Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(11): 4869-4879, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37874935

RESUMO

Fundamental understanding of the structure and assembly of nanoscale building blocks is crucial for the development of novel biomaterials with defined architectures and function. However, accessing self-consistent structural information across multiple length scales is challenging. This limits opportunities to exploit atomic scale interactions to achieve emergent macroscale properties. In this work we present an integrative small- and wide-angle neutron scattering approach coupled with computational modeling to reveal the multiscale structure of hierarchically self-assembled ß hairpins in aqueous solution across 4 orders of magnitude in length scale from 0.1 Å to 300 nm. Our results demonstrate the power of this self-consistent cross-length scale approach and allows us to model both the large-scale self-assembly and small-scale hairpin hydration of the model ß hairpin CLN025. Using this combination of techniques, we map the hydrophobic/hydrophilic character of this model self-assembled biomolecular surface with atomic resolution. These results have important implications for the multiscale investigation of aqueous peptides and proteins, for the prediction of ligand binding and molecular associations for drug design, and for understanding the self-assembly of peptides and proteins for functional biomaterials.


Assuntos
Materiais Biocompatíveis , Peptídeos , Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas
2.
Bioorg Med Chem Lett ; 87: 129260, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36997005

RESUMO

Development of protein-protein interaction (PPI) inhibitors remains a major challenge. A significant number of PPIs are mediated by helical recognition epitopes; although peptides derived from such epitopes are attractive templates for inhibitor design, they may not readily adopt a bioactive conformation, are susceptible to proteolysis and rarely elicit optimal cell uptake properties. Constraining peptides has therefore emerged as a useful method to mitigate against these liabilities in the development of PPI inhibitors. Building on our recently reported method for constraining peptides by reaction of dibromomaleimide derivatives with two cysteines positioned in an i and i + 4 relationship, in this study, we showcase the power of the method for rapid identification of ideal constraining positions using a maleimide-staple scan based on a 19-mer sequence derived from the BAD BH3 domain. We found that the maleimide constraint had little or a detrimental impact on helicity and potency in most sequences, but successfully identified i, i + 4 positions where the maleimide constraint was tolerated. Analyses using modelling and molecular dynamics (MD) simulations revealed that the inactive constrained peptides likely lose interactions with the protein as a result of introducing the constraint.


Assuntos
Proteínas Proto-Oncogênicas c-bcl-2 , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sequência de Aminoácidos , Proteína bcl-X/metabolismo , Peptídeos/química , Epitopos/metabolismo , Maleimidas/farmacologia , Apoptose , Ligação Proteica
3.
Chem Commun (Camb) ; 59(12): 1697-1700, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36692261

RESUMO

Using the HRK BH3 domain, sequence hybridization and in silico methods we show dibromomaleimide staple scanning can be used to inform the design of BCL-xL selective peptidomimetic ligands. These HRK-inspired reagents may serve as starting points for the discovery of therapeutics to target BCL-xL-overexpressed cancers.


Assuntos
Apoptose , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína bcl-X , Peptídeos
4.
J Biol Chem ; 298(12): 102659, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328246

RESUMO

Self-association of WT ß2-microglobulin (WT-ß2m) into amyloid fibrils is associated with the disorder dialysis related amyloidosis. In the familial variant D76N-ß2m, the single amino acid substitution enhances the aggregation propensity of the protein dramatically and gives rise to a disorder that is independent of renal dysfunction. Numerous biophysical and structural studies on WT- and D76N-ß2m have been performed in order to better understand the structure and dynamics of the native proteins and their different potentials to aggregate into amyloid. However, the structural properties of transient D76N-ß2m oligomers and their role(s) in assembly remained uncharted. Here, we have utilized NMR methods, combined with photo-induced crosslinking, to detect, trap, and structurally characterize transient dimers of D76N-ß2m. We show that the crosslinked D76N-ß2m dimers have different structures from those previously characterized for the on-pathway dimers of ΔN6-ß2m and are unable to assemble into amyloid. Instead, the crosslinked D76N-ß2m dimers are potent inhibitors of amyloid formation, preventing primary nucleation and elongation/secondary nucleation when added in substoichiometric amounts with D76N-ß2m monomers. The results highlight the specificity of early protein-protein interactions in amyloid formation and show how mapping these interfaces can inform new strategies to inhibit amyloid assembly.


Assuntos
Amiloidose , Microglobulina beta-2 , Humanos , Microglobulina beta-2/química , Amiloide/química , Proteínas Amiloidogênicas/genética , Substituição de Aminoácidos , Amiloidose/genética , Fenômenos Biofísicos , Polímeros
5.
Pept Sci (Hoboken) ; 113(1): e24157, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34938942

RESUMO

Methods to constrain peptides in a bioactive α-helical conformation for inhibition of protein-protein interactions represent an ongoing area of investigation in chemical biology. Recently, the first example of a reversible "stapling" methodology was described which exploits native cysteine or homocysteine residues spaced at the i and i + 4 positions in a peptide sequence together with the thiol selective reactivity of dibromomaleimides (a previous study). This manuscript reports on the optimization of the maleimide based constraint, focusing on the kinetics of macrocyclization and the extent to which helicity is promoted with different thiol containing amino acids. The study identified an optimal stapling combination of X 1 = L-Cys and X 5 = L-hCys in the context of the model peptide Ac-X1AAAX5-NH2, which should prove useful in implementing the dibromomaleimide stapling strategy in peptidomimetic ligand discovery programmes.

6.
Commun Chem ; 2: 133, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33763603

RESUMO

Ligand-directed protein labelling allows the introduction of diverse chemical functionalities onto proteins without the need for genetically encoded tags. Here we report a method for the rapid labelling of a protein using a ruthenium-bipyridyl (Ru(II)(bpy)3)-modified peptide designed to mimic an interacting BH3 ligand within a BCL-2 family protein-protein interactions. Using sub-stoichiometric quantities of (Ru(II)(bpy)3)-modified NOXA-B and irradiation with visible light for 1 min, the anti-apoptotic protein MCL-1 can be photolabelled with a variety of functional tags. In contrast with previous reports on Ru(II)(bpy)3-mediated photolabelling, tandem mass spectrometry experiments reveal that the labelling site is a cysteine residue of MCL-1. MCL-1 can be labelled selectively in mixtures with other proteins, including the structurally related BCL-2 member, BCL-xL. These results demonstrate that proximity-induced photolabelling is applicable to interfaces that mediate protein-protein interactions, and pave the way towards future use of ligand-directed proximity labelling for dynamic analysis of the interactome of BCL-2 family proteins.

7.
RSC Adv ; 9(14): 7610-7614, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521201

RESUMO

Chemical cross-linking mass-spectrometry (XL-MS) represents a powerful methodology to map ligand/biomacromolecule interactions, particularly where conventional methods such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy or cryo-electron microscopy (EM) are not feasible. In this manuscript, we describe the design and synthesis of two new photo-crosslinking reagents that can be used to specifically label free thiols through either maleimido or methanethiosulfonate groups and facilitate PXL-MS workflows. Both crosslinkers are based on light sensitive diazirines - precursors of highly reactive carbenes which offer additional advantages over alternative crosslinking groups such as benzophenones and aryl nitrenes given the controlled rapid and more indiscriminate reactivity.

8.
Angew Chem Int Ed Engl ; 57(51): 16688-16692, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30393918

RESUMO

Analysing protein complexes by chemical crosslinking-mass spectrometry (XL-MS) is limited by the side-chain reactivities and sizes of available crosslinkers, their slow reaction rates, and difficulties in crosslink enrichment, especially for rare, transient or dynamic complexes. Here we describe two new XL reagents that incorporate a methanethiosulfonate (MTS) group to label a reactive cysteine introduced into the bait protein, and a residue-unbiased diazirine-based photoactivatable XL group to trap its interacting partner(s). Reductive removal of the bait transfers a thiol-containing fragment of the crosslinking reagent onto the target that can be alkylated and located by MS sequencing and exploited for enrichment, enabling the detection of low abundance crosslinks. Using these reagents and a bespoke UV LED irradiation platform, we show that maximum crosslinking yield is achieved within 10 seconds. The utility of this "tag and transfer" approach is demonstrated using a well-defined peptide/protein regulatory interaction (BID80-102 /MCL-1), and the dynamic interaction interface of a chaperone/substrate complex (Skp/OmpA).


Assuntos
Reagentes de Ligações Cruzadas/química , Cisteína/química , Mesilatos/química , Mapas de Interação de Proteínas , Proteínas/química , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos
9.
Eur Biophys J ; 44(7): 557-65, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26286445

RESUMO

A number of techniques developed to investigate protein structure and function depend on chemically modifying and/or labeling of proteins. However, in the case of homooligomeric proteins, the presence of multiple identical subunits obstructs the introduction of residue-specific labels to only one or several subunits, selectively. Here, in order to study the initial conformational changes of a homopentameric mechanosensitive ion channel during its gating, we developed a method for labeling a defined number of subunits of the channel with two different cysteine-specific compounds simultaneously. The first one is a light-sensitive channel activator that determines the degree of openness of the ion channel upon irradiation. The second one is a spin label, containing an unpaired electron, which allows following the resulting structural changes upon channel gating by electron paramagnetic resonance spectroscopy. With this method, we could open MscL into different sub-open states. As the number of light switches per channel increased, the intersubunit spin-spin interactions became less, indicating changes in intersubunit proximities and opening of the channel. The ability of controlled activation of MscL into different open states with a noninvasive trigger and following the resulting conformational changes by spectroscopy will pave the way for detailed spectroscopic studies in the area of mechanosensation.


Assuntos
Proteínas de Escherichia coli/química , Ativação do Canal Iônico , Canais Iônicos/química , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/efeitos da radiação , Canais Iônicos/metabolismo , Canais Iônicos/efeitos da radiação , Luz , Mecanotransdução Celular , Dados de Sequência Molecular
10.
Nanomedicine ; 11(6): 1345-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25888277

RESUMO

Liposomal drug delivery vehicles are promising nanomedicine tools for bringing cytotoxic drugs to cancerous tissues selectively. However, the triggered cargo release from liposomes in response to a target-specific stimulus has remained elusive. We report on functionalizing stealth-liposomes with an engineered ion channel and using these liposomes in vivo for releasing an imaging agent into a cerebral glioma rodent model. If the ambient pH drops below a threshold value, the channel generates temporary pores on the liposomes, thus allowing leakage of the intraluminal medicines. By using magnetic resonance spectroscopy and imaging, we show that engineered liposomes can detect the mildly acidic pH of the tumor microenvironment with 0.2 pH unit precision and they release their content into C6 glioma tumors selectively, in vivo. A drug delivery system with this level of sensitivity and selectivity to environmental stimuli may well serve as an optimal tool for environmentally-triggered and image-guided drug release. FROM THE CLINICAL EDITOR: Cancer remains a leading cause of mortality worldwide. With advances in science, delivery systems of anti-cancer drugs have also become sophisticated. In this article, the authors designed and characterized functionalized liposomal vehicles, which would release the drug payload in a highly sensitive manner in response to a change in pH environment in an animal glioma model. The novel data would enable better future designs of drug delivery systems.


Assuntos
Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Portadores de Fármacos , Glioblastoma/patologia , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Lipossomos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
Mol Biol Rep ; 40(6): 4129-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23640101

RESUMO

A novel series of naphthalimide polyamine conjugates were designed, synthesized and evaluated for in vitro antiproliferative activity against human leukemia (Jurkat), human cervical adenocarcinoma (HeLa), human breast adenocarcinoma (MCF-7) and human lung adenocarcinoma (A549) cell lines. From the six derivatives, the new I1 and A3 exhibited highest antiproliferative activity with the IC50 values of 5.67-11.02 µmol · L(-1). Cell cycle analysis of Jurkat cells exposed to I1 at a concentration of 30 µmol × L(-1) for 24 h exhibited a mild increase in S and G2/M fraction caused by accumulation of cells. This arrest was followed by an increase in sub-G0/G1 after 48 h of incubation. Jurkat cells exposed to A3 at a concentration of 30 µmol × L(-1) for 24 h showed an increase in G0/G1 fraction and after 48 h an increase in G2/M fraction followed by an increase in sub-G0/G1 after 72 h of incubation. Moreover, the A3 compound was observed to displace the intercalating agent ethidium bromide from calf thymus DNA using fluorescence spectroscopy. The apparent binding constant was estimated to be 3.1 × 10(6) M(-1) what indicates non-intercalating mode of DNA binding. On the other hand, we found no inhibitory effect of studied compounds on topoisomerase I and topoisomerase II activity. Finally, the localization of these compounds in the cells due to their inherent fluorescence was investigated with the fluorescence microscopy. Our results suggest that the naphthalimide polyamine conjugates rapidly penetrate to the cancer cells. Further studies are necessary to investigate the precise mechanism of action and to find out the relationship between the structure, character and position of substituents of naphthalimide polyamine conjugates and their biological activities.


Assuntos
Antineoplásicos/farmacologia , Naftalimidas/farmacologia , Poliaminas/farmacologia , Animais , Antineoplásicos/química , Bovinos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Etídio/metabolismo , Fluorescência , Humanos , Naftalimidas/química , Poliaminas/química
12.
Proc Natl Acad Sci U S A ; 108(19): 7775-80, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518907

RESUMO

Protein translocation in Escherichia coli is mediated by the translocase that in its minimal form consists of the protein-conducting channel SecYEG, and the motor protein, SecA. SecYEG forms a narrow pore in the membrane that allows passage of unfolded proteins only. Molecular dynamics simulations suggest that the maximal width of the central pore of SecYEG is limited to . To access the functional size of the SecYEG pore, the precursor of outer membrane protein A was modified with rigid spherical tetraarylmethane derivatives of different diameters at a unique cysteine residue. SecYEG allowed the unrestricted passage of the precursor of outer membrane protein A conjugates carrying tetraarylmethanes with diameters up to , whereas a sized molecule blocked the translocation pore. Translocation of the protein-organic molecule hybrids was strictly proton motive force-dependent and occurred at a single pore. With an average diameter of an unfolded polypeptide chain of , the pore accommodates structures of at least , which is vastly larger than the predicted maximal width of a single pore by molecular dynamics simulations.


Assuntos
Proteínas de Escherichia coli/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Transporte Proteico , Força Próton-Motriz , Canais de Translocação SEC , Proteínas SecA
13.
Science ; 309(5735): 755-8, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-16051792

RESUMO

Toward the realization of nanoscale device control, we report a molecular valve embedded in a membrane that can be opened by illumination with long-wavelength ultraviolet (366 nanometers) light and then resealed by visible irradiation. The valve consists of a channel protein, the mechanosensitive channel of large conductance (MscL) from Escherichia coli, modified by attachment of synthetic compounds that undergo light-induced charge separation to reversibly open and close a 3-nanometer pore. The system is compatible with a classical encapsulation system, the liposome, and external photochemical control over transport through the channel is achieved.


Assuntos
Proteínas de Escherichia coli/química , Canais Iônicos/química , Luz , Nanoestruturas , Raios Ultravioleta , Substituição de Aminoácidos , Sítios de Ligação , Cisteína/química , Fluoresceínas/química , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico , Bicamadas Lipídicas , Lipossomos , Nanotecnologia , Concentração Osmolar , Técnicas de Patch-Clamp , Fotólise , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA