Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 11(6): e0156892, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27276217

RESUMO

Berberine bridge enzyme-like (BBE-like) proteins form a multigene family (pfam 08031), which is present in plants, fungi and bacteria. They adopt the vanillyl alcohol-oxidase fold and predominantly show bi-covalent tethering of the FAD cofactor to a cysteine and histidine residue, respectively. The Arabidopsis thaliana genome was recently shown to contain genes coding for 28 BBE-like proteins, while featuring four distinct active site compositions. We determined the structure of a member of the AtBBE-like protein family (termed AtBBE-like 28), which has an active site composition that has not been structurally and biochemically characterized thus far. The most salient and distinguishing features of the active site found in AtBBE-like 28 are a mono-covalent linkage of a histidine to the 8α-position of the flavin-isoalloxazine ring and the lack of a second covalent linkage to the 6-position, owing to the replacement of a cysteine with a histidine. In addition, the structure reveals the interaction of a glutamic acid (Glu426) with an aspartic acid (Asp369) at the active site, which appear to share a proton. This arrangement leads to the delocalization of a negative charge at the active site that may be exploited for catalysis. The structure also indicates a shift of the position of the isoalloxazine ring in comparison to other members of the BBE-like family. The dioxygen surrogate chloride was found near the C(4a) position of the isoalloxazine ring in the oxygen pocket, pointing to a rapid reoxidation of reduced enzyme by dioxygen. A T-DNA insertional mutant line for AtBBE-like 28 results in a phenotype, that is characterized by reduced biomass and lower salt stress tolerance. Multiple sequence analysis showed that the active site composition found in AtBBE-like 28 is only present in the Brassicaceae, suggesting that it plays a specific role in the metabolism of this plant family.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Oxirredutases N-Desmetilantes/química , Tolerância ao Sal/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Aspártico/química , Ácido Aspártico/genética , Domínio Catalítico , Ácido Glutâmico/química , Ácido Glutâmico/genética , Mutagênese , Oxirredutases N-Desmetilantes/genética , Estrutura Secundária de Proteína , Especificidade da Espécie
2.
Sci Rep ; 6: 23787, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27025154

RESUMO

Human dipeptidyl-peptidase III (hDPP III) is a zinc-dependent hydrolase cleaving dipeptides off the N-termini of various bioactive peptides. Thus, the enzyme is likely involved in a number of physiological processes such as nociception and is also implicated in several forms of cancer. We present high-resolution crystal structures of hDPP III in complex with opioid peptides (Met-and Leu-enkephalin, endomorphin-2) as well as with angiotensin-II and the peptide inhibitor IVYPW. These structures confirm the previously reported large conformational change of the enzyme upon ligand binding and show that the structure of the closed conformation is independent of the nature of the bound peptide. The overall peptide-binding mode is also conserved ensuring the correct positioning of the scissile peptide bond with respect to the catalytic zinc ion. The structure of the angiotensin-II complex shows, how longer peptides are accommodated in the binding cleft of hDPP III. Differences in the binding modes allow a distinction between real substrates and inhibitory peptides or "slow" substrates. The latter displace a zinc bound water molecule necessitating the energetically much less favoured anhydride mechanism as opposed to the favoured promoted-water mechanism. The structural data also form the necessary framework for the design of specific hDPP III inhibitors.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/química , Encefalinas/química , Angiotensina II/química , Domínio Catalítico , Cristalografia por Raios X , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Humanos , Ligação de Hidrogênio , Hidrólise , Cinética , Modelos Moleculares , Peptídeos Opioides/química , Ligação Proteica
3.
Biochemistry ; 51(31): 6139-47, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22757961

RESUMO

Berberine bridge enzyme (BBE) is a paradigm for the class of bicovalently flavinylated oxidases, which catalyzes the oxidative cyclization of (S)-reticuline to (S)-scoulerine. His174 was identified as an important active site residue because of its role in the stabilization of the reduced state of the flavin cofactor. It is also strictly conserved in the family of BBE-like oxidases. Here, we present a detailed biochemical and structural characterization of a His174Ala variant supporting its importance during catalysis and for the structural organization of the active site. Substantial changes in all kinetic parameters and a decrease in midpoint potential were observed for the BBE His174Ala variant protein. Moreover, the crystal structure of the BBE His174Ala variant showed significant structural rearrangements compared to wild-type enzyme. On the basis of our findings, we propose that His174 is part of a hydrogen bonding network that stabilizes the negative charge at the N1-C2=O locus via interaction with the hydroxyl group at C2' of the ribityl side chain of the flavin cofactor. Hence, replacement of this residue with alanine reduces the stabilizing effect for the transiently formed negative charge and results in drastically decreased kinetic parameters as well as a lower midpoint redox potential.


Assuntos
Biocatálise , Domínio Catalítico , Sequência Conservada , Histidina/metabolismo , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/metabolismo , Cisteína , Estabilidade Enzimática , Histidina/química , Cinética , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Processos Fotoquímicos
4.
Chem Biodivers ; 6(9): 1343-9, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19774597

RESUMO

MCM-41, a mesoporous silica nanomaterial with a high surface area for adsorption of small molecules, is a potential new type of delivery vehicle for therapeutic and diagnostic agents. In this report, we show that MCM-41 adsorbs the front-line anticancer drug carboplatin, [Pt(CBDCA-O,O')(NH3)2] (CBDCA=cyclobutane-1,1-dicarboxylate; 1), which is used to treat ovarian, lung, and other types of cancer. UV/Visible difference absorption spectroscopy shows that MCM-41 adsorbs 1.8+/-0.2% of its own weight of carboplatin after a 24 h exposure to 26.9 mM drug in H2O. The pseudo-first-order rate constant for adsorption of carboplatin by MCM-41, measured using [1H,15N] heteronuclear single quantum coherence (HSQC) NMR, and 15N-labeled carboplatin is k(1)=2.92+/-2.17 x 10(-6) s(-1) at ca. 25 degrees.


Assuntos
Antineoplásicos/química , Carboplatina/química , Dióxido de Silício/química , Adsorção , Antineoplásicos/farmacologia , Carboplatina/farmacologia , Portadores de Fármacos , Espectroscopia de Ressonância Magnética , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA