Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cells ; 12(19)2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37830583

RESUMO

(1) Background and Objective: MicroRNAs (miRs) are biomarkers for assessing the extent of cardiac remodeling after myocardial infarction (MI) and important predictors of clinical outcome in heart failure. Overexpression of miR-30d-5p appears to have a cardioprotective effect. The aim of the present study was to demonstrate whether miR-30d-5p could be used as a potential therapeutic target to improve post-MI adverse remodeling. (2) Methods and Results: MiR profiling was performed by next-generation sequencing to assess different expression patterns in ischemic vs. healthy myocardium in a rat model of MI. MiR-30d-5p was significantly downregulated (p < 0.001) in ischemic myocardium and was selected as a promising target. A mimic of miR-30d-5p was administered in the treatment group, whereas the control group received non-functional, scrambled siRNA. To measure the effect of miR-30d-5p on infarct area size of the left ventricle, the rats were randomized and treated with miR-30d-5p or scrambled siRNA. Histological planimetry was performed 72 h and 6 weeks after induction of MI. Infarct area was significantly reduced at 72 h and at 6 weeks by using miR-30d-5p (72 h: 22.89 ± 7.66% vs. 35.96 ± 9.27%, p = 0.0136; 6 weeks: 6.93 ± 4.58% vs. 12.48 ± 7.09%, p = 0.0172). To gain insight into infarct healing, scratch assays were used to obtain information on cell migration in human umbilical vein endothelial cells (HUVECs). Gap closure was significantly faster in the mimic-treated cells 20 h post-scratching (12.4% more than the scrambled control after 20 h; p = 0.013). To analyze the anti-apoptotic quality of miR-30d-5p, the ratio between phosphorylated p53 and total p53 was evaluated in human cardiomyocytes using ELISA. Under the influence of the miR-30d-5p mimic, cardiomyocytes demonstrated a decreased pp53/total p53 ratio (0.66 ± 0.08 vs. 0.81 ± 0.17), showing a distinct tendency (p = 0.055) to decrease the apoptosis rate compared to the control group. (3) Conclusion: Using a mimic of miR-30d-5p underlines the cardioprotective effect of miR-30d-5p in MI and could reduce the risk for development of ischemic cardiomyopathy.


Assuntos
Cardiomiopatias , MicroRNAs , Infarto do Miocárdio , Isquemia Miocárdica , Ratos , Humanos , Animais , Células Endoteliais/metabolismo , Proteína Supressora de Tumor p53 , Infarto do Miocárdio/complicações , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Isquemia Miocárdica/complicações , Isquemia Miocárdica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno
2.
Br J Dermatol ; 190(1): 80-93, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37681509

RESUMO

BACKGROUND: Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES: To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS: Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS: We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS: RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica , Transição Epitelial-Mesenquimal , MicroRNAs , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/etiologia , Células Endoteliais/patologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/complicações , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , Neoplasias Cutâneas/patologia
3.
Cancers (Basel) ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37444397

RESUMO

Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.

4.
Int J Mol Sci ; 24(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36901775

RESUMO

Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.


Assuntos
Epidermólise Bolhosa Distrófica , Epidermólise Bolhosa , Humanos , Trans-Splicing , Pele/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa/genética , Queratinócitos/metabolismo , Colágeno Tipo VII/genética , Mutação
5.
Cancers (Basel) ; 14(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36428658

RESUMO

Chondroitin sulfate (CS) proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is currently under investigation as a marker of cancer malignancy, and as a potential target of anticancer drug treatment. CSPG4 acts as a driver of tumourigenesis by regulating turnover of the extracellular matrix (ECM) to promote tumour cell invasion, migration as well as inflammation and angiogenesis. While CSPG4 has been widely studied in certain malignancies, such as melanoma, evidence is emerging from global gene expression studies, which suggests a role for CSPG4 in squamous cell carcinoma (SCC). While relatively treatable, lack of widely agreed upon diagnostic markers for SCCs is problematic, especially for clinicians managing certain patients, including those who are aged or infirm, as well as those with underlying conditions such as epidermolysis bullosa (EB), for which a delayed diagnosis is likely lethal. In this review, we have discussed the structure of CSPG4, and quantitatively analysed CSPG4 expression in the tissues and pathologies where it has been identified to determine the usefulness of CSPG4 expression as a diagnostic marker and therapeutic target in management of malignant SCC.

6.
Int J Mol Sci ; 23(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008999

RESUMO

Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.


Assuntos
Epidermólise Bolhosa Distrófica/complicações , Epidermólise Bolhosa/complicações , Terapia Genética/métodos , Splicing de RNA , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/terapia , Trans-Splicing , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/genética , Ganciclovir/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Terapia Genética/efeitos adversos , Humanos , Camundongos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055192

RESUMO

Despite a significant rise in the incidence of cutaneous squamous cell carcinoma (SCC) in recent years, most SCCs are well treatable. However, against the background of pre-existing risk factors such as immunosuppression upon organ transplantation, or conditions such as recessive dystrophic epidermolysis bullosa (RDEB), SCCs arise more frequently and follow a particularly aggressive course. Notably, such SCC types display molecular similarities, despite their differing etiologies. We leveraged the similarities in transcriptomes between tumors from organ transplant recipients and RDEB-patients, augmented with data from more common head and neck (HN)-SCCs, to identify drugs that can be repurposed to treat these SCCs. The in silico approach used is based on the assumption that SCC-derived transcriptome profiles reflect critical tumor pathways that, if reversed towards healthy tissue, will attenuate the malignant phenotype. We determined tumor-specific signatures based on differentially expressed genes, which were then used to mine drug-perturbation data. By leveraging recent efforts in the systematic profiling and cataloguing of thousands of small molecule compounds, we identified drugs including selumetinib that specifically target key molecules within the MEK signaling cascade, representing candidates with the potential to be effective in the treatment of these rare and aggressive SCCs.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/genética , Biologia Computacional/métodos , Epidermólise Bolhosa Distrófica/complicações , Transplante de Órgãos/efeitos adversos , Neoplasias Cutâneas/genética , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/etiologia , Mineração de Dados , Reposicionamento de Medicamentos , Epidermólise Bolhosa Distrófica/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , RNA-Seq , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/etiologia
8.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805154

RESUMO

Intermediate junctional epidermolysis bullosa caused by mutations in the COL17A1 gene is characterized by the frequent development of blisters and erosions on the skin and mucous membranes. The rarity of the disease and the heterogeneity of the underlying mutations renders therapy developments challenging. However, the high number of short in-frame exons facilitates the use of antisense oligonucleotides (AON) to restore collagen 17 (C17) expression by inducing exon skipping. In a personalized approach, we designed and tested three AONs in combination with a cationic liposomal carrier for their ability to induce skipping of COL17A1 exon 7 in 2D culture and in 3D skin equivalents. We show that AON-induced exon skipping excludes the targeted exon from pre-mRNA processing, which restores the reading frame, leading to the expression of a slightly truncated protein. Furthermore, the expression and correct deposition of C17 at the dermal-epidermal junction indicates its functionality. Thus, we assume AON-mediated exon skipping to be a promising tool for the treatment of junctional epidermolysis bullosa, particularly applicable in a personalized manner for rare genotypes.


Assuntos
Autoantígenos/metabolismo , Epidermólise Bolhosa Juncional/genética , Colágenos não Fibrilares/metabolismo , Oligonucleotídeos Antissenso/genética , Splicing de RNA , Processamento Alternativo , Biópsia , Linhagem Celular , Sobrevivência Celular , Epidermólise Bolhosa Juncional/metabolismo , Epidermólise Bolhosa Juncional/terapia , Éxons , Genótipo , Homozigoto , Humanos , Queratinócitos/citologia , Lipossomos/química , Mutação , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo , Colágeno Tipo XVII
9.
J Invest Dermatol ; 141(4): 883-893.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32946877

RESUMO

Dystrophic epidermolysis bullosa (DEB) is a blistering skin disease caused by mutations in the gene COL7A1 encoding collagen VII. DEB can be inherited as recessive DEB (RDEB) or dominant DEB (DDEB) and is associated with a high wound burden. Perpetual cycles of wounding and healing drive fibrosis in DDEB and RDEB, as well as the formation of a tumor-permissive microenvironment. Prolonging wound-free episodes by improving the quality of wound healing would therefore confer substantial benefit for individuals with DEB. The collagenous domain of collagen VII is encoded by 82 in-frame exons, which makes splice-modulation therapies attractive for DEB. Indeed, antisense oligonucleotide-based exon skipping has shown promise for RDEB. However, the suitability of antisense oligonucleotides for treatment of DDEB remains unexplored. Here, we developed QR-313, a clinically applicable, potent antisense oligonucleotide specifically targeting exon 73. We show the feasibility of topical delivery of QR-313 in a carbomer-composed gel for treatment of wounds to restore collagen VII abundance in human RDEB skin. Our data reveal that QR-313 also shows direct benefit for DDEB caused by exon 73 mutations. Thus, the same topically applied therapeutic could be used to improve the wound healing quality in RDEB and DDEB.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Cicatrização/genética , Animais , Biópsia , Linhagem Celular , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Éxons/genética , Fibroblastos , Fibrose , Humanos , Queratinócitos , Camundongos , Camundongos Transgênicos , Mutação , Oligonucleotídeos Antissenso/genética , Cultura Primária de Células , Pele/efeitos dos fármacos
10.
Cell Commun Signal ; 18(1): 61, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276641

RESUMO

BACKGROUND: Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. METHODS: MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. RESULTS: Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. CONCLUSION: The discovery that miR-10b mediates an aspect of cancer stemness - that of enhanced tumor cell adhesion, known to facilitate metastatic colonization - provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas , Neoplasias Cutâneas , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Invasividade Neoplásica , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Cultura Primária de Células , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
12.
BMC Res Notes ; 8: 767, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26654529

RESUMO

BACKGROUND: Regenerative medicine is strictly dependent on stem cells as a source for a high diversity of somatic cells. However, the isolation of such from individuals suffering from severe genetic skin blistering diseases like epidermolysis bullosa (EB) is often associated with further organ damage. METHODS: Stem cells were isolated from 112 urine samples from 21 different healthy donors, as well as from 33 urine samples from 25 donors with EB. The cultivation of these cells was optimized by testing different media formulations and pre-coating of culture vessels with collagen. The identity of cells was confirmed by testing marker expression, differentiation potential and immune-modulatory properties. RESULTS: We provide here an optimized protocol for the reproducible isolation of mesenchymal stem cells from urine, even from small volumes as obtained from patients with EB. Furthermore, we offer a basic characterization of those urine-derived stem cells (USCs) from healthy donors, as well as from patients with EB, and demonstrate their potential to differentiate into chondrocytes, osteoblasts and adipocytes, as well as their immune-modulatory properties. CONCLUSIONS: Thus, USCs provide a novel and non-invasive source of stem cells, which might be applied for gene-therapeutic approaches to improve medical conditions of patients with EB.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Epidermólise Bolhosa/urina , Células-Tronco Mesenquimais/citologia , Adipogenia/genética , Agrecanas/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Condrogênese/genética , Colágeno Tipo X/genética , Feminino , Citometria de Fluxo , Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Imunofenotipagem/métodos , Ativação Linfocitária/imunologia , Masculino , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Microscopia de Fluorescência , Osteocalcina/genética , Osteogênese/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Hum Gene Ther Methods ; 24(1): 19-27, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23320616

RESUMO

In the treatment of genetic disorders, repairing defective pre-mRNAs by RNA trans-splicing has become an emerging alternative to conventional gene therapy. Previous studies have made clear that the design of the binding domains of the corrective RNA trans-splicing molecules (RTMs) is crucial for their optimal functionality. We established a reporter-based screening method that allows for selection of highly functional RTMs from a large pool of variants. The efficiency and functionality of the screen were validated in the COL7A1 gene, in which mutations are the cause of the skin disease dystrophic epidermolysis bullosa. Comparison of RTMs containing different binding domains hybridizing to COL7A1 intron 64/exon 65 revealed highly different trans-splicing efficiencies. Isolated RTMs were then adapted for endogenous trans-splicing in a recessive dystrophic epidermolysis bullosa (RDEB) keratinocyte cell line expressing reduced levels of COL7A1 mRNA. Our results confirm the applicability and relevance of prescreening reporter RTMs, as significant levels of endogenous COL7A1 mRNA repair were seen with RTMs identified as being highly efficient in our screening system.


Assuntos
Genes Reporter , RNA Mensageiro/genética , Trans-Splicing/genética , Sequência de Bases , Western Blotting , Clonagem Molecular , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/fisiopatologia , Éxons , Citometria de Fluxo , Genes Recessivos , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Dados de Sequência Molecular , Mutação , RNA Mensageiro/metabolismo , Retroviridae/genética , Transfecção
14.
J Invest Dermatol ; 132(8): 1959-66, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22495179

RESUMO

Spliceosome-mediated RNA trans-splicing (SMaRT) is an RNA-based technology to reprogram genes for diagnostic and therapeutic purposes. For the correction of genetic diseases, SMaRT offers several advantages over traditional gene-replacement strategies. SMaRT protocols have recently been used for in vitro phenotypic correction of a variety of genetic disorders, ranging from epidermolysis bullosa to neurodegenerative diseases. In vivo studies are currently bringing trans-splicing RNA therapy toward clinical application. In this review, we summarize the progress made toward the medical use of SMaRT and provide an outlook on its upcoming applications.


Assuntos
Doenças Genéticas Inatas/genética , Terapia Genética/métodos , Spliceossomos/genética , Alelos , Animais , Carcinoma de Células Escamosas/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Técnicas Genéticas , Terapia Genética/tendências , Humanos , Camundongos , Modelos Genéticos , Mutação , Fenótipo , Splicing de RNA , Spliceossomos/metabolismo , Trans-Splicing
15.
J Invest Dermatol ; 128(3): 568-74, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17989727

RESUMO

The efficient treatment of hereditary disorders, especially of those caused by dominant-negative mutations still remains an obstacle to be overcome. Allele specificity is a critical aspect that must be addressed by silencing therapies such as small interfering RNA, which has the potential risk of also reducing expression of the normal allele. To overcome this hurdle, we used spliceosome-mediated RNA trans-splicing (SMaRT) to replace mRNA exon segments in an in vitro disease model. In this model, a heterozygous insertion of a leucine codon into exon 9 of the plectin gene (PLEC1) leads to aggregation of plectin peptide chains and subsequent protein degradation recapitulating, together with a nonsense mutation on the other allele, the blistering skin disease epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). Transient transfection of EBS-MD fibroblasts with a 5' pre-trans-splicing molecule encoding wild-type exons 2-9 led to specific replacement of the mutated 5' portion of the endogenous PLEC1 transcript through trans-splicing. This treatment reduced the levels of mutant mRNA and restored a wild-type pattern of plectin expression as revealed by immunofluorescence microscopy. When EBS-MD fibroblasts were transfected with retroviral constructs, the level of full-length plectin protein in the corrected fibroblasts increased by 58.7%. Thus, SMaRT may be a promising new tool for treatment of autosomal-dominant genetic diseases.


Assuntos
Epidermólise Bolhosa Simples/terapia , Fibroblastos/fisiologia , Terapia Genética/métodos , Plectina/genética , Splicing de RNA , Linhagem Celular Transformada , Epidermólise Bolhosa Simples/genética , Fibroblastos/citologia , Expressão Gênica , Humanos , Reação em Cadeia da Polimerase , Precursores de RNA/genética , Sítios de Splice de RNA , Retroviridae/genética
16.
Mol Immunol ; 45(2): 406-18, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17645945

RESUMO

Cladosporium herbarum represents one of the most important world-wide occurring allergenic fungal species. The prevalence of IgE reactivity to C. herbarum in patients suffering from allergy varies between 5 and 30% in the different climatic zones. Since mold allergy has often been associated with severe asthma, along with other allergic symptoms, it is important to define more comprehensively the allergen repertoire of this ascomycete. In this context we are reporting our successful approach to identify, clone, produce as a recombinant protein, purify and further characterize a new C. herbarum allergen which is a close homolog of the human translationally controlled tumor protein (TCTP, also called histamine releasing factor, HRF). The immunoreactivity of both pure recombinant molecules was investigated by means of immunoblot analyses, enzyme-linked immunosorbent assays as well as histamine release studies. To summarize, IgE antibodies from five out of nine individuals recognized both the human and the fungal protein in immunoblots. The latter was able to cause histamine release from human basophils with about half the efficiency compared to its human homolog HRF. Cross-inhibition assays showed that the patients' IgEs recognize common epitopes on both the human and C. herbarum proteins, but however, only pre-incubation with C. herbarum TCTP could completely inhibit reactivity with HRF. Furthermore, it appears that patients reactive to TCTP have a higher probability to suffer from asthma than other allergic patients.


Assuntos
Antígenos de Fungos/imunologia , Biomarcadores Tumorais/imunologia , Cladosporium/imunologia , Hipersensibilidade/microbiologia , Hipersensibilidade/patologia , Imunoglobulina E/imunologia , Adolescente , Adulto , Sequência de Aminoácidos , Antígenos de Fungos/química , Antígenos de Fungos/genética , Antígenos de Fungos/isolamento & purificação , Sequência de Bases , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/isolamento & purificação , Criança , Pré-Escolar , Cladosporium/genética , Células Clonais , Reações Cruzadas , DNA Complementar/isolamento & purificação , Liberação de Histamina , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de DNA , Proteína Tumoral 1 Controlada por Tradução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA