Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Total Environ ; 930: 172840, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38685432

RESUMO

Exposure to per- and poly-fluoroalkyl substances (PFAS) is ubiquitous due to their persistence in the environment and in humans. Extreme weight loss has been shown to influence concentrations of circulating persistent organic pollutants (POPs). Using data from the multi-center perspective Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort, we investigated changes in plasma-PFAS in adolescents after bariatric surgery. Adolescents (Mean age = 17.1 years, SD = 1.5 years) undergoing bariatric surgery were enrolled in the Teen-LABS study. Plasma-PFAS were measured at the time of surgery and then 6-, 12-, and 36 months post-surgery. Linear mixed effect models were used to evaluate longitudinal changes in plasma-PFAS after the time of bariatric surgery. This study included 214 adolescents with severe obesity who had available longitudinal measures of plasma-PFAS and underwent bariatric surgery between 2007 and 2012. Underlying effects related to undergoing bariatric surgery were found to be associated with an initial increase or plateau in concentrations of circulating PFAS up to 6 months after surgery followed by a persistent decline in concentrations of 36 months (p < 0.001 for all plasma-PFAS). Bariatric surgery in adolescents was associated with a decline in circulating PFAS concentrations. Initially following bariatric surgery (0-6 months) concentrations were static followed by decline from 6 to 36 months following surgery. This may have large public health implications as PFAS are known to be associated with numerous metabolic related diseases and the significant reduction in circulating PFAS in individuals who have undergone bariatric surgery may be related to the improvement of such metabolic related diseases following bariatric surgery.


Assuntos
Cirurgia Bariátrica , Poluentes Ambientais , Humanos , Adolescente , Masculino , Feminino , Estudos Longitudinais , Poluentes Ambientais/sangue , Exposição Ambiental/estatística & dados numéricos , Fluorocarbonos/sangue , Obesidade Mórbida/cirurgia , Obesidade Mórbida/sangue
2.
Obesity (Silver Spring) ; 32(5): 1023-1032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515392

RESUMO

OBJECTIVE: Dichlorodiphenyldichloroethylene (DDE), an obesogen accumulating in adipose tissue, is released into circulation with weight loss, although its impact is underexplored among adolescents. We tested the association using an integrative translational approach of epidemiological analysis among adolescents with obesity and in vitro measures exploring the impact of DDE on adipogenesis via preadipocytes. METHODS: We included 63 participants from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) cohort. We assessed 4,4'-DDE in visceral adipose tissue at surgery and BMI and waist circumference at surgery and 0.5, 1, 3, and 5 years after. We conducted longitudinal analysis to estimate the interaction on weight loss between DDE and time since surgery. In vitro analysis quantified adipogenic differentiation in commercial human preadipocytes exposed to 4,4'-DDE via fluorescent staining and imaging. RESULTS: A dose-response relationship was observed, with the low-exposure group having a greater reduction in BMI during the first year compared to higher-exposure groups and showing smaller regains compared to higher-exposure groups after the first year. In vitro analysis of preadipocytes treated with 4,4'-DDE during adipogenic differentiation for 12 days showed a concentration-dependent increase in lipid accumulation. CONCLUSIONS: DDE could contribute to weight trajectory among adolescents undergoing bariatric surgery, potentially mediated via promoted adipogenesis in preadipocytes.


Assuntos
Adipogenia , Cirurgia Bariátrica , Índice de Massa Corporal , Diclorodifenil Dicloroetileno , Gordura Intra-Abdominal , Redução de Peso , Humanos , Adolescente , Masculino , Feminino , Gordura Intra-Abdominal/metabolismo , Estudos Longitudinais , Obesidade Infantil/metabolismo , Adipócitos/metabolismo , Estudos de Coortes , Circunferência da Cintura
3.
World J Gastroenterol ; 30(4): 332-345, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38313232

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in children and adolescents. NAFLD ranges in severity from isolated hepatic steatosis to nonalcoholic steatohepatitis (NASH), wherein hepatocellular inflammation and/or fibrosis coexist with steatosis. Circulating microRNA (miRNA) levels have been suggested to be altered in NAFLD, but the extent to which miRNA are related to NAFLD features remains unknown. This analysis tested the hypothesis that plasma miRNAs are significantly associated with histological features of NAFLD in adolescents. AIM: To investigate the relationship between plasma miRNA expression and NAFLD features among adolescents with NAFLD. METHODS: This study included 81 adolescents diagnosed with NAFLD and 54 adolescents without NAFLD from the Teen-Longitudinal Assessment of Bariatric Surgery study. Intra-operative core liver biopsies were collected from participants and used to characterize histological features of NAFLD. Plasma samples were collected during surgery for miRNA profiling. A total of 843 plasma miRNAs were profiled using the HTG EdgeSeq platform. We examined associations of plasma miRNAs and NAFLD features using logistic regression after adjusting for age, sex, race, and other key covariates. Ingenuity Pathways Analysis was used to identify biological functions of miRNAs that were associated with multiple histological features of NAFLD. RESULTS: We identified 16 upregulated plasma miRNAs, including miR-193a-5p and miR-193b-5p, and 22 downregulated plasma miRNAs, including miR-1282 and miR-6734-5p, in adolescents with NAFLD. Moreover, 52, 16, 15, and 9 plasma miRNAs were associated with NASH, fibrosis, ballooning degeneration, and lobular inflammation, respectively. Collectively, 16 miRNAs were associated with two or more histological features of NAFLD. Among those miRNAs, miR-411-5p was downregulated in NASH, ballooning, and fibrosis, while miR-122-5p, miR-1343-5p, miR-193a-5p, miR-193b-5p, and miR-7845-5p were consistently and positively associated with all histological features of NAFLD. Pathway analysis revealed that most common pathways of miRNAs associated with multiple NAFLD features have been associated with tumor progression, while we also identified linkages between miR-122-5p and hepatitis C virus and between miR-199b-5p and chronic hepatitis B. CONCLUSION: Plasma miRNAs were associated with NAFLD features in adolescent with severe obesity. Larger studies with more heterogeneous NAFLD phenotypes are needed to evaluate miRNAs as potential biomarkers of NAFLD.


Assuntos
MicroRNA Circulante , MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Criança , Adolescente , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/complicações , Fígado/patologia , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , MicroRNAs/metabolismo , Obesidade/complicações , Fibrose , Inflamação/patologia
4.
Paediatr Perinat Epidemiol ; 38(2): 102-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37967567

RESUMO

BACKGROUND: Systematically recorded smoking data are not always available in vital statistics records, and even when available it can underestimate true smoking rates. OBJECTIVE: To develop a prediction model for maternal tobacco smoking in late pregnancy based on birth certificate information using a combination of self- or provider-reported smoking and biomarkers (smoking metabolites) in neonatal blood spots as the alloyed gold standard. METHODS: We designed a case-control study where childhood cancer cases were identified from the California Cancer Registry and controls were from the California birth rolls between 1983 and 2011 who were cancer-free by the age of six. In this analysis, we included 894 control participants and performed high-resolution metabolomics analyses in their neonatal dried blood spots, where we extracted cotinine [mass-to-charge ratio (m/z) = 177.1023] and hydroxycotinine (m/z = 193.0973). Potential predictors of smoking were selected from California birth certificates. Logistic regression with stepwise backward selection was used to build a prediction model. Model performance was evaluated in a training sample, a bootstrapped sample, and an external validation sample. RESULTS: Out of seven predictor variables entered into the logistic model, five were selected by the stepwise procedure: maternal race/ethnicity, maternal education, child's birth year, parity, and child's birth weight. We calculated an overall discrimination accuracy of 0.72 and an area under the receiver operating characteristic curve (AUC) of 0.81 (95% confidence interval [CI] 0.77, 0.84) in the training set. Similar accuracies were achieved in the internal (AUC 0.81, 95% CI 0.77, 0.84) and external (AUC 0.69, 95% CI 0.64, 0.74) validation sets. CONCLUSIONS: This easy-to-apply model may benefit future birth registry-based studies when there is missing maternal smoking information; however, some smoking status misclassification remains a concern when only variables from the birth certificate are used to predict maternal smoking.


Assuntos
Declaração de Nascimento , Fumar , Criança , Feminino , Humanos , Recém-Nascido , Gravidez , California/epidemiologia , Estudos de Casos e Controles , Neoplasias , Fumar/epidemiologia , Fumar Tabaco , Modelos Estatísticos
5.
Environ Res ; 244: 117832, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056610

RESUMO

BACKGROUND: Persistent organic pollutants (POPs) are chemicals characterized by their environmental persistence. Evidence suggests that exposure to POPs, which is ubiquitous, is associated with microRNA (miRNA) dysregulation. miRNA are key regulators in many physiological processes. It is thus of public health concern to understand the relationships between POPs and miRNA as related to health outcomes. OBJECTIVES: This systematic review evaluated the relationship between widely recognized, intentionally manufactured, POPs, including per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides (dichlorodiphenyltrichloroethane [DDT], dichlorodiphenyldichloroethylene [DDE], hexachlorobenzene [HCB]), with miRNA expression in both human and animal studies. METHODS: We used PubMed and Embase to systematically search the literature up to September 29th, 2023. Search results for human and animal studies were included if they incorporated at least one POP of interest in relation to at least one miRNA. Data were synthesized to determine the direction and significance of associations between POPs and miRNA. We utilized ingenuity pathway analysis to review disease pathways for miRNA that were associated with POPs. RESULTS: Our search identified 38 eligible studies: 9 in humans and 29 in model organisms. PFAS were associated with decreased expression of miR-19, miR-193b, and miR-92b, as well as increased expression of miR-128, miR-199a-3p, and miR-26b across species. PCBs were associated with increased expression of miR-15a, miR-1537, miR-21, miR-22-3p, miR-223, miR-30b, and miR-34a, as well as decreased expression of miR-130a and let-7b in both humans and animals. Pathway analysis for POP-associated miRNA identified pathways related to carcinogenesis. DISCUSSION: This is the first systematic review of the association of POPs with miRNA in humans and model organisms. Large-scale prospective human studies are warranted to examine the role of miRNA as mediators between POPs and health outcomes.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Hidrocarbonetos Clorados , MicroRNAs , Praguicidas , Bifenilos Policlorados , Animais , Humanos , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Estudos Prospectivos , Hidrocarbonetos Clorados/toxicidade , Hidrocarbonetos Clorados/análise , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Praguicidas/toxicidade , Praguicidas/análise , Fluorocarbonos/toxicidade
6.
Environ Res ; 240(Pt 2): 117435, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866539

RESUMO

BACKGROUND: Neonatal per- and polyfluoroalkyl substance (PFAS) exposure can disrupt hormonal homeostasis and induce neuro- and immunotoxicity in children. In this exploratory study, we investigated associations between PFAS levels in neonatal dried blood spots and retinoblastoma risk. MATERIALS AND METHODS: This study included 501 retinoblastoma cases born from 1983 to 2011 and 899 controls frequency-matched by birth year (20:1 matching ratio), born to 755 US-born and 366 Mexico-born mothers in California. Perfluorooctanesulfonic acid (PFOS), perflurooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) feature intensities were identified from neonatal blood spots from California newborn Genetic Disease Screening Program. Using logistic regression, we assessed whether an interquartile range (IQR) increase of PFAS levels or having above-mean levels of PFAS in blood affects retinoblastoma risk overall or its subtypes (i.e., unilateral, bilateral). We assessed children of US-born and Mexico-born mothers, separately. RESULTS AND DISCUSSION: Among all children, above-mean PFOS levels at birth increased the odds of retinoblastoma overall by 29% (95% Confidence Interval (CI): 1.00, 1.67) and unilateral retinoblastoma by 42% (95% CI: 1.03, 1.97). For children of Mexico-born mothers, we estimated the highest odds of retinoblastoma overall (adjusted odds ratio (aOR): 1.67; 95% CI: 1.06, 2.66) and bilateral retinoblastoma (aOR: 2.06; 95% CI: 1.12, 3.92) with above-mean PFOS levels. Among children of US-born mothers, higher PFOS levels increased the odds of unilateral retinoblastoma by 15% (95% CI: 0.99, 1.35) for each IQR increase and by 71% among children with above-mean PFOS levels (95% CI: 1.04, 2.90). In addition, for children of US-born mothers, PFOA increased the odds of retinoblastoma overall (aOR: 1.41; 95% CI: 1.00, 2.02 for above-mean levels, aOR: 1.06; 95% CI: 0.98, 1.16 per IQR increase). PFNA was not associated with retinoblastoma risk. CONCLUSIONS: Our results suggested that PFOS and PFOA might contribute to retinoblastoma risk in children born in California.


Assuntos
Fluorocarbonos , Neoplasias da Retina , Retinoblastoma , Recém-Nascido , Criança , Humanos , Retinoblastoma/induzido quimicamente , Retinoblastoma/epidemiologia , Fluorocarbonos/toxicidade , Neoplasias da Retina/induzido quimicamente , Neoplasias da Retina/epidemiologia
7.
Environ Sci Technol ; 58(1): 258-268, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38149779

RESUMO

Dioxin(-like) exposures are linked to adverse health effects, including cancer. However, metabolic alterations induced by these chemicals remain largely unknown. Beyond known dioxin(-like) compounds, we leveraged a chemical-wide approach to assess chlorinated co-exposures and parent compound products [termed dioxin(-like)-related compounds] among 137 occupational workers. Endogenous metabolites were profiled by untargeted metabolomics, namely, reversed-phase chromatography with negative electrospray ionization (C18-negative) and hydrophilic interaction liquid chromatography with positive electrospray ionization (HILIC-positive). We performed a metabolome-wide association study to select dioxin(-like) associated metabolic features using a 20% false discovery rate threshold. Metabolic features were then characterized by pathway enrichment analyses. There are no significant features associated with polychlorinated dibenzo-p-dioxins (PCDDs), a subgroup of known dioxin(-like) compounds. However, 3,110 C18-negative and 2,894 HILIC-positive features were associated with at least one of the PCDD-related compounds. Abundant metabolic changes were also observed for polychlorinated dibenzofuran-related and polychlorinated biphenyl-related compounds. These metabolic features were primarily enriched in pathways of amino acids, lipid and fatty acids, carbohydrates, cofactors, and nucleotides. Our study highlights the potential of chemical-wide analysis for comprehensive exposure assessment beyond targeted chemicals. Coupled with advanced endogenous metabolomics, this approach allows for an in-depth exploration of metabolic alterations induced by environmental chemicals.


Assuntos
Dioxinas , Neoplasias , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Humanos , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Metaboloma
8.
Mol Neurodegener ; 18(1): 100, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38115046

RESUMO

BACKGROUND: Untargeted high-resolution metabolomic profiling provides simultaneous measurement of thousands of metabolites. Metabolic networks based on these data can help uncover disease-related perturbations across interconnected pathways. OBJECTIVE: Identify metabolic disturbances associated with Parkinson's disease (PD) in two population-based studies using untargeted metabolomics. METHODS: We performed a metabolome-wide association study (MWAS) of PD using serum-based untargeted metabolomics data derived from liquid chromatography with high-resolution mass spectrometry (LC-HRMS) using two distinct population-based case-control populations. We also combined our results with a previous publication of 34 metabolites linked to PD in a large-scale, untargeted MWAS to assess external validation. RESULTS: LC-HRMS detected 4,762 metabolites for analysis (HILIC: 2716 metabolites; C18: 2046 metabolites). We identified 296 features associated with PD at FDR<0.05, 134 having a log2 fold change (FC) beyond ±0.5 (228 beyond ±0.25). Of these, 104 were independently associated with PD in both discovery and replication studies at p<0.05 (170 at p<0.10), while 27 were associated with levodopa-equivalent dose among the PD patients. Intriguingly, among the externally validated features were the microbial-related metabolites, p-cresol glucuronide (FC=2.52, 95% CI=1.67, 3.81, FDR=7.8e-04) and p-cresol sulfate. P-cresol glucuronide was also associated with motor symptoms among patients. Additional externally validated metabolites associated with PD include phenylacetyl-L-glutamine, trigonelline, kynurenine, biliverdin, and pantothenic acid. Novel associations include the anti-inflammatory metabolite itaconate (FC=0.79, 95% CI=0.73, 0.86; FDR=2.17E-06) and cysteine-S-sulfate (FC=1.56, 95% CI=1.39, 1.75; FDR=3.43E-11). Seventeen pathways were enriched, including several related to amino acid and lipid metabolism. CONCLUSIONS: Our results revealed PD-associated metabolites, confirming several previous observations, including for p-cresol glucuronide, and newly implicating interesting metabolites, such as itaconate. Our data also suggests metabolic disturbances in amino acid and lipid metabolism and inflammatory processes in PD.


Assuntos
Aminoácidos , Doença de Parkinson , Humanos , Aminoácidos/metabolismo , Doença de Parkinson/metabolismo , Metabolismo dos Lipídeos , Glucuronídeos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38130370

RESUMO

Background: Retinoblastoma is rare but nevertheless the most common pediatric eye cancer that occurs in children under age 5. High-resolution metabolomics (HRM) is a powerful analytical approach to profile metabolic features and pathways or identify metabolite biomarkers. To date, no studies have used pre-diagnosis blood samples from retinoblastoma cases and compared them to healthy controls to elucidate early perturbations in tumor pathways. Objectives: Here, we report on metabolic profiles of neonatal blood comparing cases later in childhood diagnosed with retinoblastoma and controls. Methods: We employed untargeted metabolomics analysis using neonatal dried blood spots for 1327 children (474 retinoblastoma cases and 853 healthy controls) born in California from 1983 to 2011. Cases were selected from the California Cancer Registry and controls, frequency matched to cases by birth year, from California birth rolls. We performed high-resolution metabolomics to extract metabolic features, partial least squares discriminant analysis (PLS-DA) and logistic regression to identify features associated with disease, and Mummichog pathway analysis to characterize enriched biological pathways. Results: PLS-DA identified 1917 discriminative features associated with retinoblastoma and Mummichog identified 14 retinoblastoma-related enriched pathways including linoleate metabolism, pentose phosphate pathway, pyrimidine metabolism, fructose and mannose metabolism, vitamin A metabolism, as well as fatty acid and lipid metabolism. Interpretation: Our findings linked a retinoblastoma diagnosis in early life to newborn blood metabolome perturbations indicating alterations in inflammatory pathways and energy metabolism. Neonatal blood spots may provide a venue for early detection for this or potentially other childhood cancers.

10.
Sci Rep ; 13(1): 20872, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012297

RESUMO

Firefighters have elevated rates of urinary tract cancers and other adverse health outcomes, which may be attributable to environmental occupational exposures. Untargeted metabolomics was applied to characterize this suite of environmental exposures and biological changes in response to occupational firefighting. 200 urine samples from 100 firefighters collected at baseline and two to four hours post-fire were analyzed using untargeted liquid-chromatography and high-resolution mass spectrometry. Changes in metabolite abundance after a fire were estimated with fixed effects linear regression, with false discovery rate (FDR) adjustment. Partial least squares discriminant analysis (PLS-DA) was also used, and variable important projection (VIP) scores were extracted. Systemic changes were evaluated using pathway enrichment for highly discriminating metabolites. Metabolome-wide-association-study (MWAS) identified 268 metabolites associated with firefighting activity at FDR q < 0.05. Of these, 20 were annotated with high confidence, including the amino acids taurine, proline, and betaine; the indoles kynurenic acid and indole-3-acetic acid; the known uremic toxins trimethylamine n-oxide and hippuric acid; and the hormone 7a-hydroxytestosterone. Partial least squares discriminant analysis (PLS-DA) additionally implicated choline, cortisol, and other hormones. Significant pathways included metabolism of urea cycle/amino group, alanine and aspartate, aspartate and asparagine, vitamin b3 (nicotinate and nicotinamide), and arginine and proline. Firefighters show a broad metabolic response to fires, including altered excretion of indole compounds and uremic toxins. Implicated pathways and features, particularly uremic toxins, may be important regulators of firefighter's increased risk for urinary tract cancers.


Assuntos
Bombeiros , Incêndios , Neoplasias Urológicas , Humanos , Ácido Aspártico , Toxinas Urêmicas , Metaboloma , Metabolômica/métodos , Prolina
11.
Environ Sci Technol ; 57(40): 14817-14826, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37756184

RESUMO

Animal studies have pointed at the liver as a hotspot for per- and polyfluoroalkyl substances (PFAS) accumulation and toxicity; however, these findings have not been replicated in human populations. We measured concentrations of seven PFAS in matched liver and plasma samples collected at the time of bariatric surgery from 64 adolescents in the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study. Liver:plasma concentration ratios were perfectly explained (r2 > 0.99) in a multilinear regression (MLR) model based on toxicokinetic (TK) descriptors consisting of binding to tissue constituents and membrane permeabilities. Of the seven matched plasma and liver PFAS concentrations compared in this study, the liver:plasma concentration ratio of perfluoroheptanoic acid (PFHpA) was considerably higher than the liver:plasma concentration ratio of other PFAS congeners. Comparing the MLR model with an equilibrium mass balance model (MBM) suggested that complex kinetic transport processes are driving the unexpectedly high liver:plasma concentration ratio of PFHpA. Intratissue MBM modeling pointed to membrane lipids as the tissue constituents that drive the liver accumulation of long-chain, hydrophobic PFAS, whereas albumin binding of hydrophobic PFAS dominated PFAS distribution in plasma. The liver:plasma concentration data set, empirical MLR model, and mechanistic MBM modeling allow the prediction of liver from plasma concentrations measured in human cohort studies. Our study demonstrates that combining biomonitoring data with mechanistic modeling can identify underlying mechanisms of internal distribution and specific target organ toxicity of PFAS in humans.


Assuntos
Ácidos Alcanossulfônicos , Cirurgia Bariátrica , Poluentes Ambientais , Fluorocarbonos , Animais , Humanos , Adolescente , Estudos de Coortes , Fígado , Fluorocarbonos/análise
12.
Am J Epidemiol ; 192(10): 1720-1730, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37218607

RESUMO

Epidemiologic studies of low-frequency exposures or outcomes using metabolomics analyses of neonatal dried blood spots (DBS) often require assembly of samples with substantial differences in duration of storage. Independent assessment of stability of metabolites in archived DBS will enable improved design and interpretation of epidemiologic research utilizing DBS. Neonatal DBS routinely collected and stored as part of the California Genetic Disease Screening Program between 1983 and 2011 were used. The study population included 899 children without cancer before age 6 years, born in California. High-resolution metabolomics with liquid-chromatography mass spectrometry was performed, and the relative ion intensities of common metabolites and selected xenobiotic metabolites of nicotine (cotinine and hydroxycotinine) were evaluated. In total, we detected 26,235 mass spectral features across 2 separate chromatography methods (C18 hydrophobic reversed-phase chromatography and hydrophilic-interaction liquid chromatography). For most of the 39 metabolites related to nutrition and health status, we found no statistically significant annual trends across the years of storage. Nicotine metabolites were captured in the DBS with relatively stable intensities. This study supports the usefulness of DBS stored long-term for epidemiologic studies of the metabolome. -Omics-based information gained from DBS may also provide a valuable tool for assessing prenatal environmental exposures in child health research.


Assuntos
Metabolômica , Nicotina , Gravidez , Criança , Recém-Nascido , Feminino , Humanos , Cromatografia Líquida , Metabolômica/métodos , Metaboloma , Estudos Epidemiológicos , Teste em Amostras de Sangue Seco/métodos
13.
Adv Redox Res ; 72023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37034445

RESUMO

Cadmium (Cd) is a toxic environmental metal that interacts with selenium (Se) and contributes to many lung diseases. Humans have widespread exposures to Cd through diet and cigarette smoking, and studies in rodent models show that Se can protect against Cd toxicities. We sought to identify whether an antagonistic relationship existed between Se and Cd burdens and determine whether this relationship may associate with metabolic variation within human lungs. We performed metabolomics of 31 human lungs, including 25 with end-stage lung disease due to idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive lung disease (COPD)/emphysema and other causes, and 6 non-diseased lungs. Results showed pathway associations with Cd including amino acid, lipid and energy-related pathways. Metabolic pathways varying with Se had considerable overlap with these pathways. Hierarchical cluster analysis (HCA) of individuals according to metabolites associated with Cd showed partial separation of disease types, with COPD/emphysema in the cluster with highest Cd, and non-diseased lungs in the cluster with the lowest Cd. When compared to HCA of metabolites associated with Se, the results showed that the cluster containing COPD/emphysema had the lowest Se, and the non-diseased lungs had the highest Se. A greater number of pathway associations occurred for Cd to Se ratio than either Cd or Se alone, indicating that metabolic patterns were more dependent on Cd to Se ratio than on either alone. Network analysis of interactions of Cd and Se showed network centrality was associated with pathways linked to polyunsaturated fatty acids involved in inflammatory signaling. Overall, the data show that metabolic pathway responses in human lung vary with Cd and Se in a pattern suggesting that Se is antagonistic to Cd toxicity in humans.

14.
Chemosphere ; 320: 137998, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746250

RESUMO

Chronic exposure to arsenic (As) remains a global public health concern and our understanding of the biological mechanisms underlying the adverse effects of As exposure remains incomplete. Here, we used a high-resolution metabolomics approach to examine how As affects metabolic pathways in humans. We selected 60 non-smoking adults from the Folic Acid and Creatine Trial (FACT). Inorganic (AsIII, AsV) and organic (monomethylarsonous acid [MMAs], dimethylarsinous Acid [DMAs]) As species were measured in blood and urine collected at baseline and at 12 weeks. Plasma metabolome profiles were measured using untargeted high-resolution mass spectrometry. Associations of blood and urinary As with 170 confirmed metabolites and >26,000 untargeted spectral features were modeled using a metabolome-wide association study (MWAS) approach. Models were adjusted for age, sex, visit, and BMI and corrected for false discovery rate (FDR). In the MWAS screening of confirmed metabolites, 17 were associated with ≥1 blood As species (FDR<0.05), including fatty acids, neurotransmitter metabolites, and amino acids. These results were consistent across blood As species and between blood and urine As. Untargeted MWAS identified 423 spectral features associated with ≥1 blood As species. Unlike the confirmed metabolites, untargeted model results were not consistent across As species, with AsV and DMAs showing distinct association patterns. Mummichog pathway analysis revealed 12 enriched metabolic pathways that overlapped with the 17 identified metabolites, including one carbon metabolism, tricarboxylic acid cycle, fatty acid metabolism, and purine metabolism. Exposure to As may affect numerous essential pathways that underlie the well-characterized associations of As with multiple chronic diseases.


Assuntos
Arsênio , Arsenicais , Adulto , Humanos , Arsênio/metabolismo , Exposição Ambiental/efeitos adversos , Arsenicais/metabolismo , Ácido Fólico , Metabolômica , Metaboloma
15.
Exposome ; 2(1): osac007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36483216

RESUMO

Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome, proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations, researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposomics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecular ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communicate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.

16.
Metabolites ; 12(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36355164

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex disorder that is implicated in dysregulations in multiple biological pathways, orchestrated by interactions between genetic predisposition, metabolic syndromes and environmental factors. The limited knowledge of its pathogenesis is one of the bottlenecks in the development of prognostic and therapeutic options for MAFLD. Moreover, the extent to which metabolic pathways are altered due to ongoing hepatic steatosis, inflammation and fibrosis and subsequent liver damage remains unclear. To uncover potential MAFLD pathogenesis in humans, we employed an untargeted nuclear magnetic resonance (NMR) spectroscopy- and high-resolution mass spectrometry (HRMS)-based multiplatform approach combined with a computational multiblock omics framework to characterize the plasma metabolomes and lipidomes of obese patients without (n = 19) or with liver biopsy confirmed MAFLD (n = 63). Metabolite features associated with MAFLD were identified using a metabolome-wide association study pipeline that tested for the relationships between feature responses and MAFLD. A metabolic pathway enrichment analysis revealed 16 pathways associated with MAFLD and highlighted pathway changes, including amino acid metabolism, bile acid metabolism, carnitine shuttle, fatty acid metabolism, glycerophospholipid metabolism, arachidonic acid metabolism and steroid metabolism. These results suggested that there were alterations in energy metabolism, specifically amino acid and lipid metabolism, and pointed to the pathways being implicated in alerted liver function, mitochondrial dysfunctions and immune system disorders, which have previously been linked to MAFLD in human and animal studies. Together, this study revealed specific metabolic alterations associated with MAFLD and supported the idea that MAFLD is fundamentally a metabolism-related disorder, thereby providing new perspectives for diagnostic and therapeutic strategies.

17.
Metabolomics ; 18(9): 73, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083566

RESUMO

INTRODUCTION: Work-related exposures to harmful agents or factors are associated with an increase in incidence of occupational diseases. These exposures often represent a complex mixture of different stressors, challenging the ability to delineate the mechanisms and risk factors underlying exposure-disease relationships. The use of omics measurement approaches that enable characterization of biological marker patterns provide internal indicators of molecular alterations, which could be used to identify bioeffects following exposure to a toxicant. Metabolomics is the comprehensive analysis of small molecule present in biological samples, and allows identification of potential modes of action and altered pathways by systematic measurement of metabolites. OBJECTIVES: The aim of this study is to review the application of metabolomics studies for use in occupational health, with a focus on applying metabolomics for exposure monitoring and its relationship to occupational diseases. METHODS: PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2021. RESULTS: Most of reviewed studies included worker populations exposed to heavy metals such as As, Cd, Pb, Cr, Ni, Mn and organic compounds such as tetrachlorodibenzo-p-dioxin, trichloroethylene, polyfluoroalkyl, acrylamide, polyvinyl chloride. Occupational exposures were associated with changes in metabolites and pathways, and provided novel insight into the relationship between exposure and disease outcomes. The reviewed studies demonstrate that metabolomics provides a powerful ability to identify metabolic phenotypes and bioeffect of occupational exposures. CONCLUSION: Continued application to worker populations has the potential to enable characterization of thousands of chemical signals in biological samples, which could lead to discovery of new biomarkers of exposure for chemicals, identify possible toxicological mechanisms, and improved understanding of biological effects increasing disease risk associated with occupational exposure.


Assuntos
Poluentes Ambientais , Doenças Profissionais , Exposição Ocupacional , Biomarcadores , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Humanos , Metabolômica , Doenças Profissionais/etiologia , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise
18.
Environ Health Perspect ; 130(9): 97006, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36129437

RESUMO

BACKGROUND: The first evidence of micro- and nanoplastic (MNP) exposure in the human placenta is emerging. However, the toxicokinetics and toxicity of MNPs in the placenta, specifically environmentally relevant particles, remain unclear. OBJECTIVES: We examined the transport, uptake, and toxicity of pristine and experimentally weathered MNPs in nonsyncytialized and syncytialized BeWo b30 choriocarcinoma cells. METHODS: We performed untargeted chemical characterization of pristine and weathered MNPs using liquid chromatography high-resolution mass spectrometry to evaluate compositional differences following particle weathering. We investigated cellular internalization of pristine and weathered polystyrene (PS; 0.05-10µm) and high-density polyethylene (HDPE; 0-80µm) particles using high-resolution confocal imaging and three-dimensional rendering. We investigated the influence of particle coating with human plasma on the cellular transport of PS particles using a transwell setup and examined the influence of acute MNP exposure on cell viability, damage to the plasma membrane, and expression of genes involved in steroidogenesis. RESULTS: Chemical characterization of MNPs showed a significantly higher number of unique features in pristine particles in comparison with weathered particles. Size-dependent placental uptake of pristine and weathered MNPs was observed in both placental cell types after 24 h exposure. Cellular transport was limited and size-dependent and was not influenced by particle coating with human plasma. None of the MNPs affected cell viability. Damage to the plasma membrane was observed only for 0.05µm PS particles in the nonsyncytialized cells at the highest concentration tested (100µg/mL). Modest down-regulation of hsd17b1 was observed in syncytialized cells exposed to pristine MNPs. DISCUSSION: Our results suggest that pristine and weathered MNPs are internalized and translocated in placental cells in vitro. Effects on gene expression observed upon pristine PS and HDPE particle exposure warrant further examination. More in-depth investigations are needed to better understand the potential health risks of MNP and chemicals associated with them under environmentally relevant exposure scenarios. https://doi.org/10.1289/EHP10873.


Assuntos
Microplásticos , Poliestirenos , Sobrevivência Celular , Feminino , Humanos , Placenta/metabolismo , Polietileno/metabolismo , Polietileno/farmacologia , Gravidez
19.
Sci Total Environ ; 843: 157005, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772554

RESUMO

BACKGROUND: Recent epidemiologic research shows many environmental chemicals exhibit endocrine disrupting effects on the female reproductive system. Few studies have examined exposure at reproductive organs. Our aim was to perform a preliminary untargeted metabolomic characterization of menstrual blood, a novel biofluid, to identify environmental toxins present in the endometrium and evaluate the suitability of this sample type for exposome research. METHODS: Whole blood menstrual samples were collected from four women using a menstrual cup. Samples were analyzed for small molecules that include both environmental chemicals and endogenous metabolites using untargeted liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Principal component analysis (PCA) and ANOVA was used to identify differences within and between individuals' menstrual blood metabolomic profiles, and the influence of the sample processing method. To assess the presence of environmental exposures, LC-HRMS chemical profiles were matched to the ToxCast chemical database, which includes 4557 commonly used commercial chemicals. Select compounds were confirmed by comparison to reference standards. RESULTS: PCA of metabolome profiles showed analysis of menstrual blood samples were highly reproducible, with high variability in detected metabolites between participants and low variability between analytical replicates of an individual's sample. Endogenous metabolites detected in menstrual blood samples achieved good coverage of the human blood metabolome. We found 1748 annotations for environmental chemicals, including suspected reproductive toxicants such as phenols, parabens, phthalates, and organochlorines. Storage temperature for the first 24 h did not significantly influence global metabolomic profiles. CONCLUSION: Our results show chemical exposures linked to reproductive toxicity and endocrine disruption are present in menstrual blood, a sampling medium for the endometrium.


Assuntos
Metaboloma , Metabolômica , Cromatografia Líquida/métodos , Endométrio , Feminino , Substâncias Perigosas , Humanos , Espectrometria de Massas/métodos , Metabolômica/métodos
20.
PNAS Nexus ; 1(2): pgac050, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35707205

RESUMO

Exposure to the pesticide dichlorodiphenyltrichloroethane (DDT) has been associated with increased risk of Alzheimer's disease (AD), a disease also associated with hyperphosphorylated tau (p-tau) protein aggregation. We investigated whether exposure to DDT can exacerbate tau protein toxicity in Caenorhabditiselegans using a transgenic strain that expresses human tau protein prone to aggregation by measuring changes in size, swim behavior, respiration, lifespan, learning, and metabolism. In addition, we examined the association between cerebrospinal fluid (CSF) p-tau protein-as a marker of postmortem tau burden-and global metabolism in both a human population study and in C. elegans, using the same p-tau transgenic strain. From the human population study, plasma and CSF-derived metabolic features associated with p-tau levels were related to drug, amino acid, fatty acid, and mitochondrial metabolism pathways. A total of five metabolites overlapped between plasma and C. elegans, and four between CSF and C. elegans. DDT exacerbated the inhibitory effect of p-tau protein on growth and basal respiration. In the presence of p-tau protein, DDT induced more curling and was associated with reduced levels of amino acids but increased levels of uric acid and adenosylselenohomocysteine. Our findings in C. elegans indicate that DDT exposure and p-tau aggregation both inhibit mitochondrial function and DDT exposure can exacerbate the mitochondrial inhibitory effects of p-tau aggregation. Further, biological pathways associated with exposure to DDT and p-tau protein appear to be conserved between species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA