RESUMO
Cellular therapies for the treatment of human diseases, such as chimeric antigen receptor (CAR) T and natural killer (NK) cells have shown remarkable clinical efficacy in treating hematological malignancies; however, current methods mainly utilize viral vectors that are limited by their cargo size capacities, high cost, and long timelines for production of clinical reagent. Delivery of genetic cargo via DNA transposon engineering is a more timely and cost-effective approach, yet has been held back by less efficient integration rates. Here, we report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieves high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. Our proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improves survival in a Burkitt lymphoma xenograft model in vivo. Overall, TcB-M is a versatile, safe, efficient and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition.
Assuntos
Linfoma de Burkitt , Vetores Genéticos , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Transposases , Humanos , Transposases/genética , Transposases/metabolismo , Animais , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva/métodos , Camundongos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Linfoma de Burkitt/terapia , Linfoma de Burkitt/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linhagem Celular Tumoral , Elementos de DNA Transponíveis , Linfócitos T/imunologia , Linfócitos T/metabolismo , TransgenesRESUMO
Prevention of allograft rejection often requires lifelong immune suppression, risking broad impairment of host immunity. Nonselective inhibition of host T cell function increases recipient risk of opportunistic infections and secondary malignancies. Here we demonstrate that AJI-100, a dual inhibitor of JAK2 and Aurora kinase A, ameliorates skin graft rejection by human T cells and provides durable allo-inactivation. AJI-100 significantly reduces the frequency of skin-homing CLA+ donor T cells, limiting allograft invasion and tissue destruction by T effectors. AJI-100 also suppresses pathogenic Th1 and Th17 cells in the spleen yet spares beneficial regulatory T cells. We show dual JAK2/Aurora kinase A blockade enhances human type 2 innate lymphoid cell (ILC2) responses, which are capable of tissue repair. ILC2 differentiation mediated by GATA3 requires STAT5 phosphorylation (pSTAT5) but is opposed by STAT3. Further, we demonstrate that Aurora kinase A activation correlates with low pSTAT5 in ILC2s. Importantly, AJI-100 maintains pSTAT5 levels in ILC2s by blocking Aurora kinase A and reduces interference by STAT3. Therefore, combined JAK2/Aurora kinase A inhibition is an innovative strategy to merge immune suppression with tissue repair after transplantation.
Assuntos
Aurora Quinase A , Imunidade Inata , Animais , Aurora Quinase A/metabolismo , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/prevenção & controle , Humanos , Janus Quinase 2 , Camundongos , Camundongos Endogâmicos C57BL , Células Th17 , Transplante HomólogoRESUMO
Natural killer (NK) cell therapies are being increasingly used as an adoptive cell therapy for cancer because they can recognize tumor cells in an antigen-independent manner. While promising, the understanding of NK cell persistence, particularly within a harsh tumor microenvironment, is limited. Fluorine-19 (19 F) MRI is a noninvasive imaging modality that has shown promise in longitudinally tracking cell populations in vivo; however, it has not been studied on murine NK cells. In this study, the impact of 19 F labeling on murine NK cell viability and function was assessed in vitro and then used to quantify NK cell persistence in vivo. While there was no noticeable impact on viability, labeling NK cells with 19 F did attenuate cytotoxicity against lymphoma cells in vitro. Fluorescent microscopy verified 19 F labeling in both the cytoplasm and nucleus of NK cells. Lymphoma-bearing mice were given intratumoral injections of 19 F-labeled NK cells in which signal was detectable across the 6 day observation period via 19 F MRI. Quantification from the composite images detected 78-94% of the initially injected NK cells across 6 days, with a significant decrease between Days 3 and 6. Postmortem flow cytometry demonstrated retention of 19 F intracellularly within adoptively transferred NK cells with less than 1% of 19 F-containing cells identified as tumor-associated macrophages that presumably ingested nonviable NK cells. This work demonstrates that 19 F MRI offers a specific imaging platform to track and quantify murine NK cells within tumors noninvasively.
Assuntos
Células Matadoras Naturais/imunologia , Linfoma/imunologia , Imageamento por Ressonância Magnética/métodos , Animais , Citometria de Fluxo , Linfoma/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Tomografia por Emissão de Pósitrons combinada à Tomografia ComputadorizadaRESUMO
Targeting the JAK/STAT and BCL2 pathways in patients with relapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dose-dependent effect on T-ALL individually, but combination treatment reduces survival and proliferation of T-ALL in vitro. Using a xenograft model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite on-target inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS) as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that ruxolitinib and venetoclax insufficiently cross into the CNS. The addition of the CXCR4 inhibitor plerixafor with ruxolitinib and venetoclax reduces clinical scores and enhances survival. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis may be needed to maximize the possibility of complete remission.
Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores CXCR4 , Benzilaminas , Compostos Bicíclicos Heterocíclicos com Pontes , Sistema Nervoso Central , Ciclamos , Mobilização de Células-Tronco Hematopoéticas , Humanos , Janus Quinase 1 , Nitrilas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Pirazóis , Pirimidinas , SulfonamidasRESUMO
BACKGROUND AIMS: Several methods to expand and activate (EA) NK cells ex vivo have been developed for the treatment of relapsed or refractory cancers. Infusion of fresh NK cells is generally preferred to the infusion of cryopreserved/thawed (C/T) NK cells because of concern that cryopreservation diminishes NK cell activity. However, there has been little head-to-head comparison of the functionality of fresh versus C/T NK cell products. METHODS: We evaluated activity of fresh and C/T EA NK cells generated by interleukin (IL)-15, IL-2 and CD137L expansion. RESULTS: Analysis of C/T NK cell products demonstrated decreased recovery of viable CD56+ cells, but the proportion of NK cells in the C/T EA NK cell product did not decrease compared with the fresh EA NK cell product. Fresh and C/T EA NK cells demonstrated increased granzyme B compared with NK cells pre-expansion, but only fresh EA NK cells showed increased NKG2D. Compared with fresh EA NK cells, cytotoxic ability of C/T EA NK cells was reduced, but C/T EA NK cells remained potently cytotoxic against tumor cells via both antibody-independent and antibody-dependent mechanisms within 4 h post-thaw. Fresh EA NK cells generated high levels of gamma interferon (IFN-γ), which was abrogated by JAK1/JAK2 inhibition with ruxolitinib, but C/T EA NK cells showed lower IFN-γ unaffected by JAK1/JAK2 inhibition. DISCUSSION: Usage of C/T EA NK cells may be an option to provide serial "boost" NK cell infusions from a single apheresis to maximize NK cell persistence and potentially improve NK-induced responses to refractory cancer.
Assuntos
Técnicas de Cultura de Células/métodos , Criopreservação , Células Matadoras Naturais/citologia , Ativação Linfocitária/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Granzimas/metabolismo , Humanos , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Subpopulações de Linfócitos/citologia , Subpopulações de Linfócitos/efeitos dos fármacos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Nitrilas , Pirazóis/farmacologia , PirimidinasRESUMO
Finding improved therapeutic strategies against T-cell Non-Hodgkin's Lymphoma (NHL) remains an unmet clinical need. We implemented a theranostic approach employing a tumor-targeting alkylphosphocholine (NM600) radiolabeled with 86Y for positron emission tomography (PET) imaging and 90Y for targeted radionuclide therapy (TRT) of T-cell NHL. PET imaging and biodistribution performed in mouse models of T-cell NHL showed in vivo selective tumor uptake and retention of 86Y-NM600. An initial toxicity assessment examining complete blood counts, blood chemistry, and histopathology of major organs established 90Y-NM600 safety. Mice bearing T-cell NHL tumors treated with 90Y-NM600 experienced tumor growth inhibition, extended survival, and a high degree of cure with immune memory toward tumor reestablishment. 90Y-NM600 treatment was also effective against disseminated tumors, improving survival and cure rates. Finally, we observed a key role for the adaptive immune system in potentiating a durable anti-tumor response to TRT, especially in the presence of microscopic disease.
Assuntos
Memória Imunológica/efeitos da radiação , Linfoma de Células T/radioterapia , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos de Ítrio/uso terapêutico , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Memória Imunológica/imunologia , Linfoma de Células T/diagnóstico por imagem , Linfoma de Células T/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Distribuição Tecidual/imunologia , Distribuição Tecidual/efeitos da radiação , Carga Tumoral/imunologia , Carga Tumoral/efeitos da radiação , Proteína Tumoral 1 Controlada por Tradução , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Radioisótopos de Ítrio/sangue , Radioisótopos de Ítrio/farmacocinéticaRESUMO
Recent advances in cellular therapies for patients with cancer, including checkpoint blockade and ex vivo-expanded, tumor-specific T cells, have demonstrated that targeting the immune system is a powerful approach to the elimination of tumor cells. Clinical efforts have also demonstrated limitations, however, including the potential for tumor cell antigenic drift and neoantigen formation, which promote tumor escape and recurrence, as well as rapid onset of T cell exhaustion in vivo. These findings suggest that antigen unrestricted cells, such as natural killer (NK) cells, may be beneficial for use as an alternative to or in combination with T cell based approaches. Although highly effective in lysing transformed cells, to date, few clinical trials have demonstrated antitumor function or persistence of transferred NK cells. Several recent studies describe methods to expand NK cells for adoptive transfer, although the effects of ex vivo expansion are not fully understood. We therefore explored the impact of a clinically validated 12-day expansion protocol using a K562 cell line expressing membrane-bound IL-15 and 4-1BB ligand with high-dose soluble IL-2 on the phenotype and functions of NK cells from healthy donors. Following expansions using this protocol, we found expression of surface proteins that implicate preferential expansion of NK cells that are not fully mature, as is typically associated with highly cytotoxic NK cell subsets. Despite increased expression of markers associated with functional exhaustion in T cells, we found that ex vivo-expanded NK cells retained cytokine production capacity and had enhanced tumor cell cytotoxicity. The preferential expansion of an NK cell subset that is phenotypically immature and functionally pleiotropic suggests that adoptively transferred cells may persist better in vivo when compared with previous methods using this approach. Ex vivo expansion does not quell killer immunoglobulin-like receptor diversity, allowing responsiveness to various factors in vivo that may influence activation and inhibition. Collectively, our data suggest that in addition to robust NK cell expansion that has been described using this method, expanded NK cells may represent an ideal cell therapy that is longer lived, highly potent, and responsive to an array of activating and inhibitory signals.
Assuntos
Células Matadoras Naturais/imunologia , Ligante 4-1BB/imunologia , Humanos , Interleucina-15/imunologia , Interleucina-2/imunologia , Células K562 , FenótipoRESUMO
The netrin axon guidance genes have previously been implicated in fertility in C. elegans and in vertebrates. Here we show that adult Drosophila lacking both netrin genes, NetA and NetB, have fertility defects in both sexes together with an inability to fly and reduced viability. NetAB females produce fertilized eggs at a much lower rate than wild type. Oocyte development and ovarian innervation are unaffected in NetAB females, and the reproductive tract appears normal. A small gene, hog, that resides in an intron of NetB does not contribute to the NetAB phenotype. Restoring endogenous NetB expression rescues egg-laying, but additional genetic manipulations, such as restoration of netrin midline expression and inhibition of cell death have no effect on fertility. NetAB males induce reduced egg-laying in wild type females and display mirror movements of their wings during courtship. Measurement of courtship parameters revealed no difference compared to wild type males. Transgenic manipulations failed to rescue male fertility and mirror movements. Additional genetic manipulations, such as removal of the enabled gene, a known suppressor of the NetAB embryonic CNS phenotype, did not improve the behavioral defects. The ability to fly was rescued by inhibition of neuronal cell death and pan-neural NetA expression. Based on our results we hypothesize that the adult fertility defects of NetAB mutants are due to ovulation defects in females and a failure to properly transfer sperm proteins in males, and are likely to involve multiple neural circuits.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Genes de Insetos , Fatores de Crescimento Neural/genética , Proteínas Supressoras de Tumor/genética , Animais , Animais Geneticamente Modificados , Axônios , Movimento Celular , Núcleo Celular/metabolismo , Corte , Proteínas de Drosophila/química , Drosophila melanogaster/citologia , Casca de Ovo/metabolismo , Feminino , Fertilidade/genética , Voo Animal , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos , Masculino , Movimento , Mutação/genética , Fatores de Crescimento Neural/química , Netrina-1 , Netrinas , Neurônios/metabolismo , Oogênese , Folículo Ovariano/citologia , Folículo Ovariano/inervação , Oviposição/genética , Comportamento Sexual Animal , Proteínas Supressoras de Tumor/químicaRESUMO
Netrins are guidance cues that form gradients to guide growing axons. We uncover a mechanism for axon guidance by demonstrating that axons can accurately navigate in the absence of a Netrin gradient if apoptotic signaling is blocked. Deletion of the two Drosophila NetA and NetB genes leads to guidance defects and increased apoptosis, and expression of either gene at the midline is sufficient to rescue the connectivity defects and cell death. Surprisingly, pan-neuronal expression of NetB rescues equally well, even though no Netrin gradient has been established. Furthermore, NetB expression blocks apoptosis, suggesting that NetB acts as a neurotrophic factor. In contrast, neuronal expression of NetA increases axon defects. Simply blocking apoptosis in NetAB mutants is sufficient to rescue connectivity, and inhibition of caspase activity in subsets of neurons rescues guidance independently of survival. In contrast to the traditional role of Netrin as simply a guidance cue, our results demonstrate that guidance and survival activities may be functionally related.