Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(9): e0269269, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36149869

RESUMO

Despite growing interest in edible seaweeds, there is limited information on seaweed chemical contaminant levels in the Salish Sea. Without this knowledge, health-based consumption advisories can not be determined for consumers that include Tribes and First Nations, Asian and Pacific Islander community members, and recreational harvesters. We measured contaminant concentrations in edible seaweeds (Fucus distichus, F. spiralis, and Nereocystis luetkeana) from 43 locations in the Salish Sea. Metals were analyzed in all samples, and 94 persistent organic pollutants (POPs) (i.e. 40 PCBs, 15 PBDEs, 17 PCDD/Fs, and 22 organochlorine pesticides) and 51 PAHs were analyzed in Fucus spp. We compared concentrations of contaminants to human health-based screening levels calculated from the USEPA and to international limits. We then worked with six focal contaminants that either exceeded screening levels or international limits (Cd, total Hg, Pb, benzo[a]pyrene [BaP], and PCBs) or are of regional interest (total As). USEPA cancer-based screening levels were exceeded in 30 samples for the PCBs and two samples for BaP. Cadmium concentrations did not exceed the USEPA noncancer-based screening level but did exceed international limits at all sites. Lead exceeded international limits at three sites. Because there are no screening levels for total Hg and total As, and to be conservative, we made comparisons to methyl Hg and inorganic As screening levels. All samples were below the methyl Hg and above the inorganic As screening levels. Without knowledge of the As speciation, we cannot assess the health risk associated with the As. While seaweed was the focus, we did not consider contaminant exposure from consuming other foods. Other chemicals, such as contaminants of emerging concern (e.g., PFAS, pharmaceuticals and personal care products), should also be considered. Additionally, although we focused on toxicological aspects, there are cultural and health benefits of seaweed use that may affect consumer choice.


Assuntos
Fluorocarbonos , Mercúrio , Praguicidas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Alga Marinha , Poluentes Químicos da Água , Benzo(a)pireno , Cádmio , Dibenzofuranos , Monitoramento Ambiental , Éteres Difenil Halogenados , Humanos , Chumbo , Mercúrio/análise , Poluentes Orgânicos Persistentes , Praguicidas/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise
2.
Environ Pollut ; 205: 327-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26123721

RESUMO

As a semiconductor with wide band gap energy, TiO2 nanoparticles (nano-TiO2) are highly photoactive, and recent efforts have demonstrated phototoxicity of nano-TiO2 to aquatic organisms. However, a dosimetry model for the phototoxicity of nanomaterials that incorporates both direct UV and photo-activated chemical toxicity has not yet been developed. In this study, a set of Hyalella azteca acute toxicity bioassays at multiple light intensities and nano-TiO2 concentrations, and with multiple diel light cycles, was conducted to assess how existing phototoxicity models should be adapted to nano-TiO2. These efforts demonstrated (a) adherence to the Bunsen-Roscoe law for the reciprocity of light intensity and time, (b) no evidence of damage repair during dark periods, (c) a lack of proportionality of effects to environmental nano-TiO2 concentrations, and (d) a need to consider the joint effects of nano-TiO2 phototoxicity and direct UV toxicity.


Assuntos
Anfípodes/efeitos dos fármacos , Modelos Teóricos , Nanopartículas/toxicidade , Titânio/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade , Animais , Ritmo Circadiano , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Nanopartículas/análise , Fatores de Tempo , Titânio/análise , Testes de Toxicidade Aguda , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 499: 356-62, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25203828

RESUMO

There is limited information on the chronic effects of nanomaterials to benthic organisms, as well as environmental mitigating factors that might influence this toxicity. The present study aimed to fill these data gaps by examining various growth endpoints (weight gain, instantaneous growth rate, and total protein content) for up to a 21 d sediment exposure of TiO2 nanoparticles (nano-TiO2) to a representative benthic species, Hyalella azteca. An uncoated standard, P25, and an Al(OH)3 coated nano-TiO2 used in commercial products were added to sediment at 20 mg/L or 100 mg/L Under test conditions, UV exposure alone was shown to be a greater cause of toxicity than even these high levels of nano-TiO2 exposure, indicating that different hazards need to be addressed in toxicity testing scenarios. In addition, this study showed the effectiveness of a surface coating on the decreased photoactivity of the material, as the addition of an Al(OH)3 coating showed a dramatic decrease in reactive oxygen species (ROS) production. However, this reduced photoactivity was found to be partially restored when the coating had been degraded, leading to the need for future toxicity tests which examine the implications of weathering events on particle surface coatings.


Assuntos
Nanopartículas/toxicidade , Titânio/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade , Anfípodes , Animais , Nanopartículas/química , Processos Fotoquímicos , Propriedades de Superfície , Titânio/química , Testes de Toxicidade Crônica , Poluentes Químicos da Água/química
4.
Environ Pollut ; 193: 165-172, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25033018

RESUMO

The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiation (SSR). Photocatalytic ROS generation and particle dissolution were measured on a time-course basis. Two toxicity mitigation assays using CaCl2 and N-acetylcysteine were performed to differentiate the relative importance of these two modes of action. Enhanced ZnO nanoparticle toxicity under SSR was in parallel with photocatalytic ROS generation and enhanced particle dissolution. Toxicity mitigation by CaCl2 to a less extent under SSR than under lab light demonstrates the role of ROS generation in ZnO toxicity. Toxicity mitigation by N-acetylcysteine under both irradiation conditions confirms the role of particle dissolution and ROS generation. These findings demonstrate the importance of considering environmental solar UV radiation when assessing ZnO nanoparticle toxicity and risk in aquatic systems.


Assuntos
Daphnia/efeitos dos fármacos , Daphnia/efeitos da radiação , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/toxicidade , Animais , Catálise , Daphnia/fisiologia , Luz , Nanopartículas/química , Processos Fotoquímicos , Solubilidade , Raios Ultravioleta , Óxido de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA