Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39145446

RESUMO

Tissue fibrosis remains unamenable to meaningful therapeutic interventions and is the primary cause of chronic graft failure after organ transplantation. Eukaryotic translation initiation factor (eIF4E), a key translational regulator, serves as convergent target of multiple upstream profibrotic signaling pathways that contribute to mesenchymal cell (MC) activation. Here, we investigate the role of MAP kinase-interacting serine/threonine kinase-induced (MNK-induced) direct phosphorylation of eIF4E at serine 209 (Ser209) in maintaining fibrotic transformation of MCs and determine the contribution of the MNK/eIF4E pathway to the pathogenesis of chronic lung allograft dysfunction (CLAD). MCs from patients with CLAD demonstrated constitutively higher eIF4E phosphorylation at Ser209, and eIF4E phospho-Ser209 was found to be critical in regulating key fibrogenic protein autotaxin, leading to sustained ß-catenin activation and profibrotic functions of CLAD MCs. MNK1 signaling was upregulated in CLAD MCs, and genetic or pharmacologic targeting of MNK1 activity inhibited eIF4E phospho-Ser209 and profibrotic functions of CLAD MCs in vitro. Treatment with an MNK1/2 inhibitor (eFT-508) abrogated allograft fibrosis in an orthotopic murine lung-transplant model. Together these studies identify what we believe is a previously unrecognized MNK/eIF4E/ATX/ß-catenin signaling pathway of fibrotic transformation of MCs and present the first evidence, to our knowledge, for the utility of MNK inhibitors in fibrosis.


Assuntos
Aloenxertos , Fator de Iniciação 4E em Eucariotos , Transplante de Pulmão , Proteínas Serina-Treonina Quinases , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Camundongos , Fosforilação , Humanos , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Masculino , Fibrose , Feminino , Transdução de Sinais
2.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L39-L51, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933452

RESUMO

Idiopathic pulmonary fibrosis (IPF) is marked by unremitting matrix deposition and architectural distortion. Multiple profibrotic pathways contribute to the persistent activation of mesenchymal cells (MCs) in fibrosis, highlighting the need to identify and target common signaling pathways. The transcription factor nuclear factor of activated T cells 1 (NFAT1) lies downstream of second messenger calcium signaling and has been recently shown to regulate key profibrotic mediator autotaxin (ATX) in lung MCs. Herein, we investigate the role of NFAT1 in regulating fibroproliferative responses during the development of lung fibrosis. Nfat1-/--deficient mice subjected to bleomycin injury demonstrated improved survival and protection from lung fibrosis and collagen deposition as compared with bleomycin-injured wild-type (WT) mice. Chimera mice, generated by reconstituting bone marrow cells from WT or Nfat1-/- mice into irradiated WT mice (WT→WT and Nfat1-/-→WT), demonstrated no difference in bleomycin-induced fibrosis, suggesting immune influx-independent fibroprotection in Nfat1-/- mice. Examination of lung tissue and flow sorted lineageneg/platelet-derived growth factor receptor alpha (PDGFRα)pos MCs demonstrated decreased MC numbers, proliferation [↓ cyclin D1 and 5-ethynyl-2'-deoxyuridine (EdU) incorporation], myofibroblast differentiation [↓ α-smooth muscle actin (α-SMA)], and survival (↓ Birc5) in Nfat1-/- mice. Nfat1 deficiency abrogated ATX expression in response to bleomycin in vivo and MCs derived from Nfat1-/- mice demonstrated decreased ATX expression and migration in vitro. Human IPF MCs demonstrated constitutive NFAT1 activation, and regulation of ATX in these cells by NFAT1 was confirmed using pharmacological and genetic inhibition. Our findings identify NFAT1 as a critical mediator of profibrotic processes, contributing to dysregulated lung remodeling and suggest its targeting in MCs as a potential therapeutic strategy in IPF.NEW & NOTEWORTHY Idiopathic pulmonary fibrosis (IPF) is a fatal disease with hallmarks of fibroblastic foci and exuberant matrix deposition, unknown etiology, and ineffective therapies. Several profibrotic/proinflammatory pathways are implicated in accelerating tissue remodeling toward a honeycombed end-stage disease. NFAT1 is a transcriptional factor activated in IPF tissues. Nfat1-deficient mice subjected to chronic injury are protected against fibrosis independent of immune influxes, with suppression of profibrotic mesenchymal phenotypes including proliferation, differentiation, resistance to apoptosis, and autotaxin-related migration.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Animais , Humanos , Camundongos , Bleomicina/farmacologia , Diferenciação Celular/genética , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais
3.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546975

RESUMO

In this study, we demonstrate that forkhead box F1 (FOXF1), a mesenchymal transcriptional factor essential for lung development, was retained in a topographically distinct mesenchymal stromal cell population along the bronchovascular space in an adult lung and identify this distinct subset of collagen-expressing cells as key players in lung allograft remodeling and fibrosis. Using Foxf1-tdTomato BAC (Foxf1-tdTomato) and Foxf1-tdTomato Col1a1-GFP mice, we show that Lin-Foxf1+ cells encompassed the stem cell antigen 1+CD34+ (Sca1+CD34+) subset of collagen 1-expressing mesenchymal cells (MCs) with a capacity to generate CFU and lung epithelial organoids. Histologically, FOXF1-expressing MCs formed a 3D network along the conducting airways; FOXF1 was noted to be conspicuously absent in MCs in the alveolar compartment. Bulk and single-cell RNA-Seq confirmed distinct transcriptional signatures of Foxf1+ and Foxf1- MCs, with Foxf1-expressing cells delineated by their high expression of the transcription factor glioma-associated oncogene 1 (Gli1) and low expression of integrin α8 (Itga), versus other collagen-expressing MCs. FOXF1+Gli1+ MCs showed proximity to Sonic hedgehog-expressing (Shh-expressing) bronchial epithelium, and mesenchymal expression of Foxf1 and Gli1 was found to be dependent on paracrine Shh signaling in epithelial organoids. Using a murine lung transplant model, we show dysregulation of epithelial-mesenchymal SHH/GLI1/FOXF1 crosstalk and expansion of this specific peribronchial MC population in chronically rejecting fibrotic lung allografts.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Rejeição de Enxerto/metabolismo , Transplante de Pulmão , Células-Tronco Mesenquimais/metabolismo , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/metabolismo , Aloenxertos , Animais , Doença Crônica , Fatores de Transcrição Forkhead/genética , Rejeição de Enxerto/genética , Rejeição de Enxerto/patologia , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Transgênicos , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia
4.
Lancet Respir Med ; 9(6): 601-612, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33460570

RESUMO

BACKGROUND: Alterations in the respiratory microbiome are common in chronic lung diseases, correlate with decreased lung function, and have been associated with disease progression. The clinical significance of changes in the respiratory microbiome after lung transplant, specifically those related to development of chronic lung allograft dysfunction (CLAD), are unknown. The aim of this study was to evaluate the effect of lung microbiome characteristics in healthy lung transplant recipients on subsequent CLAD-free survival. METHODS: We prospectively studied a cohort of lung transplant recipients at the University of Michigan (Ann Arbor, MI, USA). We analysed characteristics of the respiratory microbiome in acellular bronchoalveolar lavage fluid (BALF) collected from asymptomatic patients during per-protocol surveillance bronchoscopy 1 year after lung transplantation. For our primary endpoint, we evaluated a composite of development of CLAD or death at 500 days after the 1-year surveillance bronchoscopy. Our primary microbiome predictor variables were bacterial DNA burden (total 16S rRNA gene copies per mL of BALF, quantified via droplet digital PCR) and bacterial community composition (determined by bacterial 16S rRNA gene sequencing). Patients' lung function was followed serially at least every 3 months by spirometry, and CLAD was diagnosed according to International Society of Heart and Lung Transplant 2019 guidelines. FINDINGS: We analysed BALF from 134 patients, collected during 1-year post-transplant surveillance bronchoscopy between Oct 21, 2005, and Aug 25, 2017. Within 500 days of follow-up from the time of BALF sampling, 24 (18%) patients developed CLAD, five (4%) died before confirmed development of CLAD, and 105 (78%) patients remained CLAD-free with complete follow-up. Lung bacterial burden was predictive of CLAD development or death within 500 days of the surveillance bronchoscopy, after controlling for demographic and clinical factors, including immunosuppression and bacterial culture results, in a multivariable survival model. This relationship was evident when burden was analysed as a continuous variable (per log10 increase in burden, HR 2·49 [95% CI 1·38-4·48], p=0·0024) or by tertiles (middle vs lowest bacterial burden tertile, HR 4·94 [1·25-19·42], p=0·022; and highest vs lowest, HR 10·56 [2·53-44·08], p=0·0012). In patients who developed CLAD or died, composition of the lung bacterial community significantly differed to that in patients who survived and remained CLAD-free (on permutational multivariate analysis of variance, p=0·047 at the taxonomic level of family), although differences in community composition were associated with bacterial burden. No individual bacterial taxa were definitively associated with CLAD development or death. INTERPRETATION: Among asymptomatic lung transplant recipients at 1-year post-transplant, increased lung bacterial burden is predictive of chronic rejection and death. The lung microbiome represents an understudied and potentially modifiable risk factor for lung allograft dysfunction. FUNDING: US National Institutes of Health, Cystic Fibrosis Foundation, Brian and Mary Campbell and Elizabeth Campbell Carr research gift fund.


Assuntos
Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/microbiologia , Transplante de Pulmão , Pulmão/microbiologia , Microbiota , Transplantados/estatística & dados numéricos , Doença Crônica , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
5.
Am J Transplant ; 21(7): 2360-2371, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33249747

RESUMO

Histopathologic examination of lungs afflicted by chronic lung allograft dysfunction (CLAD) consistently shows both mononuclear cell (MNC) inflammation and mesenchymal cell (MC) fibroproliferation. We hypothesize that interleukin 6 (IL-6) trans-signaling may be a critical mediator of MNC-MC crosstalk and necessary for the pathogenesis of CLAD. Bronchoalveolar lavage (BAL) fluid obtained after the diagnosis of CLAD has approximately twofold higher IL-6 and soluble IL-6 receptor (sIL-6R) levels compared to matched pre-CLAD samples. Human BAL-derived MCs do not respond to treatment with IL-6 alone but have rapid and prolonged JAK2-mediated STAT3 Tyr705 phosphorylation when exposed to the combination of IL-6 and sIL-6R. STAT3 phosphorylation within MCs upregulates numerous genes causing increased invasion and fibrotic differentiation. MNC, a key source of both IL-6 and sIL-6R, produce minimal amounts of these proteins at baseline but significantly upregulate production when cocultured with MCs. Finally, the use of an IL-6 deficient recipient in a murine orthotopic transplant model of CLAD reduces allograft fibrosis by over 50%. Taken together these results support a mechanism where infiltrating MNCs are stimulated by resident MCs to release large quantities of IL-6 and sIL-6R which then feedback onto the MCs to increase invasion and fibrotic differentiation.


Assuntos
Interleucina-6 , Transplante de Pulmão , Aloenxertos , Animais , Fibrose , Humanos , Pulmão/patologia , Transplante de Pulmão/efeitos adversos , Camundongos , Receptores de Interleucina-6
6.
Sci Rep ; 10(1): 21231, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277571

RESUMO

Forkhead box F1 (FOXF1) is a lung embryonic mesenchyme-associated transcription factor that demonstrates persistent expression into adulthood in mesenchymal stromal cells. However, its biologic function in human adult lung-resident mesenchymal stromal cells (LR-MSCs) remain to be elucidated. Here, we demonstrate that FOXF1 expression acts as a restraint on the migratory function of LR-MSCs via its role as a novel transcriptional repressor of autocrine motility-stimulating factor Autotaxin (ATX). Fibrotic human LR-MSCs demonstrated lower expression of FOXF1 mRNA and protein, compared to non-fibrotic controls. RNAi-mediated FOXF1 silencing in LR-MSCs was associated with upregulation of key genes regulating proliferation, migration, and inflammatory responses and significantly higher migration were confirmed in FOXF1-silenced LR-MSCs by Boyden chamber. ATX is a secreted lysophospholipase D largely responsible for extracellular lysophosphatidic acid (LPA) production, and was among the top ten upregulated genes upon Affymetrix analysis. FOXF1-silenced LR-MSCs demonstrated increased ATX activity, while mFoxf1 overexpression diminished ATX expression and activity. The FOXF1 silencing-induced increase in LR-MSC migration was abrogated by genetic and pharmacologic targeting of ATX and LPA1 receptor. Chromatin immunoprecipitation analyses identified three putative FOXF1 binding sites in the 1.5 kb ATX promoter which demonstrated transcriptional repression of ATX expression. Together these findings identify FOXF1 as a novel transcriptional repressor of ATX and demonstrate that loss of FOXF1 promotes LR-MSC migration via the ATX/LPA/LPA1 signaling axis.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Pulmão/metabolismo , Lisofosfolipídeos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Animais , Sítios de Ligação/genética , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Citocinas/metabolismo , Fatores de Transcrição Forkhead/genética , Ontologia Genética , Inativação Gênica , Humanos , Pulmão/citologia , Camundongos , Diester Fosfórico Hidrolases/genética , Regiões Promotoras Genéticas , Interferência de RNA , Transdução de Sinais/genética , Ativação Transcricional/genética , Regulação para Cima
7.
J Heart Lung Transplant ; 39(8): 815-823, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32360292

RESUMO

BACKGROUND: Chronic lung allograft dysfunction (CLAD), the primary cause of poor outcome after lung transplantation, arises from fibrotic remodeling of the allograft and presents as diverse clinical phenotypes with variable courses. Here, we investigate whether bronchoalveolar lavage (BAL) mesenchymal cell activity at CLAD onset can inform regarding disease phenotype, progression, and survival. METHODS: Mesenchymal cell colony-forming units (CFUs) were measured in BAL obtained at CLAD onset (n = 77) and CLAD-free time post-transplant matched controls (n = 77). CFU counts were compared using Wilcoxon's rank-sum test. Cox proportional hazards and restricted means models were utilized to investigate post-CLAD survival. RESULTS: Higher mesenchymal CFU counts were noted in BAL at the time of CLAD onset than in CLAD-free controls. Patients with restrictive allograft syndrome had higher BAL mesenchymal CFU count at CLAD onset than patients with bronchiolitis obliterans syndrome (p = 0.011). Patients with high mesenchymal CFU counts (≥10) at CLAD onset had worse outcomes than those with low (<10) CFU counts, with shorter average survival (2.64 years vs 4.25 years; p = 0.027) and shorter progression-free survival, defined as time to developing either CLAD Stage 3 or death (0.97 years vs 2.70 years; p < 0.001). High CFU count remained predictive of decreased overall survival and progression-free survival after accounting for the CLAD phenotype and other clinical factors in multivariable analysis. CONCLUSIONS: Fulminant fibroproliferation with higher mesenchymal CFU counts in BAL is noted in restrictive allograft syndrome and is independently associated with poor survival after CLAD onset.


Assuntos
Bronquiolite Obliterante/cirurgia , Líquido da Lavagem Broncoalveolar/citologia , Transplante de Pulmão , Células-Tronco Mesenquimais/citologia , Disfunção Primária do Enxerto/etiologia , Adulto , Aloenxertos , Broncoscopia , Progressão da Doença , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Disfunção Primária do Enxerto/diagnóstico , Disfunção Primária do Enxerto/mortalidade , Estudos Prospectivos , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia
8.
Am J Respir Crit Care Med ; 185(1): 77-84, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21940790

RESUMO

RATIONALE: Donor mesenchymal stromal/stem cell (MSC) expansion and fibrotic differentiation is associated with development of bronchiolitis obliterans syndrome (BOS) in human lung allografts. However, the regulators of fibrotic differentiation of these resident mesenchymal cells are not well understood. OBJECTIVES: This study examines the role of endogenous and exogenous prostaglandin (PG)E2 as a modulator of fibrotic differentiation of human lung allograft-derived MSCs. METHODS: Effect of PGE2 on proliferation, collagen secretion, and α-smooth muscle actin (α-SMA) expression was assessed in lung-resident MSCs (LR-MSCs) derived from patients with and without BOS. The response pathway involved was elucidated by use of specific agonists and antagonists. MEASUREMENT AND MAIN RESULTS: PGE2 treatment of LR-MSCs derived from normal lung allografts significantly inhibited their proliferation, collagen secretion, and α-SMA expression. On the basis of pharmacologic and small-interfering RNA approaches, a PGE2/E prostanoid (EP)2/adenylate cyclase pathway was implicated in these suppressive effects. Stimulation of endogenous PGE2 secretion by IL-1ß was associated with amelioration of their myofibroblast differentiation in vitro, whereas its inhibition by indomethacin augmented α-SMA expression. LR-MSCs from patients with BOS secreted significantly less PGE2 than non-BOS LR-MSCs. Furthermore, BOS LR-MSCs were found to be defective in their ability to induce cyclooxygenase-2, and therefore unable to up-regulate PGE2 synthesis in response to IL-1ß. BOS LR-MSCs also demonstrated resistance to the inhibitory actions of PGE2 in association with a reduction in the EP2/EP1 ratio. CONCLUSIONS: These data identify the PGE2 axis as an important autocrine-paracrine brake on fibrotic differentiation of LR-MSCs, a failure of which is associated with BOS.


Assuntos
Bronquiolite Obliterante/metabolismo , Bronquiolite Obliterante/patologia , Dinoprostona/metabolismo , Transplante de Pulmão , Pulmão/metabolismo , Pulmão/patologia , Actinas/metabolismo , Adenilil Ciclases/metabolismo , Western Blotting , Líquido da Lavagem Broncoalveolar , Diferenciação Celular , Células Cultivadas , Colágeno/metabolismo , Ciclo-Oxigenase 2/metabolismo , Fibrose , Humanos , Interleucina-1beta/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Reação em Cadeia da Polimerase em Tempo Real
9.
Am J Respir Cell Mol Biol ; 45(4): 809-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21378261

RESUMO

Multipotent mesenchymal progenitor cells, termed "mesenchymal stem cells" (MSCs), have been demonstrated to reside in human adult lungs. However, there is little information regarding the associations of these local mesenchymal progenitors with other resident somatic cells and their potential for therapeutic use. Here we provide in vivo and in vitro evidence for the ability of human adult lung-resident MSCs (LR-MSCs) to interact with the local epithelial cells. The in vivo retention and localization of human LR-MSCs in an alveolar microenvironment was investigated by placing PKH-26 or DsRed lentivirus-labeled human LR-MSCs in the lungs of immunodeficient (SCID) mice. At 3 weeks after intratracheal administration, 19.3 ± 3.21% of LR-MSCs were recovered, compared with 3.47 ± 0.51% of control fibroblasts, as determined by flow cytometry. LR-MSCs were found to persist in murine lungs for up to 6 months and demonstrated preferential localization to the corners of the alveoli in close proximity to type II alveolar epithelial cells, the progenitor cells of the alveolar epithelium. In vitro, LR-MSCs established gap junction communications with lung alveolar and bronchial epithelial cells and demonstrated an ability to secrete keratinocyte growth factor, an important modulator of epithelial cell proliferation and differentiation. Gap junction communications were also demonstrable between LR-MSCs and resident murine cells in vivo. This study demonstrates, for the first time, an ability of tissue-specific MSCs to engraft in their organ of origin and establishes a pathway of bidirectional interaction between these mesenchymal progenitors and adult somatic epithelial cells in the lung.


Assuntos
Células Epiteliais Alveolares/metabolismo , Comunicação Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Alvéolos Pulmonares/cirurgia , Animais , Separação Celular/métodos , Rastreamento de Células , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Feminino , Fator 7 de Crescimento de Fibroblastos/metabolismo , Citometria de Fluxo , Corantes Fluorescentes/metabolismo , Junções Comunicantes/metabolismo , Vetores Genéticos , Sobrevivência de Enxerto , Humanos , Lentivirus/genética , Proteínas Luminescentes/biossíntese , Proteínas Luminescentes/genética , Camundongos , Camundongos SCID , Compostos Orgânicos/metabolismo , Alvéolos Pulmonares/metabolismo , Fatores de Tempo , Transfecção , Proteína Vermelha Fluorescente
10.
Am J Respir Crit Care Med ; 183(8): 1062-70, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21169468

RESUMO

RATIONALE: Bronchoalveolar lavage fluid (BAL) from human lung allografts demonstrates the presence of a multipotent mesenchymal stromal cell population. However, the clinical relevance of this novel cellular component of BAL and its association with bronchiolitis obliterans syndrome (BOS), a disease marked by progressive airflow limitation secondary to fibrotic obliteration of the small airways, remains to be determined. OBJECTIVES: In this study we investigate the association of number of mesenchymal stromal cells in BAL with development of BOS in human lung transplant recipients. METHODS: Mesenchymal colony-forming units (CFUs) were quantitated in a cohort of 405 BAL samples obtained from 162 lung transplant recipients. Poisson generalized estimating equations were used to determine the predictors of BAL mesenchymal CFU count. MEASUREMENTS AND MAIN RESULTS: Higher CFU counts were noted early post-transplantation; time from transplant to BAL of greater than 3 months predicted 0.4-fold lower CFU counts (P = 0.0001). BOS diagnosis less than or equal to 365 days before BAL was associated with a 2.11-fold higher CFU count (P = 0.02). There were 2.62- and 2.70-fold higher CFU counts noted in the presence of histologic diagnosis of bronchiolitis obliterans (P = 0.05) and organizing pneumonia (0.0003), respectively. In BAL samples obtained from BOS-free patients greater than 6 months post-transplantation (n = 173), higher mesenchymal CFU counts (≥10) significantly predicted BOS onset in both univariate (hazard ratio, 5.61; 95% CI, 3.03-10.38; P < 0.0001) and multivariate (hazard ratio, 5.02; 95% CI, 2.40-10.51; P < 0.0001) Cox regression analysis. CONCLUSIONS: Measurement of mesenchymal CFUs in the BAL provides predictive information regarding future BOS onset.


Assuntos
Bronquiolite Obliterante/etiologia , Líquido da Lavagem Broncoalveolar/citologia , Transplante de Pulmão/efeitos adversos , Células-Tronco Mesenquimais/fisiologia , Adulto , Idoso , Biomarcadores , Feminino , Citometria de Fluxo , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição de Poisson , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estatísticas não Paramétricas , Células-Tronco/citologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA