Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Drug Metab Dispos ; 52(7): 690-702, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38719744

RESUMO

Brepocitinib is an oral once-daily Janus kinase 1 and Tyrosine kinase 2 selective inhibitor currently in development for the treatment of several autoimmune disorders. Mass balance and metabolic profiles were determined using accelerator mass spectrometry in six healthy male participants following a single oral 60 mg dose of 14C-brepocitinib (∼300 nCi). The average mass balance recovery was 96.7% ± 6.3%, with the majority of dose (88.0% ± 8.0%) recovered in urine and 8.7% ± 2.1% of the dose recovered in feces. Absorption of brepocitinib was rapid, with maximal plasma concentrations of total radioactivity and brepocitinib achieved within 0.5 hours after dosing. Circulating radioactivity consisted primarily of brepocitinib (47.8%) and metabolite M1 (37.1%) derived from hydroxylation at the C5' position of the pyrazole ring. Fractional contributions to metabolism via cytochrome P450 enzymes were determined to be 0.77 for CYP3A4/5 and 0.14 for CYP1A2 based on phenotyping studies in human liver microsomes. However, additional clinical studies are required to understand the potential contribution of CYP1A1. Approximately 83% of the dose was eliminated as N-methylpyrazolyl oxidative metabolites, with 52.1% of the dose excreted as M1 alone. Notably, M1 was not observed as a circulating metabolite in earlier metabolic profiling of human plasma from a multiple ascending dose study with unlabeled brepocitinib. Mechanistic studies revealed that M1 was highly unstable in human plasma and phosphate buffer, undergoing chemical oxidation leading to loss of the 5-hydroxy-1-methylpyrazole moiety and formation of aminopyrimidine cleavage product M2. Time-dependent inhibition and trapping studies with M1 yielded insights into the mechanism of this unusual and unexpected instability. SIGNIFICANCE STATEMENT: This study provides a detailed understanding of the disposition and metabolism of brepocitinib, a JAK1/TYK2 inhibitor for atopic dermatitis, in humans as well as characterization of clearance pathways and pharmacokinetics of brepocitinib and its metabolites.


Assuntos
Inibidores de Proteínas Quinases , Humanos , Masculino , Adulto , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/metabolismo , Adulto Jovem , Pirazóis/farmacocinética , Pirazóis/metabolismo , Pirazóis/sangue , Pirazóis/administração & dosagem , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Administração Oral , Citocromo P-450 CYP3A/metabolismo , Voluntários Saudáveis , Microssomos Hepáticos/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Fezes/química , Hidroxilação , Citocromo P-450 CYP1A2/metabolismo , Pessoa de Meia-Idade
2.
J Med Chem ; 63(20): 11585-11601, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32678591

RESUMO

The replacement of one chemical motif with another that is broadly similar is a common method in medicinal chemistry to modulate the physical and biological properties of a molecule (i.e., bioisosterism). In recent years, bioisosteres such as cubane and bicyclo[1.1.1]pentane (BCP) have been used as highly effective phenyl mimics. Herein, we show the successful incorporation of a range of phenyl bioisosteres during the open-source optimization of an antimalarial series. Cubane (19) and closo-carborane (23) analogues exhibited improved in vitro potency against Plasmodium falciparum compared to the parent phenyl compound; however, these changes resulted in a reduction in metabolic stability; unusually, enzyme-mediated oxidation was found to take place on the cubane core. A BCP analogue (22) was found to be equipotent to its parent phenyl compound and showed significantly improved metabolic properties. While these results demonstrate the utility of these atypical bioisosteres when used in a medicinal chemistry program, the search to find a suitable bioisostere may well require the preparation of many candidates, in our case, 32 compounds.


Assuntos
Antimaláricos/síntese química , Compostos de Boro/química , Compostos Bicíclicos com Pontes/síntese química , Desenho de Fármacos , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/toxicidade , Compostos Bicíclicos com Pontes/química , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Química Farmacêutica , Células Hep G2 , Humanos , Estrutura Molecular , Plasmodium falciparum/efeitos dos fármacos
3.
Chem Res Toxicol ; 33(1): 211-222, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31538772

RESUMO

Enzalutamide and apalutamide are two androgen receptor inhibitors approved for the treatment of castration-resistant prostate cancer (CRPC) and nonmetastatic castration-resistant prostate cancer (nmCRPC), respectively. Apalutamide is associated with an increased incidence of skin rash above the placebo groups in the SPARTAN trial in nmCRPC and in the TITAN trial in metastatic castration-sensitive prostate cancer patients. On the contrary, the rate of skin rash across all clinical trials (including PROSPER [nmCRPC]) for enzalutamide is similar to the placebo. We hypothesized that the apalutamide-associated increased skin rash in patients could be linked to a structural difference. The 2-cyanophenyl and dimethyl moieties in enzalutamide are substituted in apalutamide with 2-cyanopyridine and cyclobutyl, respectively. In our evaluations, the 2-cyanopyridine moiety of apalutamide was chemically reactive with the thiol nucleophile glutathione, resulting in rearranged thiazoline products. Radiolabeled apalutamide, but not radiolabeled enzalutamide, was shown to react with mouse and human plasma proteins. Thiol nucleophiles decreased the extent of covalent binding to the model protein bovine serum albumin, whereas amine and alcohol nucleophiles had no effect, suggesting reactivity with cysteine of proteins. Subcutaneous administration of apalutamide dose dependently increased lymphocyte cellularity in draining lymph nodes in a mouse drug allergy model (MDAM). Enzalutamide, and its known analogue RD162 in which the cyanophenyl was retained but the dimethyl was replaced by cyclobutyl, demonstrated substantially less covalent binding activity and negative results in the MDAM assay. Collectively, these data support the hypothesis that the 2-cyanopyridine moiety in apalutamide may react with cysteine in proteins forming haptens, which may trigger an immune response, as indicated by the activity of apalutamide in the MDAM assay, which in turn may be leading to increased potential for skin rash versus placebo in patients in the SPARTAN and TITAN clinical trials.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Hipersensibilidade a Drogas , Feniltioidantoína/análogos & derivados , Tioidantoínas/farmacologia , Animais , Benzamidas , Modelos Animais de Doenças , Hipersensibilidade a Drogas/imunologia , Feminino , Hepatócitos/metabolismo , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Nitrilas , Feniltioidantoína/farmacologia , Ligação Proteica
4.
J Med Chem ; 61(16): 7273-7288, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30036059

RESUMO

Studies on indole-3-carboxylic acid derivatives as direct activators of human adenosine monophosphate-activated protein kinase (AMPK) α1ß1γ1 isoform have culminated in the identification of PF-06409577 (1), PF-06885249 (2), and PF-06679142 (3) as potential clinical candidates. Compounds 1-3 are primarily cleared in animals and humans via glucuronidation. Herein, we describe the biosynthetic preparation, purification, and structural characterization of the glucuronide conjugates of 1-3. Spectral characterization of the purified glucuronides M1, M2, and M3 indicated that they were acyl glucuronide derivatives. In vitro pharmacological evaluation revealed that all three acyl glucuronides retained selective activation of ß1-containing AMPK isoforms. Inhibition of de novo lipogenesis with representative parent carboxylic acids and their respective acyl glucuronide conjugates in human hepatocytes demonstrated their propensity to activate cellular AMPK. Cocrystallization of the AMPK α1ß1γ1 isoform with 1-3 and M1-M3 provided molecular insights into the structural basis for AMPK activation by the glucuronide conjugates.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Indóis/química , Indóis/metabolismo , Lipogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/química , Animais , Células Cultivadas , Cristalização/métodos , Ativação Enzimática/efeitos dos fármacos , Glucuronídeos/química , Glucuronídeos/metabolismo , Glucuronídeos/farmacocinética , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Indóis/farmacologia , Macaca fascicularis , Espectroscopia de Ressonância Magnética , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ratos Wistar , Uridina Difosfato Ácido Glucurônico/farmacologia
5.
Drug Metab Dispos ; 45(7): 721-733, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28396527

RESUMO

In the search for novel bile acid (BA) biomarkers of liver organic anion-transporting polypeptides (OATPs), cynomolgus monkeys received oral rifampicin (RIF) at four dose levels (1, 3, 10, and 30 mg/kg) that generated plasma-free Cmax values (0.06, 0.66, 2.57, and 7.79 µM, respectively) spanning the reported in vitro IC50 values for OATP1B1 and OATP1B3 (≤1.7 µM). As expected, the area under the plasma concentration-time curve (AUC) of an OATP probe drug (i.v. 2H4-pitavastatin, 0.2 mg/kg) was increased 1.2-, 2.4-, 3.8-, and 4.5-fold, respectively. Plasma of RIF-dosed cynomolgus monkeys was subjected to a liquid chromatography-tandem mass spectrometry method that supported the analysis of 30 different BAs. Monkey urine was profiled, and we also determined that the impact of RIF on BA renal clearance was minimal. Although sulfated BAs comprised only 1% of the plasma BA pool, a robust RIF dose response (maximal ≥50-fold increase in plasma AUC) was observed for the sulfates of five BAs [glycodeoxycholate (GDCA-S), glycochenodeoxycholate (GCDCA-S), taurochenodeoxycholate, deoxycholate (DCA-S), and taurodeoxycholate (TDCA-S)]. In vitro, RIF (≤100 µM) did not inhibit cynomolgus monkey liver cytosol-catalyzed BA sulfation and cynomolgus monkey hepatocyte-mediated uptake of representative sulfated BAs (GDCA-S, GCDCA-S, DCA-S, and TDCA-S) was sodium-independent and inhibited (≥70%) by RIF (5 µM); uptake of taurocholic acid was sensitive to sodium removal (74% decrease) and relatively refractory to RIF (≤21% inhibition). We concluded that sulfated BAs may serve as sensitive biomarkers of cynomolgus monkey OATPs and that exploration of their utility as circulating human OATP biomarkers is warranted.


Assuntos
Ácidos e Sais Biliares/metabolismo , Biomarcadores/metabolismo , Macaca fascicularis/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Rifampina/farmacologia , Sulfatos/metabolismo , Animais , Linhagem Celular , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Quinolinas/farmacologia
6.
Drug Metab Dispos ; 44(1): 102-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26512042

RESUMO

N-Methyl-2-[3-((E)-2-pyridin-2-yl-vinyl)-1H-indazol-6-ylsulfanyl]-benzamide (axitinib) is an oral inhibitor of vascular endothelial growth factor receptors 1-3, which is approved for the treatment of advanced renal cell cancer. Human [(14)C]-labeled clinical studies indicate axitinib's primary route of clearance is metabolism. The aims of the in vitro experiments presented herein were to identify and characterize the enzymes involved in axitinib metabolic clearance. In vitro biotransformation studies of axitinib identified a number of metabolites including an axitinib sulfoxide, several less abundant oxidative metabolites, and glucuronide conjugates. The most abundant NADPH- and UDPGA-dependent metabolites, axitinib sulfoxide (M12) and axitinib N-glucuronide (M7) were selected for phenotyping and kinetic study. Phenotyping experiments with human liver microsomes (HLMs) using chemical inhibitors and recombinant human cytochrome P450s demonstrated axitinib was predominately metabolized by CYP3A4/5, with minor contributions from CYP2C19 and CYP1A2. The apparent substrate concentration at half-maximal velocity (Km) and Vmax values for the formation of axitinib sulfoxide by CYP3A4 or CYP3A5 were 4.0 or 1.9 µM and 9.6 or 1.4 pmol·min(-1)·pmol(-1), respectively. Using a CYP3A4-specific inhibitor (Cyp3cide) in liver microsomes expressing CYP3A5, 66% of the axitinib intrinsic clearance was attributable to CYP3A4 and 15% to CYP3A5. Axitinib N-glucuronidation was primarily catalyzed by UDP-glucuronosyltransferase (UGT) UGT1A1, which was verified by chemical inhibitors and UGT1A1 null expressers, with lesser contributions from UGTs 1A3, 1A9, and 1A4. The Km and Vmax values describing the formation of the N-glucuronide in HLM or rUGT1A1 were 2.7 µM or 0.75 µM and 8.9 or 8.3 pmol·min(-1)·mg(-1), respectively. In summary, CYP3A4 is the major enzyme involved in axitinib clearance with lesser contributions from CYP3A5, CYP2C19, CYP1A2, and UGT1A1.


Assuntos
Inibidores da Angiogênese/metabolismo , Citocromo P-450 CYP3A/metabolismo , Glucuronosiltransferase/metabolismo , Imidazóis/metabolismo , Indazóis/metabolismo , Microssomos Hepáticos/enzimologia , Inibidores de Proteínas Quinases/metabolismo , Axitinibe , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP3A/genética , Inibidores das Enzimas do Citocromo P-450/farmacologia , Feminino , Genótipo , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Humanos , Inativação Metabólica , Cinética , Masculino , Taxa de Depuração Metabólica , Microssomos Hepáticos/efeitos dos fármacos , Modelos Biológicos , Oxirredução , Fenótipo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Sulfóxidos/metabolismo
7.
J Genet Couns ; 24(1): 18-28, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25209347

RESUMO

Research to date regarding identification and management of hereditary breast and ovarian cancer syndrome (HBOC) in the U.S. has been confined primarily to academic center-based studies with limited patient engagement. To begin to understand and address the current gaps and disparities in delivery of services for the appropriate identification and optimal risk management of individuals with HBOC, we designed and have initiated the American BRCA Outcomes and Utilization of Testing (ABOUT) Study. ABOUT relies on a collaborative patient advocacy, academic and industry partnership to recruit and engage U.S. individuals who are at increased risk for HBOC and investigate their experiences, decisions and outcomes. It utilizes an extensive research infrastructure, including an interactive web-based data system and electronic interfaces for secure online participation and automated data exchange. We describe the novel recruitment approach that was designed for collaboration with a national commercial health plan partner to identify all individuals for whom a healthcare provider orders a BRCA test and mail to each individual an invitation to participate and study packet. The study packet contains detailed information about the study, a baseline questionnaire and informed consent for participation in the study, for release of relevant medical and health plan records and for ongoing research engagement. This approach employs patient-reported, laboratory-reported and health plan-reported outcomes and facilitates longitudinal engagement. We believe that the type of innovative methodology and collaborative framework we have developed for ABOUT is an ideal foundation for a patient-powered research network. This approach can make substantial contributions to identifying current and best practices in HBOC, leading to improved strategies for clinical care and optimal health outcomes among individuals with high inherited risk for cancer.


Assuntos
Aconselhamento Genético/normas , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Síndrome Hereditária de Câncer de Mama e Ovário/terapia , Avaliação de Processos e Resultados em Cuidados de Saúde/organização & administração , Assistência Centrada no Paciente/normas , Medicina de Precisão/normas , Adulto , Comportamento Cooperativo , Medicina Baseada em Evidências/organização & administração , Genes BRCA1 , Genes BRCA2 , Humanos , Melhoria de Qualidade/organização & administração , Estados Unidos
8.
Xenobiotica ; 45(1): 45-59, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25034009

RESUMO

1. Crizotinib (XALKORI®), an oral inhibitor of anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition factor kinase (c-Met), is currently approved for the treatment of patients with non-small cell lung cancer that is ALK-positive. 2. The metabolism, excretion and pharmacokinetics of crizotinib were investigated following administration of a single oral dose of 250 mg/100 µCi [(14)C]crizotinib to six healthy male subjects. 3. Mean recovery of [(14)C]crizotinib-related radioactivity in excreta samples was 85% of the dose (63% in feces and 22% in urine). 4. Crizotinib and its metabolite, crizotinib lactam, were the major components circulating in plasma, accounting for 33% and 10%, respectively, of the 0-96 h plasma radioactivity. Unchanged crizotinib was the major excreted component in feces (∼ 53% of the dose). In urine, crizotinib and O-desalkyl crizotinib lactam accounted for ∼ 2% and 5% of the dose, respectively. Collectively, these data indicate that the primary clearance pathway for crizotinib in humans is oxidative metabolism/hepatic elimination. 5. Based on plasma exposure in healthy subjects following a single dose of crizotinib and in vitro potency against ALK and c-Met, the crizotinib lactam diastereomers are not anticipated to contribute significantly to in vivo activity; however, additional assessment in cancer patients is warranted.


Assuntos
Inibidores de Proteínas Quinases/metabolismo , Pirazóis/metabolismo , Piridinas/metabolismo , Administração Oral , Adulto , Radioisótopos de Carbono , Crizotinibe , Fezes/química , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/farmacocinética , Pirazóis/análise , Pirazóis/farmacocinética , Piridinas/análise , Piridinas/farmacocinética
9.
J Med Chem ; 57(23): 10072-9, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25375838

RESUMO

Interest in drugs that covalently modify their target is driven by the desire for enhanced efficacy that can result from the silencing of enzymatic activity until protein resynthesis can occur, along with the potential for increased selectivity by targeting uniquely positioned nucleophilic residues in the protein. However, covalent approaches carry additional risk for toxicities or hypersensitivity reactions that can result from covalent modification of unintended targets. Here we describe methods for measuring the reactivity of covalent reactive groups (CRGs) with a biologically relevant nucleophile, glutathione (GSH), along with kinetic data for a broad array of electrophiles. We also describe a computational method for predicting electrophilic reactivity, which taken together can be applied to the prospective design of thiol-reactive covalent inhibitors.


Assuntos
Inibidores Enzimáticos/química , Glutationa/química , Desenho de Fármacos , Glutationa/metabolismo , Humanos , Cinética , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Preparações Farmacêuticas/química
10.
Drug Metab Dispos ; 41(7): 1375-88, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23610086

RESUMO

The current study examined the bioactivation potential of ghrelin receptor inverse agonists, 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl}-2-(imidazo[2,1-b]thiazol-6-yl)ethanone (1) and 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl}-2-(2-methylimidazo[2,1-b]thiazol-6-yl)ethanone (2), containing a fused imidazo[2,1-b]thiazole motif in the core structure. Both compounds underwent oxidative metabolism in NADPH- and glutathione-supplemented human liver microsomes to yield glutathione conjugates, which was consistent with their bioactivation to reactive species. Mass spectral fragmentation and NMR analysis indicated that the site of attachment of the glutathionyl moiety in the thiol conjugates was on the thiazole ring within the bicycle. Two glutathione conjugates were discerned with the imidazo[2,1-b]thiazole derivative 1. One adduct was derived from the Michael addition of glutathione to a putative S-oxide metabolite of 1, whereas, the second adduct was formed via the reaction of a second glutathione molecule with the initial glutathione-S-oxide adduct. In the case of the 2-methylimidazo[2,1-b]thiazole analog 2, glutathione conjugation occurred via an oxidative desulfation mechanism, possibly involving thiazole ring epoxidation as the rate-limiting step. Additional insights into the mechanism were obtained via ¹8O exchange and trapping studies with potassium cyanide. The mechanistic insights into the bioactivation pathways of 1 and 2 allowed the deployment of a rational chemical intervention strategy that involved replacement of the thiazole ring with a 1,2,4-thiadiazole group to yield 2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7-yl)-2-(2-methylimidazo[2,1-b][1,3,4]thiadiazol-6-yl)ethanone (3). These structural changes not only abrogated the bioactivation liability but also retained the attractive pharmacological attributes of the prototype agents.


Assuntos
Agonismo Inverso de Drogas , Imidazóis/metabolismo , Receptores de Grelina/agonistas , Tiazóis/metabolismo , Biotransformação , Glutationa/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Microssomos Hepáticos/metabolismo
11.
Chem Res Toxicol ; 25(10): 2138-52, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22989032

RESUMO

Inhibition of intestinal and hepatic microsomal triglyceride transfer protein (MTP) is a potential strategy for the treatment of dyslipidemia and related metabolic disorders. Inhibition of hepatic MTP, however, results in elevated liver transaminases and increased hepatic fat deposition consistent with hepatic steatosis. Diethyl 2-((2-(3-(dimethylcarbamoyl)-4-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetoxy)methyl)-2-phenylmalonate (JTT-130) is an intestine-specific inhibitor of MTP and does not cause increases in transaminases in short-term clinical trials in patients with dyslipidemia. Selective inhibition of intestinal MTP is achieved via rapid hydrolysis of its ester linkage by liver-specific carboxylesterase(s), resulting in the formation of an inactive carboxylic acid metabolite 1. In the course of discovery efforts around tissue-specific inhibitors of MTP, the mechanism of JTT-130 hydrolysis was examined in detail. Lack of ¹8O incorporation in 1 following the incubation of JTT-130 in human liver microsomes in the presence of H2¹8O suggested that hydrolysis did not occur via a simple cleavage of the ester linkage. The characterization of atropic acid (2-phenylacrylic acid) as a metabolite was consistent with a hydrolytic pathway involving initial hydrolysis of one of the pendant malonate ethyl ester groups followed by decarboxylative fragmentation to 1 and the concomitant liberation of the potentially electrophilic acrylate species. Glutathione conjugates of atropic acid and its ethyl ester were also observed in microsomal incubations of JTT-130 that were supplemented with the thiol nucleophile. Additional support for the hydrolysis mechanism was obtained from analogous studies on diethyl 2-(2-(2-(3-(dimethylcarbamoyl)-4-(4'-trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetoxy)ethyl)-2-phenylmalonate (3), which cannot participate in hydrolysis via the fragmentation pathway because of the additional methylene group. Unlike the case with JTT-130, ¹8O was readily incorporated into 1 during the enzymatic hydrolysis of 3, suggestive of a mechanism involving direct hydrolytic cleavage of the ester group in 3. Finally, 3-(ethylamino)-2-(ethylcarbamoyl)-3-oxo-2-phenylpropyl 2-(3-(dimethylcarbamoyl)-4-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetate (4), which possessed an N,N-diethyl-2-phenylmalonamide substituent (in lieu of the diethyl-2-phenylmalonate motif in JTT-130) proved to be resistant to the hydrolytic cleavage/decarboxylative fragmentation pathway that yielded 1, a phenomenon that further confirmed our hypothesis. From a toxicological standpoint, it is noteworthy to point out that the liberation of the electrophilic acrylic acid species as a byproduct of JTT-130 hydrolysis is similar to the bioactivation mechanism established for felbamate, an anticonvulsant agent associated with idiosyncratic aplastic anemia and hepatotoxicity.


Assuntos
Benzamidas/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Malonatos/metabolismo , Microssomos Hepáticos/metabolismo , Benzamidas/farmacologia , Glutationa/metabolismo , Humanos , Hidrólise , Malonatos/farmacologia , Fenilpropionatos/metabolismo , Espectrometria de Massas em Tandem
12.
Drug Metab Pharmacokinet ; 26(3): 266-79, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21383524

RESUMO

The metabolism of 3,4-dihydro-7-[4-(1-naphthalenyl)-1-piperazinyl]butoxy]-1,8-naphthyridin-2(1H)-one (NPBN) was investigated in rats. Animals were administered 30 mg/kg NPBN that was labeled with both tritium and carbon-14. The mass recovery of drug-related material was 96-98%, with almost all material excreted in feces. Metabolism occurred by oxidation reactions followed by conjugation. The main route of metabolism of NPBN occurred via oxidation of the naphthylene ring, which led to naphthol and dihydrodiol metabolites as well as a relatively novel N-dearylated metabolite in which the naphthylene ring was removed. In vitro investigation in rat liver microsomes also showed a glutathione adduct on the naphthalene and a glutathione adduct of naphthoquinone, which, along with the dihydrodiol metabolite, is consistent with the initial generation of an epoxide. A mechanism is proposed whereby the N-dearylation arises via epoxidation, followed by formation of an exocyclic iminium ion intermediate that is hydrolyzed to yield the N-dearylated metabolite. An additional mechanism involves oxidation of the naphthol metabolite via a radical mechanism, since this metabolite was also shown to undergo N-dearylation.


Assuntos
Antipsicóticos/metabolismo , Antagonistas de Dopamina/metabolismo , Antagonistas dos Receptores de Dopamina D2 , Agonismo Parcial de Drogas , Animais , Antipsicóticos/sangue , Antipsicóticos/farmacocinética , Antipsicóticos/urina , Área Sob a Curva , Cromatografia Líquida de Alta Pressão , Remoção de Radical Alquila , Antagonistas de Dopamina/sangue , Antagonistas de Dopamina/farmacocinética , Antagonistas de Dopamina/urina , Compostos de Epóxi/metabolismo , Fezes/química , Feminino , Glucuronídeos/sangue , Glucuronídeos/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Hidroxilação , Espectroscopia de Ressonância Magnética , Masculino , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Naftiridinas/sangue , Naftiridinas/metabolismo , Naftiridinas/farmacocinética , Naftiridinas/urina , Oxirredução , Piperazinas/sangue , Piperazinas/metabolismo , Piperazinas/farmacocinética , Piperazinas/urina , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização por Electrospray , Ésteres do Ácido Sulfúrico/metabolismo , Urina/química
13.
Drug Metab Dispos ; 39(3): 539-50, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21156812

RESUMO

A recent X-ray crystal structure of a rabbit cytochrome P450 2B4 (CYP2B4)-ticlopidine complex indicated that the compound could be modeled with either the thiophene or chlorophenyl group oriented toward the heme prosthetic group. Subsequent NMR relaxation and molecular docking studies suggested that orientation with the chlorophenyl ring closer to the heme was the preferred one. To evaluate the predictive value of these findings, the oxidation of ticlopidine by reconstituted CYP2B4 was studied and compared with CYP2B6, in which the thiophene portion of the molecule likely orients toward the heme. In vitro incubation of ticlopidine with both enzymes yielded the same set of metabolites: 7-hydroxyticlopidine (M1), 2-oxoticlopidine (M2), 5-(2-chlorobenzyl)thieno[3,2-c]pyridin-5-ium metabolite (M3), 5-(2-chlorobenzyl)thieno[3,2-c]pyridin-5-ium metabolite (M4), ticlopidine N-oxide (M5), and ticlopidine S-oxide dimer, a dimerization product of ticlopidine S-oxide (M6). The rates of metabolite formation deviated markedly from linearity with time, consistent with the known inactivation of CYP2B6 by ticlopidine. Fitting to a first-order equation yielded similar rate constants (k(obs)) for both enzymes. However, the amplitude (R(max)) of M1 and M6 formation was 4 to 5 times higher for CYP2B6 than CYP2B4, indicating a greater residence time of ticlopidine with its thiophene ring closer to heme in CYP2B6. In contrast, CYP2B4 formed M4 and M5 in more abundance than CYP2B6, indicating an alternate orientation. Overall, the results suggest that the preferential orientation of ticlopidine in the active site of CYP2B4 predicted by X-ray crystallography and NMR studies is unproductive and that ticlopidine likely reorients within CYP2B4 to a more productive mode.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores da Agregação Plaquetária/metabolismo , Ticlopidina/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/isolamento & purificação , Biocatálise , Bupropiona/metabolismo , Cromatografia Líquida de Alta Pressão , Cumarínicos/metabolismo , Citocromo P-450 CYP2B6 , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Família 2 do Citocromo P450 , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Oxirredução , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacologia , Coelhos , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Ticlopidina/análogos & derivados , Ticlopidina/química , Ticlopidina/farmacologia
14.
Chem Res Toxicol ; 20(12): 1954-65, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17935300

RESUMO

The current study examined the bioactivation potential of a nonpeptidyl thrombopoietin receptor agonist, 1-(3-chloro-5-((4-(4-fluoro-3-(trifluoromethyl)phenyl)thiazol-2-yl)carbamoyl)pyridine-2-yl)piperidine-4-carboxylic acid (1), containing a 2-carboxamido-4-arylthiazole moiety in the core structure. Toxicological risks arising from P450-catalyzed C4-C5 thiazole ring opening in 1 via the epoxidation-->diol sequence were alleviated, since mass spectrometric analysis of human liver microsome and/or hepatocyte incubations of 1 did not reveal the formation of reactive acylthiourea and/or glyoxal metabolites, which are prototypic products derived from thiazole ring scission. However, 4-(4-fluoro-3-(trifluoromethyl)phenyl)thiazol-2-amine (2), the product of hydrolysis of 1 in human liver microsomes, hepatocytes, and plasma, underwent oxidative bioactivation in human liver microsomes, since trapping studies with glutathione led to the formation of two conjugates derived from the addition of the thiol nucleophile to 2 and a thiazole- S-oxide metabolite of 2. Mass spectral fragmentation and NMR analysis indicated that the site of attachment of the glutathionyl moiety in both conjugates was the C5 position in the thiazole ring. Based on the structures of the glutathione conjugates, two bioactivation pathways are proposed, one involving beta-elimination of an initially formed hydroxylamine metabolite and the other involving direct two-electron oxidation of the electron-rich 2-aminothiazole system to electrophilic intermediates. This mechanistic insight into the bioactivation process allowed the development of a rational chemical intervention strategy that involved blocking the C5 position with a fluorine atom or replacing the thiazole ring with a 1,2,4-thiadiazole group. These structural changes not only abrogated the bioactivation liability associated with 1 but also resulted in compounds that retained the attractive pharmacological and pharmacokinetic attributes of the prototype agent.


Assuntos
Piridinas/farmacologia , Receptores de Trombopoetina/agonistas , Tiazóis/química , Animais , Disponibilidade Biológica , Biotransformação , Linhagem Celular , Estabilidade de Medicamentos , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Piridinas/sangue , Piridinas/química , Piridinas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Trombopoetina/genética , Tiazóis/sangue , Tiazóis/metabolismo , Tiazóis/farmacologia , Transfecção
15.
Chem Biol Drug Des ; 70(4): 354-9, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17937780

RESUMO

Major metabolites of dimethylaminoantipyrine have been synthesized using iron ortho-nitrophenylporphyrin chloride as biomimetic catalyst. Reactivity of iron tetrakis-ortho-nitrophenylporphyrin chloride [Fe(TNO2PP)Cl] has been compared with iron tetrakis-pentafluorophenylporphyrin chloride and iron tetrakis-2,6-dichlorophenylporphyrin chloride using various oxidants such as hydrogen peroxide, iodosobenzene, and cumene hydroperoxide in either protic or aprotic solvent. Effect of imidazole has been showed on the reactivity of Fe(TNO2PP)Cl/cumene hydroperoxide system.


Assuntos
Aminopirina/química , Cloretos/química , Ferro/química , Metaloporfirinas/química , Aminopirina/metabolismo , Peróxido de Hidrogênio/química , Estrutura Molecular , Oxidantes/química , Oxirredução
16.
Chem Res Toxicol ; 17(2): 174-84, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14967005

RESUMO

The kinetics for inactivation of cytochrome P450 2D6 by (1-[(2-ethyl-4-methyl-1H-imidazol-5-yl)methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine (EMTPP) were characterized, and the mechanism was determined in an effort to understand the observed time-based inactivation. Loss of dextromethorphan O-demethylase activity following coincubation with EMTPP followed pseudo-first-order kinetics and was both NADPH- and EMTPP-dependent. Inactivation was characterized by an apparent Ki of 5.5 microM with a maximal rate constant for inactivation (kinact) of 0.09 min(-1), a t1/2 of 7.7 min, and a partition ratio of approximately 99. P450 2D6 inactivation was unaffected by coincubation with exogenous nucleophiles or reactive oxygen scavengers and was protected by the competing inhibitors N-4-(trifluoromethyl)benzyl quinidinium bromide and quinidine. After a 30 min incubation with 100 microM EMTPP, dextromethorphan O-demethylase activity was decreased approximately 76%, with a disproportionate loss ( approximately 35%) in carbon monoxide binding. Additional mechanistic studies showed no evidence of either metabolite inhibitory complex formation or heme adduction. However, a P450 2D6 apoprotein adduct was characterized that had a mass shift relative to unadducted P450 2D6 apoprotein consistent with the molecular mass of EMTPP (353 Da). In vitro metabolism studies revealed that EMTPP is susceptible to P450 2D6-mediated hydroxylation and dehydrogenation, postulated to both form via initial hydrogen atom abstraction from the alpha-carbon of the imidazole ethyl substituent. Additional studies demonstrated that while a dehydrogenated EMTPP metabolite was apparently stable and observable, we propose that a thermodynamic partitioning may exist, which results in formation of a second dehydrogenated imidazo-methide-like metabolite that may serve as the reactive species causing mechanism-based inactivation of P450 2D6. Last, trapping studies with EMTPP yielded an N-acetyl cysteine conjugate, which upon tandem MS and NMR analysis revealed adduction to the alpha-carbon of the imidazole ethyl substituent. Overall, evidence suggests that nucleophilic attack of an imidazo-methide-like intermediate by a P450 2D6 active site residue leads to apoprotein adduction and consequent inactivation.


Assuntos
Inibidores do Citocromo P-450 CYP2D6 , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Piridinas/farmacologia , Espectroscopia de Ressonância Magnética , Proteínas Recombinantes/antagonistas & inibidores , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA