Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Soc Nephrol ; 35(4): 398-409, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38254271

RESUMO

SIGNIFICANCE STATEMENT: Autosomal dominant polycystic kidney disease (ADPKD) is a devastating disorder caused by mutations in polycystin 1 ( PKD1 ) and polycystin 2 ( PKD2 ). Currently, the mechanism for renal cyst formation remains unclear. Here, we provide convincing and conclusive data in mice demonstrating that Pkd2 deletion in embryonic Aqp2 + progenitor cells (AP), but not in neonate or adult Aqp2 + cells, is sufficient to cause severe polycystic kidney disease (PKD) with progressive loss of intercalated cells and complete elimination of α -intercalated cells, accurately recapitulating a newly identified cellular phenotype of patients with ADPKD. Hence, Pkd2 is a new potential regulator critical for balanced AP differentiation into, proliferation, and/or maintenance of various cell types, particularly α -intercalated cells. The Pkd2 conditional knockout mice developed in this study are valuable tools for further studies on collecting duct development and early steps in cyst formation. The finding that Pkd2 loss triggers the loss of intercalated cells is a suitable topic for further mechanistic studies. BACKGROUND: Most cases of autosomal dominant polycystic kidney disease (ADPKD) are caused by mutations in PKD1 or PKD2. Currently, the mechanism for renal cyst formation remains unclear. Aqp2 + progenitor cells (AP) (re)generate ≥5 cell types, including principal cells and intercalated cells in the late distal convoluted tubules (DCT2), connecting tubules, and collecting ducts. METHODS: Here, we tested whether Pkd2 deletion in AP and their derivatives at different developmental stages is sufficient to induce PKD. Aqp2Cre Pkd2f/f ( Pkd2AC ) mice were generated to disrupt Pkd2 in embryonic AP. Aqp2ECE/+Pkd2f/f ( Pkd2ECE ) mice were tamoxifen-inducted at P1 or P60 to inactivate Pkd2 in neonate or adult AP and their derivatives, respectively. All induced mice were sacrificed at P300. Immunofluorescence staining was performed to categorize and quantify cyst-lining cell types. Four other PKD mouse models and patients with ADPKD were similarly analyzed. RESULTS: Pkd2 was highly expressed in all connecting tubules/collecting duct cell types and weakly in all other tubular segments. Pkd2AC mice had obvious cysts by P6 and developed severe PKD and died by P17. The kidneys had reduced intercalated cells and increased transitional cells. Transitional cells were negative for principal cell and intercalated cell markers examined. A complete loss of α -intercalated cells occurred by P12. Cysts extended from the distal renal segments to DCT1 and possibly to the loop of Henle, but not to the proximal tubules. The induced Pkd2ECE mice developed mild PKD. Cystic α -intercalated cells were found in the other PKD models. AQP2 + cells were found in cysts of only 13/27 ADPKD samples, which had the same cellular phenotype as Pkd2AC mice. CONCLUSIONS: Hence, Pkd2 deletion in embryonic AP, but unlikely in neonate or adult Aqp2 + cells (principal cells and AP), was sufficient to cause severe PKD with progressive elimination of α -intercalated cells, recapitulating a newly identified cellular phenotype of patients with ADPKD. We proposed that Pkd2 is critical for balanced AP differentiation into, proliferation, and/or maintenance of cystic intercalated cells, particularly α -intercalated cells.


Assuntos
Aquaporina 2 , Rim Policístico Autossômico Dominante , Adulto , Animais , Humanos , Camundongos , Aquaporina 2/deficiência , Aquaporina 2/genética , Cistos , Rim/metabolismo , Camundongos Knockout , Doenças Renais Policísticas/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Insuficiência Renal Crônica , Células-Tronco/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
2.
Toxicology ; 500: 153692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38042273

RESUMO

Acetaminophen (APAP) overdose causes liver injury and acute liver failure, as well as acute kidney injury, which is not prevented by the clinical antidote N-acetyl-L-cysteine (NAC). The absence of therapeutics targeting APAP-induced nephrotoxicity is due to gaps in understanding the mechanisms of renal injury. APAP metabolism through Cyp2E1 drives cell death in both the liver and kidney. We demonstrate that Cyp2E1 is localized to the proximal tubular cells in mouse and human kidneys. Virtually all the Cyp2E1 in kidney cells is in the endoplasmic reticulum (ER), not in mitochondria. By contrast, hepatic Cyp2E1 is in both the ER and mitochondria of hepatocytes. Consistent with this subcellular localization, a dose of 600 mg/kg APAP in fasted C57BL/6J mice induced the formation of APAP protein adducts predominantly in mitochondria of hepatocytes, but the ER of the proximal tubular cells of the kidney. We found that reactive metabolite formation triggered ER stress-mediated activation of caspase-12 and apoptotic cell death in the kidney. While co-treatment with 4-methylpyrazole (4MP; fomepizole) or the caspase inhibitor Ac-DEVD-CHO prevented APAP-induced cleavage of procaspase-12 and apoptosis in the kidney, treatment with NAC had no effect. These mechanisms are clinically relevant because 4MP but not NAC also significantly attenuated APAP-induced apoptotic cell death in primary human kidney cells. We conclude that reactive metabolite formation by Cyp2E1 in the ER results in sustained ER stress that causes activation of procaspase-12, triggering apoptosis of proximal tubular cells, and that 4MP but not NAC may be an effective antidote against APAP-induced kidney injury.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Acetaminofen/toxicidade , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Fomepizol/farmacologia , Fomepizol/uso terapêutico , Antídotos/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Apoptose , Mitocôndrias/metabolismo , Rim/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
3.
Am J Physiol Renal Physiol ; 324(6): F590-F602, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141147

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the formation of numerous fluid-filled cysts that lead to progressive loss of functional nephrons. Currently, there is an unmet need for diagnostic and prognostic indicators of early stages of the disease. Metabolites were extracted from the urine of patients with early-stage ADPKD (n = 48 study participants) and age- and sex-matched normal controls (n = 47) and analyzed by liquid chromatography-mass spectrometry. Orthogonal partial least squares-discriminant analysis was used to generate a global metabolomic profile of early ADPKD for the identification of metabolic pathway alterations and discriminatory metabolites as candidates of diagnostic and prognostic biomarkers. The global metabolomic profile exhibited alterations in steroid hormone biosynthesis and metabolism, fatty acid metabolism, pyruvate metabolism, amino acid metabolism, and the urea cycle. A panel of 46 metabolite features was identified as candidate diagnostic biomarkers. Notable putative identities of candidate diagnostic biomarkers for early detection include creatinine, cAMP, deoxycytidine monophosphate, various androgens (testosterone; 5-α-androstane-3,17,dione; trans-dehydroandrosterone), betaine aldehyde, phosphoric acid, choline, 18-hydroxycorticosterone, and cortisol. Metabolic pathways associated with variable rates of disease progression included steroid hormone biosynthesis and metabolism, vitamin D3 metabolism, fatty acid metabolism, the pentose phosphate pathway, tricarboxylic acid cycle, amino acid metabolism, sialic acid metabolism, and chondroitin sulfate and heparin sulfate degradation. A panel of 41 metabolite features was identified as candidate prognostic biomarkers. Notable putative identities of candidate prognostic biomarkers include ethanolamine, C20:4 anandamide phosphate, progesterone, various androgens (5-α-dihydrotestosterone, androsterone, etiocholanolone, and epiandrosterone), betaine aldehyde, inflammatory lipids (eicosapentaenoic acid, linoleic acid, and stearolic acid), and choline. Our exploratory data support metabolic reprogramming in early ADPKD and demonstrate the ability of liquid chromatography-mass spectrometry-based global metabolomic profiling to detect metabolic pathway alterations as new therapeutic targets and biomarkers for early diagnosis and tracking disease progression of ADPKD.NEW & NOTEWORTHY To our knowledge, this study is the first to generate urinary global metabolomic profiles from individuals with early-stage ADPKD with preserved renal function for biomarker discovery. The exploratory dataset reveals metabolic pathway alterations that may be responsible for early cystogenesis and rapid disease progression and may be potential therapeutic targets and pathway sources for candidate biomarkers. From these results, we generated a panel of candidate diagnostic and prognostic biomarkers of early-stage ADPKD for future validation.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/diagnóstico , Androgênios , Biomarcadores/urina , Metabolômica/métodos , Progressão da Doença , Redes e Vias Metabólicas , Colina , Aminoácidos , Ácidos Graxos , Esteroides
4.
Front Mol Biosci ; 9: 971219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523654

RESUMO

We and others have previously shown that the presence of renal innate immune cells can promote polycystic kidney disease (PKD) progression. In this study, we examined the influence of the inflammasome, a key part of the innate immune system, on PKD. The inflammasome is a system of molecular sensors, receptors, and scaffolds that responds to stimuli like cellular damage or microbes by activating Caspase-1, and generating critical mediators of the inflammatory milieu, including IL-1ß and IL-18. We provide evidence that the inflammasome is primed in PKD, as multiple inflammasome sensors were upregulated in cystic kidneys from human ADPKD patients, as well as in kidneys from both orthologous (PKD1 RC/RC or RC/RC) and non-orthologous (jck) mouse models of PKD. Further, we demonstrate that the inflammasome is activated in female RC/RC mice kidneys, and this activation occurs in renal leukocytes, primarily in CD11c+ cells. Knock-out of Casp1, the gene encoding Caspase-1, in the RC/RC mice significantly restrained cystic disease progression in female mice, implying sex-specific differences in the renal immune environment. RNAseq analysis implicated the promotion of MYC/YAP pathways as a mechanism underlying the pro-cystic effects of the Caspase-1/inflammasome in females. Finally, treatment of RC/RC mice with hydroxychloroquine, a widely used immunomodulatory drug that has been shown to inhibit the inflammasome, protected renal function specifically in females and restrained cyst enlargement in both male and female RC/RC mice. Collectively, these results provide evidence for the first time that the activated Caspase-1/inflammasome promotes cyst expansion and disease progression in PKD, particularly in females. Moreover, the data suggest that this innate immune pathway may be a relevant target for therapy in PKD.

5.
J Mol Cell Biol ; 14(7)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36002021

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive enlargement of fluid-filled cysts, causing nephron loss and a decline in renal function. Mammalian target of rapamycin (mTOR) is overactive in cyst-lining cells and contributes to abnormal cell proliferation and cyst enlargement; however, the mechanism for mTOR stimulation remains unclear. We discovered that calcium/calmodulin (CaM) dependent kinase IV (CaMK4), a multifunctional kinase, is overexpressed in the kidneys of ADPKD patients and PKD mouse models. In human ADPKD cells, CaMK4 knockdown reduced mTOR abundance and the phosphorylation of ribosomal protein S6 kinase (S6K), a downstream target of mTOR. Pharmacologic inhibition of CaMK4 with KN-93 reduced phosphorylated S6K and S6 levels and inhibited cell proliferation and in vitro cyst formation of ADPKD cells. Moreover, inhibition of calcium/CaM-dependent protein kinase kinase-ß and CaM, two key upstream regulators of CaMK4, also decreased mTOR signaling. The effects of KN-93 were independent of the liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) pathway, and the combination of KN-93 and metformin, an AMPK activator, had additive inhibitory effects on mTOR signaling and in vitro cyst growth. Our data suggest that increased CaMK4 expression and activity contribute to mTOR signaling and the proliferation of cystic cells of ADPKD kidneys.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Camundongos , Animais , Humanos , Rim Policístico Autossômico Dominante/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Cálcio , Doenças Renais Policísticas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Rim/metabolismo , Proliferação de Células , Mamíferos , Proteína Quinase Tipo 4 Dependente de Cálcio-Calmodulina
6.
Am J Physiol Renal Physiol ; 323(4): F492-F506, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979967

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a debilitating renal neoplastic disorder with limited treatment options. It is characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. We tested the effectiveness of the indazole carboxylic acid H2-gamendazole (H2-GMZ), a derivative of lonidamine, to inhibit these processes using in vitro and in vivo models of ADPKD. H2-GMZ was effective in rapidly blocking forskolin-induced, Cl--mediated short-circuit currents in human ADPKD cells, and it significantly inhibited both cAMP- and epidermal growth factor-induced proliferation of ADPKD cells. Western blot analysis of H2-GMZ-treated ADPKD cells showed decreased phosphorylated ERK and decreased hyperphosphorylated retinoblastoma levels. H2-GMZ treatment also decreased ErbB2, Akt, and cyclin-dependent kinase 4, consistent with inhibition of heat shock protein 90, and it decreased levels of the cystic fibrosis transmembrane conductance regulator Cl- channel protein. H2-GMZ-treated ADPKD cultures contained a higher proportion of smaller cells with fewer and smaller lamellipodia and decreased cytoplasmic actin staining, and they were unable to accomplish wound closure even at low H2-GMZ concentrations, consistent with an alteration in the actin cytoskeleton and decreased cell motility. Experiments using mouse metanephric organ cultures showed that H2-GMZ inhibited cAMP-stimulated cyst growth and enlargement. In vivo, H2-GMZ was effective in slowing postnatal cyst formation and kidney enlargement in the Pkd1flox/flox: Pkhd1-Cre mouse model. Thus, H2-GMZ treatment decreases Cl- secretion, cell proliferation, cell motility, and cyst growth. These properties, along with its reported low toxicity, suggest that H2-GMZ might be an attractive candidate for treatment of ADPKD.NEW & NOTEWORTHY Autosomal dominant polycystic kidney disease (ADPKD) is a renal neoplastic disorder characterized by the formation of large fluid-filled cysts that develop from kidney tubules through abnormal cell proliferation and cyst-filling fluid secretion driven by cAMP-dependent Cl- secretion. This study shows that the lonidamine derivative H2-GMZ inhibits Cl- secretion, cell proliferation, and cyst growth, suggesting that it might have therapeutic value for the treatment of ADPKD.


Assuntos
Cistos , Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Actinas/metabolismo , Animais , Ácidos Carboxílicos/metabolismo , Proliferação de Células , Células Cultivadas , Colforsina/farmacologia , Quinase 4 Dependente de Ciclina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Cistos/metabolismo , Família de Proteínas EGF/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Indazóis/metabolismo , Indazóis/farmacologia , Rim/metabolismo , Camundongos , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Superfície Celular
7.
Nat Commun ; 13(1): 4765, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35965273

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD), among the most common human genetic conditions and a frequent etiology of kidney failure, is primarily caused by heterozygous PKD1 mutations. Kidney cyst formation occurs when PKD1 dosage falls below a critical threshold. However, no framework exists to harness the remaining allele or reverse PKD1 decline. Here, we show that mRNAs produced by the noninactivated PKD1 allele are repressed via their 3'-UTR miR-17 binding element. Eliminating this motif (Pkd1∆17) improves mRNA stability, raises Polycystin-1 levels, and alleviates cyst growth in cellular, ex vivo, and mouse PKD models. Remarkably, Pkd2 is also inhibited via its 3'-UTR miR-17 motif, and Pkd2∆17-induced Polycystin-2 derepression retards cyst growth in Pkd1-mutant models. Moreover, acutely blocking Pkd1/2 cis-inhibition, including after cyst onset, attenuates murine PKD. Finally, modeling PKD1∆17 or PKD2∆17 alleles in patient-derived primary ADPKD cultures leads to smaller cysts, reduced proliferation, lower pCreb1 expression, and improved mitochondrial membrane potential. Thus, evading 3'-UTR cis-interference and enhancing PKD1/2 mRNA translation is a potentially mutation-agnostic ADPKD-arresting approach.


Assuntos
Cistos , MicroRNAs , Rim Policístico Autossômico Dominante , Proteína Quinase C/metabolismo , Canais de Cátion TRPP/metabolismo , Animais , Cistos/genética , Modelos Animais de Doenças , Humanos , Camundongos , MicroRNAs/genética , Rim Policístico Autossômico Dominante/genética , RNA Mensageiro/genética , Canais de Cátion TRPP/genética
8.
Kidney Int ; 102(3): 577-591, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644283

RESUMO

Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked ß-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Rim Policístico Autossômico Dominante , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Peso Corporal , Cílios/patologia , Modelos Animais de Doenças , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/patologia , Túbulos Renais , Camundongos , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
9.
Kidney Int ; 102(5): 1103-1114, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35760151

RESUMO

Polycystic kidney disease (PKD) is characterized by the formation and progressive enlargement of fluid-filled cysts due to abnormal cell proliferation. Cyclic AMP agonists, including arginine vasopressin, stimulate ERK-dependent proliferation of cystic cells, but not normal kidney cells. Previously, B-Raf proto-oncogene (BRAF), a MAPK kinase kinase that activates MEK-ERK signaling, was shown to be a central intermediate in the cAMP mitogenic response. However, the role of BRAF on cyst formation and enlargement in vivo had not been demonstrated. To determine if active BRAF induces kidney cyst formation, we generated transgenic mice that conditionally express BRAFV600E, a common activating mutation, and bred them with Pkhd1-Cre mice to express active BRAF in the collecting ducts, a predominant site for cyst formation. Collecting duct expression of BRAFV600E (BRafCD) caused kidney cyst formation as early as three weeks of age. There were increased levels of phosphorylated ERK (p-ERK) and proliferating cell nuclear antigen, a marker for cell proliferation. BRafCD mice developed extensive kidney fibrosis and elevated blood urea nitrogen, indicating a decline in kidney function, by ten weeks of age. BRAFV600E transgenic mice were also bred to Pkd1RC/RC and pcy/pcy mice, well-characterized slowly progressive PKD models. Collecting duct expression of active BRAF markedly increased kidney weight/body weight, cyst number and size, and total cystic area. There were increased p-ERK levels and proliferating cells, immune cell infiltration, interstitial fibrosis, and a decline in kidney function in both these models. Thus, our findings demonstrate that active BRAF is sufficient to induce kidney cyst formation in normal mice and accelerate cystic disease in PKD mice.


Assuntos
Cistos , Túbulos Renais Coletores , Rim Policístico Autossômico Dominante , Rim Policístico Autossômico Recessivo , Camundongos , Animais , Túbulos Renais Coletores/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , AMP Cíclico/metabolismo , Fibrose , Rim Policístico Autossômico Recessivo/genética , Camundongos Transgênicos , Cistos/genética , Cistos/patologia , Arginina Vasopressina/genética , Arginina Vasopressina/metabolismo , Proto-Oncogenes , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores de Superfície Celular/metabolismo
10.
Cell Death Dis ; 12(10): 947, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650051

RESUMO

Autosomal-dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease and is characterized by progressive growth of fluid-filled cysts. Growth factors binding to receptor tyrosine kinases (RTKs) stimulate cell proliferation and cyst growth in PKD. Nintedanib, a triple RTK inhibitor, targets the vascular endothelial growth-factor receptor (VEGFR), platelet-derived growth-factor receptor (PDGFR), and fibroblast growth-factor receptor (FGFR), and is an approved drug for the treatment of non-small-cell lung carcinoma and idiopathic lung fibrosis. To determine if RTK inhibition using nintedanib can slow ADPKD progression, we tested its effect on human ADPKD renal cyst epithelial cells and myofibroblasts in vitro, and on Pkd1f/fPkhd1Cre and Pkd1RC/RC, orthologous mouse models of ADPKD. Nintedanib significantly inhibited cell proliferation and in vitro cyst growth of human ADPKD renal cyst epithelial cells, and cell viability and migration of human ADPKD renal myofibroblasts. Consistently, nintedanib treatment significantly reduced kidney-to-body-weight ratio, renal cystic index, cystic epithelial cell proliferation, and blood-urea nitrogen levels in both the Pkd1f/fPkhd1Cre and Pkd1RC/RC mice. There was a corresponding reduction in ERK, AKT, STAT3, and mTOR activity and expression of proproliferative factors, including Yes-associated protein (YAP), c-Myc, and Cyclin D1. Nintedanib treatment significantly reduced fibrosis in Pkd1RC/RC mice, but did not affect renal fibrosis in Pkd1f/fPkhd1Cre mice. Overall, these results suggest that nintedanib may be repurposed to effectively slow cyst growth in ADPKD.


Assuntos
Indóis/uso terapêutico , Rim Policístico Autossômico Dominante/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Indóis/farmacologia , Rim/efeitos dos fármacos , Rim/patologia , Camundongos Knockout , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Inibidores de Proteínas Quinases/farmacologia , Receptores de Superfície Celular/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
FASEB J ; 35(5): e21533, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33826787

RESUMO

Polycystic kidney disease (PKD) is a genetic disorder characterized by aberrant renal epithelial cell proliferation and formation and progressive growth of numerous fluid-filled cysts within the kidneys. Previously, we showed that there is elevated Notch signaling compared to normal renal epithelial cells and that Notch signaling contributes to the proliferation of cystic cells. Quinomycin A, a bis-intercalator peptide, has previously been shown to target the Notch signaling pathway and inhibit tumor growth in cancer. Here, we show that Quinomycin A decreased cell proliferation and cyst growth of human ADPKD cyst epithelial cells cultured within a 3D collagen gel. Treatment with Quinomycin A reduced kidney weight to body weight ratio and decreased renal cystic area and fibrosis in Pkd1RC/RC ; Pkd2+/- mice, an orthologous PKD mouse model. This was accompanied by reduced expression of Notch pathway proteins, RBPjk and HeyL and cell proliferation in kidneys of PKD mice. Quinomycin A treatments also normalized cilia length of cyst epithelial cells derived from the collecting ducts. This is the first study to demonstrate that Quinomycin A effectively inhibits PKD progression and suggests that Quinomycin A has potential therapeutic value for PKD patients.


Assuntos
Antibacterianos/farmacologia , Cistos/tratamento farmacológico , Modelos Animais de Doenças , Equinomicina/farmacologia , Doenças Renais Policísticas/complicações , Canais de Cátion TRPP/fisiologia , Animais , Cistos/etiologia , Cistos/metabolismo , Cistos/patologia , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Kidney Int Rep ; 6(4): 953-961, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33912745

RESUMO

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is characterized by progressive cyst growth and a loss of functioning renal mass, but a decline in glomerular filtration rate (GFR) and onset of end-stage renal disease (ESRD) occur late in the disease course. There is therefore a great need for early prognostic biomarkers in this disorder. METHODS: We measured baseline serum fibroblast growth factor 23 (FGF23) levels in 192 patients with ADPKD from the Consortium for Radiologic Imaging Studies of PKD (CRISP) cohort that were followed for a median of 13 years and tested the association between FGF23 levels and change over time in height-adjusted total kidney volume (htTKV), GFR, and time to the composite endpoints of ESRD, death, and doubling of serum creatinine. RESULTS: Patients in the highest quartile for baseline FGF23 level had a higher rate of increase in htTKV (0.95% per year, P = 0.0016), and faster rate of decline in GFR (difference of -1.03 ml/min/1.73 m2 per year, P = 0.005) compared with the lowest quartile, after adjusting for other covariates, including htTKV and genotype. The highest quartile of FGF23 was also associated with a substantial increase in risk for the composite endpoint of ESRD, death, or doubling of serum creatinine (hazard ratio [HR] of 2.45 in the fully adjusted model, P = 0.03). CONCLUSION: FGF23 is a prognostic biomarker for disease progression and clinically important outcomes in ADPKD, and has additive value to established imaging and genetic biomarkers.

13.
JCI Insight ; 6(8)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33784251

RESUMO

Despite the recent launch of tolvaptan, the search for safer polycystic kidney disease (PKD) drugs continues. Ciclopirox (CPX) or its olamine salt (CPX-O) is contained in a number of commercially available antifungal agents. CPX is also reported to possess anticancer activity. Several mechanisms of action have been proposed, including chelation of iron and inhibition of iron-dependent enzymes. Here, we show that CPX-O inhibited in vitro cystogenesis of primary human PKD cyst-lining epithelial cells cultured in a 3D collagen matrix. To assess the in vivo role of CPX-O, we treated PKD mice with CPX-O. CPX-O reduced the kidney-to-body weight ratios of PKD mice. The CPX-O treatment was also associated with decreased cell proliferation, decreased cystic area, and improved renal function. Ferritin levels were markedly elevated in cystic kidneys of PKD mice, and CPX-O treatment reduced renal ferritin levels. The reduction in ferritin was associated with increased ferritinophagy marker nuclear receptor coactivator 4, which reversed upon CPX-O treatment in PKD mice. Interestingly, these effects on ferritin appeared independent of iron. These data suggest that CPX-O can induce ferritin degradation via ferritinophagy, which is associated with decreased cyst growth progression in PKD mice. Most importantly these data indicate that CPX-O has the potential to treat autosomal dominant PKD.


Assuntos
Antifúngicos/farmacologia , Ciclopirox/farmacologia , Cistos , Ferritinas/metabolismo , Rim/efeitos dos fármacos , Doenças Renais Policísticas , Animais , Antifúngicos/uso terapêutico , Proliferação de Células , Ciclopirox/uso terapêutico , Colágeno , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Camundongos Endogâmicos C57BL , Coativadores de Receptor Nuclear/metabolismo , Tamanho do Órgão , Doenças Renais Policísticas/tratamento farmacológico , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/patologia , Rim Policístico Autossômico Dominante
14.
Am J Physiol Renal Physiol ; 319(6): F1135-F1148, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166182

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the presence of numerous fluid-filled cysts, extensive fibrosis, and the progressive decline in kidney function. Transforming growth factor-ß1 (TGF-ß1), an important mediator for renal fibrosis and chronic kidney disease, is overexpressed by cystic cells compared with normal kidney cells; however, its role in PKD pathogenesis remains undefined. To investigate the effect of TGF-ß1 on cyst growth, fibrosis, and disease progression, we overexpressed active TGF-ß1 specifically in collecting ducts (CDs) of phenotypic normal (Pkd1RC/+) and Pkd1RC/RC mice. In normal mice, CD-specific TGF-ß1 overexpression caused tubule dilations by 5 wk of age that were accompanied by increased levels of phosphorylated SMAD3, α-smooth muscle actin, vimentin, and periostin; however, it did not induce overt cyst formation by 20 wk. In Pkd1RC/RC mice, CD overexpression of TGF-ß1 increased cyst epithelial cell proliferation. However, extensive fibrosis limited cyst enlargement and caused contraction of the kidneys, leading to a loss of renal function and a shortened lifespan of the mice. These data demonstrate that TGF-ß1-induced fibrosis constrains cyst growth and kidney enlargement and accelerates the decline of renal function, supporting the hypothesis that a combined therapy that inhibits renal cyst growth and fibrosis will be required to effectively treat ADPKD.


Assuntos
Rim/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Apoptose , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Fibrose , Rim/patologia , Rim/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Rim Policístico Autossômico Dominante/fisiopatologia , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Fatores de Tempo , Fator de Crescimento Transformador beta1/genética
15.
J Am Soc Nephrol ; 31(8): 1697-1710, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32554753

RESUMO

BACKGROUND: Fibrosis is a major cause of loss of renal function in autosomal dominant polycystic kidney disease (ADPKD). In this study, we examined whether vasopressin type-2 receptor (V2R) activity in cystic epithelial cells can stimulate interstitial myofibroblasts and fibrosis in ADPKD kidneys. METHODS: We treated Pkd1 gene knockout (Pkd1KO) mice with dDAVP, a V2R agonist, for 3 days and evaluated the effect on myofibroblast deposition of extracellular matrix (ECM). We also analyzed the effects of conditioned media from primary cultures of human ADPKD cystic epithelial cells on myofibroblast activation. Because secretion of the profibrotic connective tissue growth factor (CCN2) increased significantly in dDAVP-treated Pkd1KO mouse kidneys, we examined its role in V2R-dependent fibrosis in ADPKD as well as that of yes-associated protein (YAP). RESULTS: V2R stimulation using dDAVP increased the renal interstitial myofibroblast population and ECM deposition. Similarly, conditioned media from human ADPKD cystic epithelial cells increased myofibroblast activation in vitro, suggesting a paracrine mechanism. Renal collecting duct-specific gene deletion of CCN2 significantly reduced cyst growth and myofibroblasts in Pkd1KO mouse kidneys. We found that YAP regulates CCN2, and YAP inhibition or gene deletion reduces renal fibrosis in Pkd1KO mouse kidneys. Importantly, YAP inactivation blocks the dDAVP-induced increase in myofibroblasts in Pkd1KO kidneys. Further in vitro studies showed that V2R regulates YAP by an ERK1/2-dependent mechanism in human ADPKD cystic epithelial cells. CONCLUSIONS: Our results demonstrate a novel mechanism by which cystic epithelial cells stimulate myofibroblasts in the pericystic microenvironment, leading to fibrosis in ADPKD. The V2R-YAP-CCN2 cell signaling pathway may present a potential therapeutic target for fibrosis in ADPKD.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Rim/patologia , Miofibroblastos/fisiologia , Rim Policístico Autossômico Dominante/patologia , Receptores de Vasopressinas/fisiologia , Fatores de Transcrição/fisiologia , Animais , Desamino Arginina Vasopressina/farmacologia , Matriz Extracelular/metabolismo , Fibrose , Humanos , Camundongos , Canais de Cátion TRPP/fisiologia
16.
Cell Signal ; 72: 109646, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32311505

RESUMO

In autosomal dominant polycystic kidney disease (ADPKD), the inexorable growth of numerous fluid-filled cysts leads to massively enlarged kidneys, renal interstitial damage, inflammation, and fibrosis, and progressive decline in kidney function. It has long been recognized that interstitial fibrosis is the most important manifestation associated with end-stage renal disease; however, the role of abnormal extracellular matrix (ECM) production on ADPKD pathogenesis is not fully understood. Early evidence showed that cysts in end-stage human ADPKD kidneys had thickened and extensively laminated cellular basement membranes, and abnormal regulation of gene expression of several basement membrane components, including collagens, laminins, and proteoglycans by cyst epithelial cells. These basement membrane changes were also observed in dilated tubules and small cysts of early ADPKD kidneys, indicating that ECM alterations were early features of cyst development. Renal cystic cells were also found to overexpress several integrins and their ligands, including ECM structural components and soluble matricellular proteins. ECM ligands binding to integrins stimulate focal adhesion formation and can promote cell attachment and migration. Abnormal expression of laminin-332 (laminin-5) and its receptor α6ß4 stimulated cyst epithelial cell proliferation; and mice that lacked laminin α5, a component of laminin-511 normally expressed by renal tubules, had an overexpression of laminin-332 that was associated with renal cyst formation. Periostin, a matricellular protein that binds αVß3- and αVß5-integrins, was found to be highly overexpressed in the kidneys of ADPKD and autosomal recessive PKD patients, and several rodent models of PKD. αVß3-integrin is also overexpressed by cystic epithelial cells, and the binding of periostin to αVß3-integrin activates the integrin-linked kinase and downstream signal transduction pathways involved in tissue repair promoting cyst growth, ECM synthesis, and tissue fibrosis. This chapter reviews the roles of the ECM, integrins, and focal adhesion signaling in cyst growth and fibrosis in PKD.


Assuntos
Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Integrinas/metabolismo , Doenças Renais Policísticas/metabolismo , Transdução de Sinais , Animais , Matriz Extracelular/ultraestrutura , Adesões Focais/ultraestrutura , Humanos , Modelos Biológicos
17.
JCI Insight ; 5(7)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182218

RESUMO

Renal cysts are the defining feature of autosomal dominant polycystic kidney disease (ADPKD); however, the substantial interstitial inflammation is an often-overlooked aspect of this disorder. Recent studies suggest that immune cells in the cyst microenvironment affect ADPKD progression. Here we report that microRNAs (miRNAs) are new molecular signals in this crosstalk. We found that miR-214 and its host long noncoding RNA Dnm3os are upregulated in orthologous ADPKD mouse models and cystic kidneys from humans with ADPKD. In situ hybridization revealed that interstitial cells in the cyst microenvironment are the primary source of miR-214. While genetic deletion of miR-214 does not affect kidney development or homeostasis, surprisingly, its inhibition in Pkd2- and Pkd1-mutant mice aggravates cyst growth. Mechanistically, the proinflammatory TLR4/IFN-γ/STAT1 pathways transactivate the miR-214 host gene. miR-214, in turn as a negative feedback loop, directly inhibits Tlr4. Accordingly, miR-214 deletion is associated with increased Tlr4 expression and enhanced pericystic macrophage accumulation. Thus, miR-214 upregulation is a compensatory protective response in the cyst microenvironment that restrains inflammation and cyst growth.


Assuntos
MicroRNAs/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Transdução de Sinais , Animais , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia
18.
Sci Rep ; 10(1): 4203, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144367

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common inherited monogenic disorders, characterized by a progressive decline in kidney function due in part to the formation of fluid-filled cysts. While there is one FDA-approved therapy, it is associated with potential adverse effects, and all other clinical interventions are largely supportive. Insights into the cellular pathways underlying ADPKD have revealed striking similarities to cancer. Moreover, several drugs originally developed for cancer have shown to ameliorate cyst formation and disease progression in animal models of ADPKD. These observations prompted us to develop a high-throughput screening platform of cancer drugs in a quest to repurpose them for ADPKD. We screened ~8,000 compounds, including compounds with oncological annotations, as well as FDA-approved drugs, and identified 155 that reduced the viability of Pkd1-null mouse kidney cells with minimal effects on wild-type cells. We found that 109 of these compounds also reduced in vitro cyst growth of Pkd1-null cells cultured in a 3D matrix. Moreover, the result of the cyst assay identified therapeutically relevant compounds, including agents that interfere with tubulin dynamics and reduced cyst growth without affecting cell viability. Because it is known that several ADPKD therapies with promising outcomes in animal models failed to be translated to human disease, our platform also incorporated the evaluation of compounds in a panel of primary ADPKD and normal human kidney (NHK) epithelial cells. Although we observed differences in compound response amongst ADPKD and NHK cell preparation, we identified 18 compounds that preferentially affected the viability of most ADPKD cells with minimal effects on NHK cells. Our study identifies attractive candidates for future efficacy studies in advanced pre-clinical models of ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/metabolismo , Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reposicionamento de Medicamentos/métodos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Rim/citologia , Rim/metabolismo , Camundongos , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Methods Cell Biol ; 153: 1-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31395374

RESUMO

Autosomal dominant polycystic kidney (ADPKD) is a common genetic disorder characterized by the presence of numerous fluid-filled cysts that lead to a progressive decline in renal function. Cystic tissues and primary cyst epithelial cells obtained from discarded human ADPKD kidneys provide unique biomaterials for the investigation of cellular mechanisms involved in cyst growth and changes in the microenvironment adjacent to the cysts. ADPKD cells have been used to develop straightforward in vitro cell model assays to study events down-stream of the mutant proteins in carefully controlled experimental conditions, test specific hypotheses, and evaluate the cellular response to potential therapeutic drugs. Normal cadaver kidneys deemed unsuitable for transplantation and "non-involved" portions of nephrectomy specimens removed for the treatment of kidney cancer provide important control tissues and the source of primary normal human kidney (NHK) cells for comparison to ADPKD specimens. This chapter describes the methods used in the collection of cystic and non-cystic tissues from ADPKD and normal kidneys and the generation of primary cell cultures. We also highlight strengths and weaknesses of using immortalized isogenic normal and PKD mutant cell lines.


Assuntos
Rim/citologia , Rim Policístico Autossômico Dominante/patologia , Cultura Primária de Células/métodos , Linhagem Celular , Células Epiteliais , Humanos , Rim/patologia , Mutação , Nefrectomia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/cirurgia , Cultura Primária de Células/instrumentação , Canais de Cátion TRPP/genética
20.
Methods Cell Biol ; 153: 93-111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31395386

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the relentless growth of numerous fluid-filled cysts in the kidneys. Mutations in PKD1 and PKD2, genes that encode polycystin 1 and 2, respectively, are responsible for most cases of ADPKD. Currently, the cellular mechanisms responsible for cyst formation remain poorly understood. In vitro models have been used by researchers to investigate cellular processes for cyst formation in carefully controlled experimental conditions. Madin-Darby canine kidney (MDCK) cells, a distal tubule epithelial cell line, were first used to form 3-dimensional (3-D) cysts within a hydrated collagen gel. This method was applied to epithelial cells cultured from cysts of human ADPKD kidneys, allowing investigators to study cellular mechanisms for cyst growth using cells that harbor the genetic mutations responsible for ADPKD in humans. Studies using ADPKD in vitro cysts have provided insight into cellular processes regulating cell proliferation, fluid secretion, and cell polarity. These assays were used to demonstrate the central role of cAMP agonists, such as arginine vasopressin, on cyst growth; and to test the effectiveness of potential therapeutic agents, including tolvaptan. Results obtained from in vitro cyst experiments demonstrate the translational value of cell model systems for investigating the mechanisms for cyst formation in human ADPKD. In this chapter, we describe protocols for growing ADPKD cells in a 3-D in vitro cyst assay and measuring total cyst volume by microscopy and image analysis.


Assuntos
Células Epiteliais/patologia , Microscopia Intravital/métodos , Rim Policístico Autossômico Dominante/etiologia , Cultura Primária de Células/métodos , Animais , Colágeno/metabolismo , Meios de Cultura/metabolismo , AMP Cíclico/agonistas , AMP Cíclico/metabolismo , Cães , Células Epiteliais/metabolismo , Humanos , Microscopia Intravital/instrumentação , Células Madin Darby de Rim Canino , Neurofisinas/metabolismo , Rim Policístico Autossômico Dominante/patologia , Cultura Primária de Células/instrumentação , Precursores de Proteínas/metabolismo , Vasopressinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA