germinativas/citologia , Animais , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo
4.
Cell Rep ; 16(1): 9-18, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27320911

RESUMO

Lipogenesis requires coordinated expression of genes for fatty acid, phospholipid, and triglyceride synthesis. Transcription factors, such as SREBP-1 (Sterol regulatory element binding protein), may be activated in response to feedback mechanisms linking gene activation to levels of metabolites in the pathways. SREBPs can be regulated in response to membrane cholesterol and we also found that low levels of phosphatidylcholine (a methylated phospholipid) led to SBP-1/SREBP-1 maturation in C. elegans or mammalian models. To identify additional regulatory components, we performed a targeted RNAi screen in C. elegans, finding that both lpin-1/Lipin 1 (which converts phosphatidic acid to diacylglycerol) and arf-1.2/ARF1 (a GTPase regulating Golgi function) were important for low-PC activation of SBP-1/SREBP-1. Mechanistically linking the major hits of our screen, we find that limiting PC synthesis or LPIN1 knockdown in mammalian cells reduces the levels of active GTP-bound ARF1. Thus, changes in distinct lipid ratios may converge on ARF1 to increase SBP-1/SREBP-1 activity.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Colesterol/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Diglicerídeos/metabolismo , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Membranas Intracelulares/metabolismo , Microssomos/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfatidilcolinas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
5.
Cell Metab ; 22(4): 633-45, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26321661

RESUMO

s-adenosylmethionine (SAM) is the sole methyl donor modifying histones, nucleic acids, and phospholipids. Its fluctuation affects hepatic phosphatidylcholine (PC) synthesis or may be linked to variations in DNA or histone methylation. Physiologically, low SAM is associated with lipid accumulation, tissue injury, and immune responses in fatty liver disease. However, molecular connections among SAM limitation, methyltransferases, and disease-associated phenotypes are unclear. We find that low SAM can activate or attenuate Caenorhabditis elegans immune responses. Immune pathways are stimulated downstream of PC production on a non-pathogenic diet. In contrast, distinct SAM-dependent mechanisms limit survival on pathogenic Pseudomonas aeruginosa. C. elegans undertakes a broad transcriptional response to pathogens and we find that low SAM restricts H3K4me3 at Pseudomonas-responsive promoters, limiting their expression. Furthermore, this response depends on the H3K4 methyltransferase set-16/MLL. Thus, our studies provide molecular links between SAM and innate immune functions and suggest that SAM depletion may limit stress-induced gene expression.


Assuntos
Imunidade Inata , S-Adenosilmetionina/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Fígado/metabolismo , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilcolinas/metabolismo , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/fisiologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Cell ; 147(4): 840-52, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22035958

RESUMO

Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Humanos , Lipogênese , Camundongos , Modelos Animais , Fosfatidilcolinas/biossíntese , Interferência de RNA , S-Adenosilmetionina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA