Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 207(8): 998-1011, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36724365

RESUMO

Rationale: Chronic obstructive pulmonary disease (COPD) is a disease characterized by persistent airway inflammation and disordered macrophage function. The extent to which alterations in macrophage bioenergetics contribute to impaired antioxidant responses and disease pathogenesis has yet to be fully delineated. Objectives: Through the study of COPD alveolar macrophages (AMs) and peripheral monocyte-derived macrophages (MDMs), we sought to establish if intrinsic defects in core metabolic processes drive macrophage dysfunction and redox imbalance. Methods: AMs and MDMs from donors with COPD and healthy donors underwent functional, metabolic, and transcriptional profiling. Measurements and Main Results: We observed that AMs and MDMs from donors with COPD display a critical depletion in glycolytic- and mitochondrial respiration-derived energy reserves and an overreliance on glycolysis as a source for ATP, resulting in reduced energy status. Defects in oxidative metabolism extend to an impaired redox balance associated with defective expression of the NADPH-generating enzyme, ME1 (malic enzyme 1), a known target of the antioxidant transcription factor NRF2 (nuclear factor erythroid 2-related factor 2). Consequently, selective activation of NRF2 resets the COPD transcriptome, resulting in increased generation of TCA cycle intermediaries, improved energetic status, favorable redox balance, and recovery of macrophage function. Conclusions: In COPD, an inherent loss of metabolic plasticity leads to metabolic exhaustion and reduced redox capacity, which can be rescued by activation of the NRF2 pathway. Targeting these defects, via NRF2 augmentation, may therefore present an attractive therapeutic strategy for the treatment of the aberrant airway inflammation described in COPD.


Assuntos
Fator 2 Relacionado a NF-E2 , Doença Pulmonar Obstrutiva Crônica , Humanos , Macrófagos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Malato Desidrogenase/metabolismo
2.
Nat Immunol ; 23(6): 927-939, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35624205

RESUMO

Hypoxemia is a defining feature of acute respiratory distress syndrome (ARDS), an often-fatal complication of pulmonary or systemic inflammation, yet the resulting tissue hypoxia, and its impact on immune responses, is often neglected. In the present study, we have shown that ARDS patients were hypoxemic and monocytopenic within the first 48 h of ventilation. Monocytopenia was also observed in mouse models of hypoxic acute lung injury, in which hypoxemia drove the suppression of type I interferon signaling in the bone marrow. This impaired monopoiesis resulted in reduced accumulation of monocyte-derived macrophages and enhanced neutrophil-mediated inflammation in the lung. Administration of colony-stimulating factor 1 in mice with hypoxic lung injury rescued the monocytopenia, altered the phenotype of circulating monocytes, increased monocyte-derived macrophages in the lung and limited injury. Thus, tissue hypoxia altered the dynamics of the immune response to the detriment of the host and interventions to address the aberrant response offer new therapeutic strategies for ARDS.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Hipóxia/etiologia , Inflamação/complicações , Pulmão , Lesão Pulmonar/complicações , Camundongos
3.
Sci Adv ; 7(19)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962944

RESUMO

Unbalanced immune responses to pathogens can be life-threatening although the underlying regulatory mechanisms remain unknown. Here, we show a hypoxia-inducible factor 1α-dependent microRNA (miR)-210 up-regulation in monocytes and macrophages upon pathogen interaction. MiR-210 knockout in the hematopoietic lineage or in monocytes/macrophages mitigated the symptoms of endotoxemia, bacteremia, sepsis, and parasitosis, limiting the cytokine storm, organ damage/dysfunction, pathogen spreading, and lethality. Similarly, pharmacologic miR-210 inhibition improved the survival of septic mice. Mechanistically, miR-210 induction in activated macrophages supported a switch toward a proinflammatory state by lessening mitochondria respiration in favor of glycolysis, partly achieved by downmodulating the iron-sulfur cluster assembly enzyme ISCU. In humans, augmented miR-210 levels in circulating monocytes correlated with the incidence of sepsis, while serum levels of monocyte/macrophage-derived miR-210 were associated with sepsis mortality. Together, our data identify miR-210 as a fine-tuning regulator of macrophage metabolism and inflammatory responses, suggesting miR-210-based therapeutic and diagnostic strategies.


Assuntos
MicroRNAs , Sepse , Animais , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Monócitos/metabolismo , Sepse/genética , Sepse/metabolismo
4.
Thromb Haemost ; 120(2): 253-261, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31858521

RESUMO

BACKGROUND: Hypoxia resulting from ascent to high-altitude or pathological states at sea level is known to increase platelet reactivity. Previous work from our group has suggested that this may be adenosine diphosphate (ADP)-specific. Given the clinical importance of drugs targeting ADP pathways, research into the impact of hypoxia on platelet ADP pathways is highly important. METHODS: Optimul aggregometry was performed on plasma from 29 lowland residents ascending to 4,700 m, allowing systematic assessment of platelet reactivity in response to several platelet agonists. Aggregometry was also performed in response to ADP in the presence of inhibitors of the two main ADP receptors, P2Y1 and P2Y12 (MRS2500 and cangrelor, respectively). Phosphorylation of vasodilator-stimulated phosphoprotein (VASP), a key determinant of platelet aggregation, was analysed using the VASPFix assay. RESULTS: Hypobaric hypoxia significantly reduced the ability of a fixed concentration of cangrelor to inhibit ADP-induced aggregation and increased basal VASP phosphorylation. However, in the absence of P2Y receptor inhibitors, we did not find evidence of increased platelet sensitivity to any of the agonists tested and found reduced sensitivity to thrombin receptor-activating peptide-6 amide. CONCLUSION: Our results provide evidence of increased P2Y1 receptor activity at high altitude and suggest down-regulation of the P2Y12 pathway through increased VASP phosphorylation. These changes in ADP pathway activity are of potential therapeutic significance to high-altitude sojourners and hypoxic sea level patients prescribed platelet inhibitors and warrant further investigation.


Assuntos
Plaquetas/metabolismo , Hipóxia , Agregação Plaquetária , Receptores Purinérgicos/metabolismo , Transdução de Sinais , Difosfato de Adenosina/sangue , Difosfato de Adenosina/química , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Adolescente , Adulto , Altitude , Moléculas de Adesão Celular/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Proteínas dos Microfilamentos/metabolismo , Oxigênio/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Ativação Plaquetária , Inibidores da Agregação Plaquetária/farmacologia , Testes de Função Plaquetária , Plasma Rico em Plaquetas/metabolismo , Receptores de Trombina/metabolismo , Adulto Jovem
5.
Br Med Bull ; 128(1): 5-14, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30137312

RESUMO

Introduction: It has been known for some time that neutrophils are present in the tumour microenvironment, but only recently have their roles been explored. Sources of data: Comprehensive literature search of neutrophils and cancer (PubMed, Google Scholar and CrossRef) for key articles (systematic reviews, meta-analyses, primary research). References from these articles cross-checked for additional relevant studies. Areas of agreement: Neutrophils are a heterogeneous population with both pro- and antitumour roles, and display plasticity. Several neutrophil subpopulations have been identified, defined by a combination of features (density, maturity, surface markers, morphology and anatomical site). Areas of controversy: Limitations in translating murine tumour models to human pathology and paucity of human data. Consensus in defining human neutrophil subpopulations. Growing points: Neutrophils as therapeutic targets and as possible playmakers in the biological response to newer targeted cancer drugs. Areas timely for developing research: Understanding the metabolic programming of neutrophils in the tumour microenvironment.


Assuntos
Neoplasias/imunologia , Neutrófilos/patologia , Microambiente Tumoral/imunologia , Humanos , Imunidade Celular/fisiologia , Neoplasias/patologia , Neutrófilos/imunologia , Transdução de Sinais
6.
Am J Respir Crit Care Med ; 198(6): 739-750, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547002

RESUMO

RATIONALE: Previous studies have identified defects in bacterial phagocytosis by alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD), but the mechanisms and clinical consequences remain incompletely defined. OBJECTIVES: To examine the effect of COPD on AM phagocytic responses and identify the mechanisms, clinical consequences, and potential for therapeutic manipulation of these defects. METHODS: We isolated AMs and monocyte-derived macrophages (MDMs) from a cohort of patients with COPD and control subjects within the Medical Research Council COPDMAP consortium and measured phagocytosis of bacteria in relation to opsonic conditions and clinical features. MEASUREMENTS AND MAIN RESULTS: COPD AMs and MDMs have impaired phagocytosis of Streptococcus pneumoniae. COPD AMs have a selective defect in uptake of opsonized bacteria, despite the presence of antipneumococcal antibodies in BAL, not observed in MDMs or healthy donor AMs. AM defects in phagocytosis in COPD are significantly associated with exacerbation frequency, isolation of pathogenic bacteria, and health-related quality-of-life scores. Bacterial binding and initial intracellular killing of opsonized bacteria in COPD AMs was not reduced. COPD AMs have reduced transcriptional responses to opsonized bacteria, such as cellular stress responses that include transcriptional modules involving antioxidant defenses and Nrf2 (nuclear factor erythroid 2-related factor 2)-regulated genes. Agonists of the cytoprotective transcription factor Nrf2 (sulforaphane and compound 7) reverse defects in phagocytosis of S. pneumoniae and nontypeable Haemophilus influenzae by COPD AMs. CONCLUSIONS: Patients with COPD have clinically relevant defects in opsonic phagocytosis by AMs, associated with impaired transcriptional responses to cellular stress, which are reversed by therapeutic targeting with Nrf2 agonists.


Assuntos
Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fagocitose/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Isotiocianatos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Masculino , Pessoa de Meia-Idade , Fagocitose/fisiologia , Streptococcus pneumoniae , Sulfóxidos
7.
J Clin Invest ; 127(9): 3407-3420, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28805660

RESUMO

Fully activated innate immune cells are required for effective responses to infection, but their prompt deactivation and removal are essential for limiting tissue damage. Here, we have identified a critical role for the prolyl hydroxylase enzyme Phd2 in maintaining the balance between appropriate, predominantly neutrophil-mediated pathogen clearance and resolution of the innate immune response. We demonstrate that myeloid-specific loss of Phd2 resulted in an exaggerated inflammatory response to Streptococcus pneumonia, with increases in neutrophil motility, functional capacity, and survival. These enhanced neutrophil responses were dependent upon increases in glycolytic flux and glycogen stores. Systemic administration of a HIF-prolyl hydroxylase inhibitor replicated the Phd2-deficient phenotype of delayed inflammation resolution. Together, these data identify Phd2 as the dominant HIF-hydroxylase in neutrophils under normoxic conditions and link intrinsic regulation of glycolysis and glycogen stores to the resolution of neutrophil-mediated inflammatory responses. These results demonstrate the therapeutic potential of targeting metabolic pathways in the treatment of inflammatory disease.


Assuntos
Glicogênio/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Neutrófilos/citologia , Infecções Pneumocócicas/imunologia , Doença Aguda , Animais , Lavagem Broncoalveolar , Colite/metabolismo , Glicólise , Humanos , Imunidade Inata , Inflamação , Leucócitos/citologia , Lesão Pulmonar/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais
8.
Wellcome Open Res ; 2: 104, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387803

RESUMO

Background: Pseudomonas species are adapted to evade innate immune responses and can persist at sites of relative tissue hypoxia, including the mucus-plugged airways of patients with cystic fibrosis and bronchiectasis.  The ability of these bacteria to directly sense and respond to changes in local oxygen availability is in part consequent upon expression of the 2-oxoglutarate oxygenase, Pseudomonas prolyl hydroxylase (PPHD), which acts on elongation factor Tu (EF-Tu), and is homologous with the human hypoxia inducible factor (HIF) prolyl hydroxylases. We report that PPHD expression regulates the neutrophil response to acute pseudomonal infection. Methods:In vitro co-culture experiments were performed with human neutrophils and PPHD-deficient and wild-type bacteria and supernatants, with viable neutrophil counts determined by flow cytometry. In vivo consequences of infection with PPHD deficient P. aeruginosa were determined in an acute pneumonia mouse model following intra-tracheal challenge. Results: Supernatants of PPHD-deficient bacterial cultures contained higher concentrations of the phenazine exotoxin pyocyanin and induced greater acceleration of neutrophil apoptosis than wild-type PAO1 supernatants in vitro.  In vivo infection with PPHD mutants compared to wild-type PAO1 controls resulted in increased levels of neutrophil apoptosis and impaired control of infection, with higher numbers of P. aeruginosa recovered from the lungs of mice infected with the PPHD-deficient strain.  This resulted in an overall increase in mortality in mice infected with the PPHD-deficient strain. Conclusions: Our data show that Pseudomonas expression of its prolyl hydroxylase influences the outcome of host-pathogen interactions in vitro and in vivo, demonstrating the importance of considering how both host and pathogen adaptations to hypoxia together define outcomes of infection. Given that inhibitors for the HIF prolyl hydroxylases are in late stage trials for the treatment of anaemia and that the active sites of PPHD and human HIF prolyl hydroxylases are closely related, the results are of current clinical interest.

9.
Dis Model Mech ; 8(11): 1349-60, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26512123

RESUMO

A low level of tissue oxygen (hypoxia) is a physiological feature of a wide range of diseases, from cancer to infection. Cellular hypoxia is sensed by oxygen-sensitive hydroxylase enzymes, which regulate the protein stability of hypoxia-inducible factor α (HIF-α) transcription factors. When stabilised, HIF-α binds with its cofactors to HIF-responsive elements (HREs) in the promoters of target genes to coordinate a wide-ranging transcriptional programme in response to the hypoxic environment. This year marks the 20th anniversary of the discovery of the HIF-1α transcription factor, and in recent years the HIF-mediated hypoxia response is being increasingly recognised as an important process in determining the outcome of diseases such as cancer, inflammatory disease and bacterial infections. Animal models have shed light on the roles of HIF in disease and have uncovered intricate control mechanisms that involve multiple cell types, observations that might have been missed in simpler in vitro systems. These findings highlight the need for new whole-organism models of disease to elucidate these complex regulatory mechanisms. In this Review, we discuss recent advances in our understanding of hypoxia and HIFs in disease that have emerged from studies of zebrafish disease models. Findings from such models identify HIF as an integral player in the disease processes. They also highlight HIF pathway components and their targets as potential therapeutic targets against conditions that range from cancers to infectious disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Microambiente Celular , Oxigênio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular , Desenho de Fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Modelos Animais , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Especificidade da Espécie , Fatores de Transcrição/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
10.
Ann Am Thorac Soc ; 11 Suppl 5: S271-6, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25525731

RESUMO

Although the hypoxia-inducible factor (HIF)-hydroxylase oxygen-sensing pathway has been extensively reviewed in the context of cellular responses to hypoxia and cancer biology, its importance in regulating innate immune biology is less well described. In this review, we focus on the role of the HIF-hydroxylase pathway in regulating myeloid cell responses and its relevance to inflammatory lung disease. The more specific roles of individual HIF/ prolyl hydroxylase pathway members in vivo are discussed in the context of lineage-specific rodent models of inflammation, with final reference made to the therapeutic challenges of targeting the HIF/hydroxylase pathway in immune cells.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Celular , Pulmão/imunologia , Pneumonia/metabolismo , Animais , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pneumonia/imunologia , Pneumonia/patologia
11.
Hypoxia (Auckl) ; 2: 47-58, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-27774466

RESUMO

Leukocytes recruited to infected, damaged, or inflamed tissues during an immune response must adapt to oxygen levels much lower than those in the circulation. Hypoxia inducible factors (HIFs) are key mediators of cellular responses to hypoxia and, as in other cell types, HIFs are critical for the upregulation of glycolysis, which enables innate immune cells to produce adenosine triphosphate anaerobically. An increasing body of evidence demonstrates that hypoxia also regulates many other innate immunological functions, including cell migration, apoptosis, phagocytosis of pathogens, antigen presentation and production of cytokines, chemokines, and angiogenic and antimicrobial factors. Many of these functions are mediated by HIFs, which are not only stabilized posttranslationally by hypoxia, but also transcriptionally upregulated by inflammatory signals. Here, we review the role of HIFs in the responses of innate immune cells to hypoxia, both in vitro and in vivo, with a particular focus on myeloid cells, on which the majority of studies have so far been carried out.

12.
Circ Res ; 112(12): 1583-91, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23564640

RESUMO

RATIONALE: Hypoxia followed by reoxygenation promotes inflammation by activating nuclear factor κB transcription factors in endothelial cells (ECs). This process involves modification of the signaling intermediary tumor necrosis factor receptor-associated factor 6 with polyubiquitin chains. Thus, cellular mechanisms that suppress tumor necrosis factor receptor-associated factor 6 ubiquitination are potential therapeutic targets to reduce inflammation in hypoxic tissues. OBJECTIVE: In this study, we tested the hypothesis that endothelial activation in response to hypoxia-reoxygenation can be influenced by Cezanne, a deubiquitinating enzyme that cleaves ubiquitin from specific modified proteins. METHODS AND RESULTS: Studies of cultured ECs demonstrated that hypoxia (1% oxygen) induced Cezanne via p38 mitogen-activated protein kinase-dependent transcriptional and post-transcriptional mechanisms. Hypoxia-reoxygenation had minimal effects on proinflammatory signaling in unmanipulated ECs but significantly enhanced Lys63 polyubiquitination of tumor necrosis factor receptor-associated factor 6, activation of nuclear factor κB, and expression of inflammatory genes after silencing of Cezanne. Thus, although hypoxia primed cells for inflammatory activation, it simultaneously induced Cezanne, which impeded signaling to nuclear factor κB by suppressing tumor necrosis factor receptor-associated factor 6 ubiquitination. Similarly, ischemia induced Cezanne in the murine kidney in vascular ECs, glomerular ECs, podocytes, and epithelial cells, and genetic deletion of Cezanne enhanced renal inflammation and injury in murine kidneys exposed to ischemia followed by reperfusion. CONCLUSIONS: We conclude that inflammatory responses to ischemia are controlled by a balance between ubiquitination and deubiquitination, and that Cezanne is a key regulator of this process. Our observations have important implications for therapeutic targeting of inflammation and injury during ischemia-reperfusion.


Assuntos
Endopeptidases/metabolismo , Células Endoteliais/enzimologia , Inflamação/prevenção & controle , Rim/irrigação sanguínea , Traumatismo por Reperfusão/enzimologia , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Hipóxia Celular , Células Cultivadas , Modelos Animais de Doenças , Endopeptidases/deficiência , Endopeptidases/genética , Células Endoteliais/imunologia , Humanos , Inflamação/enzimologia , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Oxigênio/metabolismo , Interferência de RNA , Ratos , Ratos Endogâmicos F344 , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/imunologia , Transdução de Sinais , Fator 6 Associado a Receptor de TNF/genética , Fatores de Tempo , Transcrição Gênica , Transfecção , Ubiquitinação , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
J Leukoc Biol ; 93(1): 7-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22904343

RESUMO

This study examined the establishment of neutrophilic inflammation in humans. We tested the hypotheses that neutrophil recruitment was associated with local CXCL8 production and that neutrophils themselves might contribute to the regulation of the size of the inflammatory response. Humans were challenged i.d. with endotoxin. Biopsies of these sites were examined for cytokine production and leukocyte recruitment by qPCR and IHC. Additional in vitro models of inflammation examined the ability of neutrophils to produce and sequester cytokines relevant to neutrophilic inflammation. i.d. challenge with 15 ng of a TLR4-selective endotoxin caused a local inflammatory response, in which 1% of the total biopsy area stained positive for neutrophils at 6 h, correlating with 100-fold up-regulation in local CXCL8 mRNA generation. Neutrophils themselves were the major source of the early cytokine IL-1ß. In vitro, neutrophils mediated CXCL8 but not IL-1ß clearance (>90% clearance of ≤2 nM CXCL8 over 24 h). CXCL8 clearance was at least partially receptor-dependent and modified by inflammatory context, preserved in models of viral infection but reduced in models of bacterial infection. In conclusion, in a human inflammatory model, neutrophils are rapidly recruited and may regulate the size and outcome of the inflammatory response through the uptake and release of cytokines and chemokines in patterns dependent on the underlying inflammatory stimulus.


Assuntos
Quimiocinas/metabolismo , Inflamação/metabolismo , Interleucina-1/metabolismo , Infiltração de Neutrófilos/imunologia , Neutrófilos/metabolismo , Animais , Western Blotting , Quimiocinas/imunologia , Endotoxinas/toxicidade , Humanos , Imuno-Histoquímica , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-1/imunologia , Interleucina-8/imunologia , Interleucina-8/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação de Neutrófilo/imunologia , Neutrófilos/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia
14.
PLoS One ; 7(9): e45933, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029326

RESUMO

We have investigated the contribution of individual phosphoinositide 3-kinase (PI3K) Class I isoforms to the regulation of neutrophil survival using (i) a panel of commercially available small molecule isoform-selective PI3K Class I inhibitors, (ii) novel inhibitors, which target single or multiple Class I isoforms (PI3Kα, PI3Kß, PI3Kδ, and PI3Kγ), and (iii) transgenic mice lacking functional PI3K isoforms (p110δ(KO)γ(KO) or p110γ(KO)). Our data suggest that there is considerable functional redundancy amongst Class I PI3Ks (both Class IA and Class IB) with regard to GM-CSF-mediated suppression of neutrophil apoptosis. Hence pharmacological inhibition of any 3 or more PI3K isoforms was required to block the GM-CSF survival response in human neutrophils, with inhibition of individual or any two isoforms having little or no effect. Likewise, isolated blood neutrophils derived from double knockout PI3K p110δ(KO)γ(KO) mice underwent normal time-dependent constitutive apoptosis and displayed identical GM-CSF mediated survival to wild type cells, but were sensitized to pharmacological inhibition of the remaining PI3K isoforms. Surprisingly, the pro-survival neutrophil phenotype observed in patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD) was resilient to inactivation of the PI3K pathway.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
J Immunol ; 189(4): 1955-65, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22786772

RESUMO

Hypoxia and HIFs (HIF-1α and HIF-2α) modulate innate immune responses in the setting of systemic inflammatory responses and sepsis. The HIF prolyl hydroxylase enzymes PHD1, PHD2 and PHD3 regulate the mammalian adaptive response to hypoxia; however, their significance in the innate immune response has not been elucidated. We demonstrate in this study that deficiency of PHD3 (PHD3(-/-)) specifically shortens the survival of mice subjected to various models of abdominal sepsis because of an overwhelming innate immune response, leading to premature organ dysfunction. By contrast, this phenotype was absent in mice deficient for PHD1 (PHD1(-/-)) or PHD2 (PHD2(+/-)). In vivo, plasma levels of proinflammatory cytokines were enhanced, and recruitment of macrophages to internal organs was increased in septic PHD3-deficient mice. Reciprocal bone marrow transplantation in sublethally irradiated mice revealed that enhanced susceptibility of PHD3-deficient mice to sepsis-related lethality was specifically caused by loss of PHD3 in myeloid cells. Several in vitro assays revealed enhanced cytokine production, migration, phagocytic capacity, and proinflammatory activation of PHD3-deficient macrophages. Increased proinflammatory activity of PHD3-deficient macrophages occurred concomitantly with enhanced HIF-1α protein stabilization and increased NF-κB activity, and interference with the expression of HIF-1α or the canonical NF-κB pathway blunted their proinflammatory phenotype. It is concluded that impairment of PHD3 enzyme function aggravates the clinical course of abdominal sepsis via HIF-1α- and NF-κB-mediated enhancement of the innate immune response.


Assuntos
Imunidade Inata/imunologia , Macrófagos/imunologia , Pró-Colágeno-Prolina Dioxigenase/imunologia , Sepse/imunologia , Transdução de Sinais/imunologia , Animais , Western Blotting , Quimiotaxia de Leucócito/imunologia , Citocinas/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imuno-Histoquímica , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sepse/metabolismo
16.
Thorax ; 67(11): 985-92, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22735687

RESUMO

BACKGROUND: Therapeutic strategies to modulate the host response to bacterial pneumonia are needed to improve outcomes during community-acquired pneumonia. This study used mice with impaired Fas signalling to examine susceptibility to pneumococcal pneumonia and decoy receptor 3 analogue (DcR3-a) to correct factors associated with increased susceptibility. METHODS: Wild-type mice and those with varying degrees of impairment of Fas (lpr) or Fas ligand signalling (gld) were challenged with Streptococcus pneumoniae and microbiological and immunological outcomes measured in the presence or absence of DcR3-a. RESULTS: During established pneumonia, neutrophils became the predominant cell in the airway and gld mice were less able to clear bacteria from the lungs, demonstrating localised impairment of pulmonary neutrophil function in comparison to lpr or wild-type mice. T-cells from gld mice had enhanced activation and reduced apoptosis in comparison to wild-type and lpr mice during established pneumonia. Treatment with DcR3-a reduced T-cell activation and corrected the defect in pulmonary bacterial clearance in gld mice. CONCLUSIONS: The results suggest that imbalance in tumour necrosis factor superfamily signalling and excessive T-cell activation can impair bacterial clearance in the lung but that DcR3-a treatment can reduce T-cell activation, restore optimal pulmonary neutrophil function and enhance bacterial clearance during S pneumoniae infection.


Assuntos
Proteína Ligante Fas/metabolismo , Neutrófilos/imunologia , Fagócitos/imunologia , Pneumonia Pneumocócica/imunologia , Membro 6b de Receptores do Fator de Necrose Tumoral/farmacologia , Animais , Modelos Animais de Doenças , Proteína Ligante Fas/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Neutrófilos/efeitos dos fármacos , Fagócitos/efeitos dos fármacos , Pneumonia Pneumocócica/metabolismo , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/terapia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Streptococcus pneumoniae/imunologia
17.
Thorax ; 67(9): 796-803, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22496351

RESUMO

BACKGROUND: The death receptor ligand tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) shows considerable clinical promise as a therapeutic agent. TRAIL induces leukocyte apoptosis, reducing acute inflammatory responses in the lung. It is not known whether TRAIL modifies chronic lung injury or whether TRAIL has a role in human idiopathic pulmonary fibrosis (IPF). We therefore explored the capacity of TRAIL to modify chronic inflammatory lung injury and studied TRAIL expression in patients with IPF. METHODS: TRAIL(-/-) and wild-type mice were instilled with bleomycin and inflammation assessed at various time points by bronchoalveolar lavage and histology. Collagen deposition was measured by tissue hydroxyproline content. TRAIL expression in human IPF lung samples was assessed by immunohistochemistry and peripheral blood TRAIL measured by ELISA. RESULTS: TRAIL(-/-) mice had an exaggerated delayed inflammatory response to bleomycin, with increased neutrophil numbers (mean 3.19±0.8 wild type vs 11.5±5.4×10(4) TRAIL(-/-), p<0.0001), reduced neutrophil apoptosis (5.42±1.6% wild type vs 2.47±0.5% TRAIL(-/-), p=0.0003) and increased collagen (3.45±0.2 wild type vs 5.8±1.3 mg TRAIL(-/-), p=0.005). Immunohistochemical analysis showed induction of TRAIL in bleomycin-treated wild-type mice. Patients with IPF demonstrated lower levels of TRAIL expression than in control lung biopsies and their serum levels of TRAIL were significantly lower compared with matched controls (38.1±9.6 controls vs 32.3±7.2 pg/ml patients with IPF, p=0.002). CONCLUSION: These data suggest TRAIL may exert beneficial, anti-inflammatory actions in chronic pulmonary inflammation in murine models and that these mechanisms may be compromised in human IPF.


Assuntos
Lesão Pulmonar/metabolismo , Fibrose Pulmonar/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/deficiência , Animais , Biomarcadores/metabolismo , Bleomicina , Lavagem Broncoalveolar , Estudos de Casos e Controles , Colágeno/metabolismo , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Hidroxiprolina/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos C57BL , Testes de Função Respiratória
18.
J Clin Invest ; 121(3): 1053-63, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21317538

RESUMO

The regulation of neutrophil lifespan by induction of apoptosis is critical for maintaining an effective host response and preventing excessive inflammation. The hypoxia-inducible factor (HIF) oxygen-sensing pathway has a major effect on the susceptibility of neutrophils to apoptosis, with a marked delay in cell death observed under hypoxic conditions. HIF expression and transcriptional activity are regulated by the oxygen-sensitive prolyl hydroxylases (PHD1-3), but the role of PHDs in neutrophil survival is unclear. We examined PHD expression in human neutrophils and found that PHD3 was strongly induced in response to hypoxia and inflammatory stimuli in vitro and in vivo. Using neutrophils from mice deficient in Phd3, we demonstrated a unique role for Phd3 in prolonging neutrophil survival during hypoxia, distinct from other hypoxia-associated changes in neutrophil function and metabolic activity. Moreover, this selective defect in neutrophil survival occurred in the presence of preserved HIF transcriptional activity but was associated with upregulation of the proapoptotic mediator Siva1 and loss of its binding target Bcl-xL. In vivo, using an acute lung injury model, we observed increased levels of neutrophil apoptosis and clearance in Phd3-deficient mice compared with WT controls. We also observed reduced neutrophilic inflammation in an acute mouse model of colitis. These data support what we believe to be a novel function for PHD3 in regulating neutrophil survival in hypoxia and may enable the development of new therapeutics for inflammatory disease.


Assuntos
Dioxigenases/fisiologia , Hipóxia , Inflamação , Neutrófilos/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Sobrevivência Celular , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucócitos Mononucleares/citologia , Lesão Pulmonar/patologia , Camundongos , Camundongos Transgênicos , Neutrófilos/citologia , Proteína bcl-X/metabolismo
19.
Am J Respir Cell Mol Biol ; 38(3): 251-5, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17932373

RESUMO

In aerobic organisms, all cells have the capacity to respond to changes in oxygenation through the stabilization and transcriptional activation of hypoxia-inducible factor (HIF). At sites of tissue injury, oxygen delivery to individual cells may be compromised or insufficient due to increased metabolic demands, and it is to these areas that immune cells, including neutrophils, must migrate and operate effectively. In addition to the role of HIF to regulate the adaptive metabolic and survival responses of these cells at sites of reduced oxygenation, more complex interactions between HIF and pro-inflammatory pathways are now emerging. The mechanisms by which HIF modulates pro-inflammatory myeloid cell lifespan and function remain to be fully characterized, but roles for the oxygen-sensing hydroxylase enzymes through direct hydroxylation of NF-kappaB and its repressor protein IkappaBalpha have been suggested. The ability of HIF to modulate cellular glucose utilization is also thought to be important, with the maintenance of intracellular ATP pools linked to enhanced myeloid cell aggregation, motility, invasiveness, and bacterial killing. Additional non-hypoxia-mediated routes to up-regulate HIF are also now recognized. In this review we describe the role of HIF in the oxygen-sensing response, and the oxygen-dependent and -independent regulation of myeloid cell function and longevity. Understanding these processes and the role they play in regulating innate immune responses within inflamed sites, both hypoxic and normoxic, may offer new opportunities for therapeutic intervention.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Imunidade Inata , Oxigênio/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Humanos , Hidroxilação , Hipóxia , Modelos Biológicos , Células Mieloides/metabolismo , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Proteínas Repressoras/metabolismo
20.
Blood ; 108(9): 3176-8, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16809612

RESUMO

Neutrophils are key mediators of the innate immune response and are required to function at sites of low oxygenation. We have shown that in hypoxia neutrophils are protected from apoptosis via a mechanism dependent on prolyl hydroxylase domain/hypoxia-inducible factor 1alpha (PHD/HIF-1alpha). This response would be predicted to involve the von Hippel Lindau protein (pVHL)-dependent ubiquitination and degradation of HIF-1alpha. Patients with VHL disease inherit a mutation in one VHL allele, which allows us to study the effects of heterozygous VHL expression in human neutrophils. Neutrophils exhibited a striking "partial hypoxic" pheno-type, with delayed rates of apoptosis and enhanced bacterial phagocytosis under normoxic conditions and preserved responses to low levels of oxygen. This provides direct evidence that the HIF-1alpha/VHL pathway regulates the innate immune response in humans. It also establishes that heterozygous VHL defects are sufficient to perturb normal responses and illustrates the potential to use this to address the role of HIF and VHL in human biology.


Assuntos
Mutação em Linhagem Germinativa , Neutrófilos/fisiologia , Fagocitose/fisiologia , Streptococcus pneumoniae/fisiologia , Doença de von Hippel-Lindau/genética , Apoptose , Hipóxia Celular , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA