Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(8): 9690-9701, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38357740

RESUMO

The development of in vitro models recapitulating nanoparticle transport under physiological flow conditions is of great importance for predicting the efficacy of nanoparticle drug carriers. Liposomes are extensively used for drug delivery owing to their biocompatibility and biodegradability and the ability to carry both hydrophilic and hydrophobic compounds. Here, we used a library of liposomes with various dimensions and a microfluidic platform comprising a large array of uniformly sized breast cancer spheroids to explore size-dependent liposome internalization and retention in the spheroids under close-to-physiological interstitial conditions. Such a platform showed promising applications in the preclinical screening of small molecule drugs; however, the capability to deliver nanoparticles in the spheroid interior under close-to-physiological flow conditions was not explored. For the liposomes with diameters in the range of 45-200 nm, we show experimentally and by simulations that in comparison with liposome delivery solely by diffusion, flow significantly enhances liposome internalization in the microgels and mitigates the size-dependent spheroid penetration by the liposomes. The utility of the microfluidic platform was validated by evaluating the efficacy of clinically approved doxorubicin-loaded liposomes (Doxil), which exhibited superior retention in the spheroids under flow conditions, in comparison with free doxorubicin. This MF platform can serve as an in vitro model for screening the efficacy of drugs encapsulated in liposomes and find applications for screening other types of nanoparticle carriers for vaccine delivery, diagnostics, and skincare.


Assuntos
Doxorrubicina/análogos & derivados , Lipossomos , Neoplasias , Humanos , Lipossomos/química , Portadores de Fármacos/química , Microfluídica , Esferoides Celulares , Doxorrubicina/farmacologia , Polietilenoglicóis
2.
ACS Appl Mater Interfaces ; 15(3): 3791-3803, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36632842

RESUMO

Under healthy conditions, pro- and anti-phagocytic signals are balanced. Cluster of Differentiation 47 (CD47) is believed to act as an anti-phagocytic marker that is highly expressed on multiple types of human cancer cells including acute myeloid leukemia (AML) and lung and liver carcinomas, allowing them to escape phagocytosis by macrophages. Downregulating CD47 on cancer cells discloses calreticulin (CRT) to macrophages and recovers their phagocytic activity. Herein, we postulate that using a modified graphene oxide (GO) carrier to deliver small interfering RNA (siRNA) CD47 (CD47_siRNA) in AML, A549 lung, and HepG2 liver cancer cells in co-culture in vitro will silence CD47 and flag cancer cells for CRT-mediated phagocytosis. Results showed a high knockdown efficiency of CD47 and a significant increase in CRT levels simultaneously by using GO formulation as carriers in all used cancer cell lines. The presence of CRT on cancer cells was significantly higher than levels before knockdown of CD47 and was required to achieve phagocytosis in co-culture with human macrophages. Lipid nanoparticles (LNPs) and modified boron nitride nanotubes (BNPs) were used to carry CD47_siRNA, and the knockdown efficiency values of CD47 were compared in three cancer cells in co-culture, with an achieved knockdown efficiency of >95% using LNPs as carriers. Interestingly, the high efficiency of CD47 knockdown was obtained by using the LNPs and BNP carriers; however, an increase in CRT levels on cancer cells was not required for phagocytosis to happen in co-culture with human macrophages, indicating other pathways' involvement in the phagocytosis process. These findings highlight the roles of 2D (graphene oxide), 1D (boron nitride nanotube), and "0D" (lipid nanoparticle) carriers for the delivery of siRNA to eliminate cancer cells in co-culture, likely through different phagocytosis pathways in multiple types of human cancer cells. Moreover, these results provide an explanation of immune therapies that target CD47 and the potential use of these carriers in screening drugs for such therapies in vitro.


Assuntos
Antígeno CD47 , Leucemia Mieloide Aguda , Humanos , Antígeno CD47/metabolismo , Técnicas de Cocultura , Calreticulina/genética , Calreticulina/metabolismo , Fagocitose , RNA Interferente Pequeno
3.
Front Oncol ; 12: 981009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003785

RESUMO

Integrin α11ß1 is a collagen-binding integrin that is needed to induce and maintain the myofibroblast phenotype in fibrotic tissues and during wound healing. The expression of the α11 is upregulated in cancer-associated fibroblasts (CAFs) in various human neoplasms. We investigated α11 expression in human cutaneous squamous cell carcinoma (cSCC) and in benign and premalignant human skin lesions and monitored its effects on cSCC development by subjecting α11-knockout (Itga11-/- ) mice to the DMBA/TPA skin carcinogenesis protocol. α11-deficient mice showed significantly decreased tumor cell proliferation, leading to delayed tumor development and reduced tumor burden. Integrin α11 expression was significantly upregulated in the desmoplastic tumor stroma of human and mouse cSCCs, and the highest α11 expression was detected in high-grade tumors. Our results point to a reduced ability of α11-deficient stromal cells to differentiate into matrix-producing and tumor-promoting CAFs and suggest that this is one causative mechanism underlying the observed decreased tumor growth. An unexpected finding in our study was that, despite reduced CAF activation, the α11-deficient skin tumors were characterized by the presence of thick and regularly aligned collagen bundles. This finding was attributed to a higher expression of TGFß1 and collagen crosslinking lysyl oxidases in the Itga11-/- tumor stroma. In summary, our data suggest that α11ß1 operates in a complex interactive tumor environment to regulate ECM synthesis and collagen organization and thus foster cSCC growth. Further studies with advanced experimental models are still needed to define the exact roles and molecular mechanisms of stromal α11ß1 in skin tumorigenesis.

4.
Biomacromolecules ; 23(5): 1928-1937, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35119839

RESUMO

Plant-derived phytoglycogen nanoparticles (PhG NPs) have the advantages of size uniformity, dispersibility in water, excellent lubrication properties, and lack of cytotoxicity; however, their chemical functionalization may lead to loss of NP structural integrity. Here, we report a straightforward approach to the generation of PhG NP conjugates with biologically active molecules. Hydrogen bonding of bovine serum albumin with electroneutral PhG NPs endows them with additional ligand binding affinity and enables the electrostatically governed attachment of methotrexate (MTX), a therapeutic agent commonly used in the treatment of cancer and arthritis diseases, to the protein-capped NPs. We showed stimuli-responsive release of MTX from the PhG-based nanoconjugates under physiological cues such as temperature and ionic strength. The results of this study stimulate future exploration of biomedical applications of nanoconjugates of PhG NPs.


Assuntos
Nanoconjugados , Nanopartículas , Metotrexato/química , Metotrexato/farmacologia , Nanoconjugados/química , Nanopartículas/química , Soroalbumina Bovina
5.
Cancer Immunol Immunother ; 70(3): 787-801, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32995942

RESUMO

CD47 is over-expressed in Acute Myeloid Leukemia (AML) and functions as an inhibitory signal, suppressing phagocytosis by binding to signal regulatory protein α (SIRPα) on the surface of macrophages. Inhibition of CD47 restores the immune surveillance of AML cells. However, the inhibition of CD47 in AML by activated macrophages and the subsequent effects on different immune response parameters are not fully understood. Here, we demonstrate the use of a distinct co-culture method to inhibit CD47 and therefore eliminate AML cells by macrophages in vitro. Human chemically induced THP-1 macrophages were activated using different concentrations of lipopolysaccharide (LPS) and co-culturing with three AML cancer cell lines (HL-60, NB4, and THP-1), respectively, as well as normal human peripheral blood mononuclear cells (PBMC). CD47 inhibition was observed in and selective to AML but not observed in normal PBMC. Additionally, calreticulin (CRT) levels were elevated in the same cell lines simultaneously, after co-culturing with activated human macrophages, but not elevated in normal cells. We also show that the activated macrophages secreted high levels of cytokines, including IL-12p70, IL-6, and TNF-α, consistent with the elimination of AML by macrophages. Our study reveals the potential of this model for screening new drugs against AML and the possibility of using human macrophages in AML treatment in the future.


Assuntos
Antígeno CD47/metabolismo , Calreticulina/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Biomarcadores , Antígeno CD47/genética , Calreticulina/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Leucemia/etiologia , Leucemia/metabolismo , Leucemia/patologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia
6.
Langmuir ; 35(5): 1534-1543, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30350697

RESUMO

Multifunctional probes are needed to characterize individual cells simultaneously by different techniques to provide complementary information. A preparative method and an in vitro demonstration of function are presented for a dual-function dark field microscopy/surface-enhanced Raman scattering (SERS) liposome probe for cancer. Liposomes composed of zwitterionic lipids are valuable both to limit biofouling and to serve as a modular matrix to incorporate a variety of functional molecules and hence are used here as vehicles for SERS-active materials. Dark field microscopy and SERS represent new combined functionalities for targeted liposomal probes. Two methods of antibody conjugation to SERS liposomes are demonstrated: (i) direct conjugation to functional groups on the SERS liposome surface and (ii) postinsertion of lipid-functionalized antibody fragments (Fabs) into preformed SERS liposomes. In vitro experiments targeting both lymphoma cell line LY10 and primary human chronic lymphocytic leukemia (CLL) cells demonstrate the usefulness of these probes as optical contrast agents in both dark field and Raman microscopy.


Assuntos
Leucemia de Células B/diagnóstico por imagem , Lipossomos/química , Linfoma/diagnóstico por imagem , Animais , Anticorpos/imunologia , Linhagem Celular Tumoral , Colesterol/química , Cabras , Ouro/química , Humanos , Leucemia de Células B/imunologia , Linfoma/imunologia , Nanopartículas Metálicas/química , Fosfatidilcolinas/química , Ovinos , Análise Espectral Raman/métodos , Esfingomielinas/química
7.
Langmuir ; 29(6): 1908-19, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23360230

RESUMO

The labeling of cell surface receptors by fluorescent markers is an established method for the identification of cell phenotype in both research and clinical settings. Fluorescence dye labeling has inherent constraints, most notably the upper limit of labels per cell that may be probed using a single excitation source, in addition to a physical limit to the number of broad emission spectra that can be distinctly collected within the visible wavelength region. SERS labeling has the potential to mitigate these shortfalls. Herein, antibody-targeted, PEG-coated surface-enhanced Raman scattering (SERS) Au nanoparticles are used simultaneously to label three cell surface markers of interest on malignant B cells from the LY10 lymphoma cell line. The SERS probes were characterized by multiple methods to confirm their monodispersity and functionalization with both PEG and monoclonal antibodies. The specificity of the particles' cell labeling was demonstrated on both primary chronic lymphocytic leukemia and LY10 cells using SERS from cell suspensions and confocal Raman mapping, respectively. Fluorescence flow cytometry was employed to confirm the binding of SERS probes to LY10 over large cell populations, and the particles' SERS was collected directly from labeled cells using a commercial flow cytometer. To the best of our knowledge, this is the first demonstration of SERS flow cytometry from cells tagged with targeted SERS probes.


Assuntos
Citometria de Fluxo/métodos , Corantes Fluorescentes/química , Ouro/química , Leucemia/patologia , Linfoma/patologia , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Animais , Anticorpos Monoclonais/imunologia , Antígenos CD/imunologia , Antígenos CD/metabolismo , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Especificidade por Substrato , Propriedades de Superfície
8.
Nanomedicine ; 9(1): 55-64, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22542823

RESUMO

Immunophenotyping of lymphoproliferative disorders depends on the effective measurement of cell surface markers. The inherent light-scattering properties of plasmonic nanoparticles (NPs) combined with recent developments in NP design may confer significant advantages over traditional fluorescence probes. We report and evaluate the use of surface-enhanced Raman scattering (SERS) gold NPs (AuNPs) conjugated to therapeutic rituximab antibodies for selective targeting of CD20 molecules. SERS AuNPs were prepared by adsorbing a Raman-active dye onto the surface of 60 nm spherical AuNPs, coating the particles with 5 kDa polyethylene glycol, and conjugating rituximab to functional groups on polyethylene glycol. The effective targeting of CD20 on chronic lymphocytic leukemia cells by rituximab-conjugated SERS AuNPs was evaluated by dark-field imaging, Raman spectroscopy, and flow cytometry with both competitive binding and fluorescence detection procedures. Evidence of CD20 clustering within approximately 100 nm was observed. FROM THE CLINICAL EDITOR: This study discusses the use of surface enhancement Raman scattering (SERS)-based plasmonic gold nanoparticles, which can be used for cell specific labeling. In this example rituximab, a commercially available CD20 humanized monoclonal antibody is used. Dark field imaging, Raman spectroscopy and flow cytometry was utilized to demonstrate the sensitive labeling capability of these gold nanoparticle based hybrid nanodevices.


Assuntos
Antígenos CD20/imunologia , Citometria de Fluxo/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Fluorescência , Leucemia Linfocítica Crônica de Células B/patologia , Microscopia Eletrônica de Transmissão , Análise Espectral Raman
9.
Cancer Lett ; 292(1): 91-7, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20042272

RESUMO

Selective targeting and detection of a hematologic malignancy, chronic lymphocytic leukemia, using surface enhanced Raman scattering (SERS) gold nanoparticles is reported. The functional nanoparticles were composed of a gold core onto which an optical reporter dye was adsorbed, protected from aggregation by grafted polyethyleneglycol, and targeted to CD19 antigen by antibodies. The signals were detected by dark-field microscopy and Raman spectrometry. The observation that the Raman signals are not disrupted by several traditional pathology stains indicates advantages over fluorescence methods.


Assuntos
Antígenos CD19/análise , Ouro , Leucemia Linfocítica Crônica de Células B/diagnóstico , Nanopartículas , Análise Espectral Raman/métodos , Humanos , Nanopartículas Metálicas/química , Nanotecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA