Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Gynaecol Obstet ; 163(2): 697-699, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548272

RESUMO

Blastomycosis dermatitidis is a rare fungus known for is classic mimicry of pneumonia, lung cancer, and mycobacterial infections. Whilst it is known best for affecting those in the Ohio and Mississippi River basins, several cases have erupted in the Midwest region. Few case reports have focused on blastomycosis and its sequalae in pregnancy. We present a case series of blastomycosis diagnosed during the second and third trimesters in two women amidst the COVID-19 pandemic. Given immunosuppression, complications and treatment can be challenging for clinicians. This case series and discussion hopes to provide future clinicians with the presentation, diagnosis, management, and treatment of this uncommon infection.


Assuntos
Blastomicose , COVID-19 , Gravidez , Humanos , Feminino , Blastomicose/diagnóstico , Blastomicose/epidemiologia , Blastomicose/microbiologia , Blastomyces , Pandemias , COVID-19/diagnóstico , Diagnóstico Diferencial
2.
Nature ; 616(7956): 348-356, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020026

RESUMO

Natural killer (NK) cell kill infected, transformed and stressed cells when an activating NK cell receptor is triggered1. Most NK cells and some innate lymphoid cells express the activating receptor NKp46, encoded by NCR1, the most evolutionarily ancient NK cell receptor2,3. Blockage of NKp46 inhibits NK killing of many cancer targets4. Although a few infectious NKp46 ligands have been identified, the endogenous NKp46 cell surface ligand is unknown. Here we show that NKp46 recognizes externalized calreticulin (ecto-CRT), which translocates from the endoplasmic reticulum (ER) to the cell membrane during ER stress. ER stress and ecto-CRT are hallmarks of chemotherapy-induced immunogenic cell death5,6, flavivirus infection and senescence. NKp46 recognition of the P domain of ecto-CRT triggers NK cell signalling and NKp46 caps with ecto-CRT in NK immune synapses. NKp46-mediated killing is inhibited by knockout or knockdown of CALR, the gene encoding CRT, or CRT antibodies, and is enhanced by ectopic expression of glycosylphosphatidylinositol-anchored CRT. NCR1)-deficient human (and Nrc1-deficient mouse) NK cells are impaired in the killing of ZIKV-infected, ER-stressed and senescent cells and ecto-CRT-expressing cancer cells. Importantly, NKp46 recognition of ecto-CRT controls mouse B16 melanoma and RAS-driven lung cancers and enhances tumour-infiltrating NK cell degranulation and cytokine secretion. Thus, NKp46 recognition of ecto-CRT as a danger-associated molecular pattern eliminates ER-stressed cells.


Assuntos
Calreticulina , Estresse do Retículo Endoplasmático , Células Matadoras Naturais , Receptor 1 Desencadeador da Citotoxicidade Natural , Animais , Humanos , Camundongos , Alarminas/metabolismo , Calreticulina/imunologia , Calreticulina/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Imunidade Inata , Sinapses Imunológicas , Células Matadoras Naturais/metabolismo , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Zika virus/fisiologia
3.
FEBS Lett ; 597(8): 1055-1072, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36892429

RESUMO

The cAMP-dependent protein kinase A (PKA) is the archetypical eukaryotic kinase. The catalytic subunit (PKA-C) structure is highly conserved among the AGC-kinase family. PKA-C is a bilobal enzyme with a dynamic N-lobe, harbouring the Adenosine-5'-triphosphate (ATP) binding site and a more rigid helical C-lobe. The substrate-binding groove resides at the interface of the two lobes. A distinct feature of PKA-C is the positive binding cooperativity between nucleotide and substrate. Several PKA-C mutations lead to the development of adenocarcinomas, myxomas, and other rare forms of liver tumours. Nuclear magnetic resonance (NMR) spectroscopy shows that these mutations disrupt the allosteric communication between the two lobes, causing a drastic decrease in binding cooperativity. The loss of cooperativity correlates with changes in substrate fidelity and reduced kinase affinity for the endogenous protein kinase inhibitor (PKI). The similarity between PKI and the inhibitory sequence of the kinase regulatory subunits suggests that the overall mechanism of regulation of the kinase may be disrupted. We surmise that a reduced or obliterated cooperativity may constitute a common trait for both orthosteric and allosteric mutations of PKA-C that may lead to dysregulation and disease.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Nucleotídeos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espectroscopia de Ressonância Magnética , Sítios de Ligação , Domínio Catalítico , Trifosfato de Adenosina/química , Regulação Alostérica
4.
J Mol Biol ; 433(18): 167123, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34224748

RESUMO

Somatic mutations in the PRKACA gene encoding the catalytic α subunit of protein kinase A (PKA-C) are responsible for cortisol-producing adrenocortical adenomas. These benign neoplasms contribute to the development of Cushing's syndrome. The majority of these mutations occur at the interface between the two lobes of PKA-C and interfere with the enzyme's ability to recognize substrates and regulatory (R) subunits, leading to aberrant phosphorylation patterns and activation. Rarely, patients with similar phenotypes carry an allosteric mutation, E31V, located at the C-terminal end of the αA-helix and adjacent to the αC-helix, but structurally distinct from the PKA-C/R subunit interface mutations. Using a combination of solution NMR, thermodynamics, kinetic assays, and molecular dynamics simulations, we show that the E31V allosteric mutation disrupts central communication nodes between the N- and C- lobes of the enzyme as well as nucleotide-substrate binding cooperativity, a hallmark for kinases' substrate fidelity and regulation. For both orthosteric (L205R and W196R) and allosteric (E31V) Cushing's syndrome mutants, the loss of binding cooperativity is proportional to the density of the intramolecular allosteric network. This structure-activity relationship suggests a possible common mechanism for Cushing's syndrome driving mutations in which decreased nucleotide/substrate binding cooperativity is linked to loss in substrate fidelity and dysfunctional regulation.


Assuntos
Síndrome de Cushing/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mutação , Nucleotídeos/metabolismo , Regulação Alostérica , Domínio Catalítico , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Nucleotídeos/química , Nucleotídeos/genética , Fenótipo , Fosforilação , Conformação Proteica , Especificidade por Substrato
6.
Commun Biol ; 4(1): 321, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692454

RESUMO

An aberrant fusion of the DNAJB1 and PRKACA genes generates a chimeric protein kinase (PKA-CDNAJB1) in which the J-domain of the heat shock protein 40 is fused to the catalytic α subunit of cAMP-dependent protein kinase A (PKA-C). Deceivingly, this chimeric construct appears to be fully functional, as it phosphorylates canonical substrates, forms holoenzymes, responds to cAMP activation, and recognizes the endogenous inhibitor PKI. Nonetheless, PKA-CDNAJB1 has been recognized as the primary driver of fibrolamellar hepatocellular carcinoma and is implicated in other neoplasms for which the molecular mechanisms remain elusive. Here we determined the chimera's allosteric response to nucleotide and pseudo-substrate binding. We found that the fusion of the dynamic J-domain to PKA-C disrupts the internal allosteric network, causing dramatic attenuation of the nucleotide/PKI binding cooperativity. Our findings suggest that the reduced allosteric cooperativity exhibited by PKA-CDNAJB1 alters specific recognitions and interactions between substrates and regulatory partners contributing to dysregulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Fragmentos de Peptídeos/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Ligantes , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/genética , Fosforilação , Ligação Proteica , Proteínas Recombinantes de Fusão/metabolismo
7.
Sci Adv ; 5(8): eaaw9298, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31489371

RESUMO

Genetic alterations in the PRKACA gene coding for the catalytic α subunit of the cAMP-dependent protein kinase A (PKA-C) are linked to cortisol-secreting adrenocortical adenomas, resulting in Cushing's syndrome. Among those, a single mutation (L205R) has been found in up to 67% of patients. Because the x-ray structures of the wild-type and mutant kinases are essentially identical, the mechanism explaining aberrant function of this mutant remains under active debate. Using NMR spectroscopy, thermodynamics, kinetic assays, and molecular dynamics simulations, we found that this single mutation causes global changes in the enzyme, disrupting the intramolecular allosteric network and eliciting losses in nucleotide/pseudo-substrate binding cooperativity. Remarkably, by rewiring its internal allosteric network, PKA-CL205R is able to bind and phosphorylate non-canonical substrates, explaining its changes in substrate specificity. Both the lack of regulation and change in substrate specificity reveal the complex role of this mutated kinase in the formation of cortisol-secreting adrenocortical adenomas.


Assuntos
Regulação Alostérica/genética , Síndrome de Cushing/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Mutação/genética , Adenoma Adrenocortical/genética , Domínio Catalítico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Humanos , Hidrocortisona/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA