Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33830082

RESUMO

Virus-induced respiratory tract infections are a major health burden in childhood, and available treatments are supportive rather than disease modifying. Rhinoviruses (RVs), the cause of approximately 80% of common colds, are detected in nearly half of all infants with bronchiolitis and the majority of children with an asthma exacerbation. Bronchiolitis in early life is a strong risk factor for the development of asthma. Here, we found that RV infection induced the expression of miRNA 122 (miR-122) in mouse lungs and in human airway epithelial cells. In vivo inhibition specifically in the lung reduced neutrophilic inflammation and CXCL2 expression, boosted innate IFN responses, and ameliorated airway hyperreactivity in the absence and in the presence of allergic lung inflammation. Inhibition of miR-122 in the lung increased the levels of suppressor of cytokine signaling 1 (SOCS1), which is an in vitro-validated target of miR-122. Importantly, gene silencing of SOCS1 in vivo completely reversed the protective effects of miR-122 inhibition on RV-induced lung disease. Higher miR-122 expression in nasopharyngeal aspirates was associated with a longer time on oxygen therapy and a higher rate of treatment failure in 87 infants hospitalized with moderately severe bronchiolitis. These results suggest that miR-122 promotes RV-induced lung disease via suppression of its target SOCS1 in vivo. Higher miR-122 expression was associated with worse clinical outcomes, highlighting the potential use of anti-miR-122 oligonucleotides, successfully trialed for treatment of hepatitis C, as potential therapeutics for RV-induced bronchiolitis and asthma exacerbations.


Assuntos
Bronquite/terapia , Pneumopatias/virologia , MicroRNAs/genética , Infecções por Picornaviridae/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Animais , Antagomirs/farmacologia , Bronquite/virologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Feminino , Humanos , Lactente , Pneumopatias/genética , Pneumopatias/terapia , Masculino , Camundongos Endogâmicos BALB C , Nasofaringe/virologia , Infecções por Picornaviridae/tratamento farmacológico , Rhinovirus/fisiologia , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Falha de Tratamento , Replicação Viral
2.
Am J Respir Cell Mol Biol ; 64(3): 344-356, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264064

RESUMO

The interplay of type-2 inflammation and antiviral immunity underpins asthma exacerbation pathogenesis. Virus infection induces type-2 inflammation-promoting chemokines CCL17 and CCL22 in asthma; however, mechanisms regulating induction are poorly understood. By using a human rhinovirus (RV) challenge model in human airway epithelial cells in vitro and mice in vivo, we assessed mechanisms regulating CCL17 and CCL22 expression. Subjects with mild to moderate asthma and healthy volunteers were experimentally infected with RV and airway CCL17 and CCL22 protein quantified. In vitro airway epithelial cell- and mouse-RV infection models were then used to define STAT6- and NF-κB-mediated regulation of CCL17 and CCL22 expression. Following RV infection, CCL17 and CCL22 expression was higher in asthma, which differentially correlated with clinical and immunological parameters. Air-liquid interface-differentiated primary epithelial cells from donors with asthma also expressed higher levels of RV-induced CCL22. RV infection boosted type-2 cytokine-induced STAT6 activation. In epithelial cells, type-2 cytokines and STAT6 activation had differential effects on chemokine expression, increasing CCL17 and suppressing CCL22, whereas NF-κB promoted expression of both chemokines. In mice, RV infection activated pulmonary STAT6, which was required for CCL17 but not CCL22 expression. STAT6-knockout mice infected with RV expressed increased levels of NF-κB-regulated chemokines, which was associated with rapid viral clearance. Therefore, RV-induced upregulation of CCL17 and CCL22 was mediated by NF-κB activation, whereas expression was differentially regulated by STAT6. Together, these findings suggest that therapeutic targeting of type-2 STAT6 activation alone will not block all inflammatory pathways during RV infection in asthma.


Assuntos
Asma/patologia , Asma/virologia , Quimiocina CCL17/metabolismo , Quimiocina CCL22/metabolismo , Progressão da Doença , Rhinovirus/fisiologia , Fator de Transcrição STAT6/metabolismo , Células A549 , Adolescente , Adulto , Animais , Biomarcadores/metabolismo , Quimiocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Cinética , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Doadores de Tecidos , Adulto Jovem
3.
Am J Respir Crit Care Med ; 195(12): 1586-1596, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28085492

RESUMO

RATIONALE: Newly characterized type 2 innate lymphoid cells (ILC2s) display potent type 2 effector functionality; however, their contribution to allergic airways inflammation and asthma is poorly understood. Mucosal biopsy used to characterize the airway mucosa is invasive, poorly tolerated, and does not allow for sequential sampling. OBJECTIVES: To assess the role of ILC2s during nasal allergen challenge in subjects with allergic rhinitis using novel noninvasive methodology. METHODS: We used a human experimental allergen challenge model, with flow cytometric analysis of nasal curettage samples, to assess the recruitment of ILC2s and granulocytes to the upper airways of subjects with atopy and healthy subjects after allergen provocation. Soluble mediators in the nasal lining fluid were measured using nasosorption. MEASUREMENTS AND MAIN RESULTS: After an allergen challenge, subjects with atopy displayed rapid induction of upper airway symptoms, an enrichment of ILC2s, eosinophils, and neutrophils, along with increased production of IL-5, prostaglandin D2, and eosinophil and T-helper type 2 cell chemokines compared with healthy subjects. The most pronounced ILC2 recruitment was observed in subjects with elevated serum IgE and airway eosinophilia. CONCLUSIONS: The rapid recruitment of ILC2s to the upper airways of allergic patients with rhinitis, and their association with key type 2 mediators, highlights their likely important role in the early allergic response to aeroallergens in the airways. The novel methodology described herein enables the analysis of rare cell populations from noninvasive serial tissue sampling.


Assuntos
Alérgenos/imunologia , Linfócitos/imunologia , Mucosa Nasal/imunologia , Rinite Alérgica/imunologia , Adolescente , Adulto , Feminino , Citometria de Fluxo , Humanos , Imunidade Inata/imunologia , Masculino , Pessoa de Meia-Idade , Células Th2/imunologia , Adulto Jovem
4.
J Antimicrob Chemother ; 71(10): 2767-81, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27494903

RESUMO

BACKGROUND: Exacerbations of asthma and COPD are triggered by rhinoviruses. Uncontrolled inflammatory pathways, pathogenic bacterial burden and impaired antiviral immunity are thought to be important factors in disease severity and duration. Macrolides including azithromycin are often used to treat the above diseases, but exhibit variable levels of efficacy. Inhaled corticosteroids are also readily used in treatment, but may lack specificity. Ideally, new treatment alternatives should suppress unwanted inflammation, but spare beneficial antiviral immunity. METHODS: In the present study, we screened 225 novel macrolides and tested them for enhanced antiviral activity against rhinovirus, as well as anti-inflammatory activity and activity against Gram-positive and Gram-negative bacteria. Primary bronchial epithelial cells were grown from 10 asthmatic individuals and the effects of macrolides on rhinovirus replication were also examined. Another 30 structurally similar macrolides were also examined. RESULTS: The oleandomycin derivative Mac5, compared with azithromycin, showed superior induction (up to 5-fold, EC50 = 5-11 µM) of rhinovirus-induced type I IFNß, type III IFNλ1 and type III IFNλ2/3 mRNA and the IFN-stimulated genes viperin and MxA, yet had no effect on IL-6 and IL-8 mRNA. Mac5 also suppressed rhinovirus replication at 48 h, proving antiviral activity. Mac5 showed antibacterial activity against Gram-positive Streptococcus pneumoniae; however, it did not have any antibacterial properties compared with azithromycin when used against Gram-negative Escherichia coli (as a model organism) and also the respiratory pathogens Pseudomonas aeruginosa and non-typeable Haemophilus influenzae. Further non-toxic Mac5 derivatives were identified with various anti-inflammatory, antiviral and antibacterial activities. CONCLUSIONS: The data support the idea that macrolides have antiviral properties through a mechanism that is yet to be ascertained. We also provide evidence that macrolides can be developed with anti-inflammatory, antibacterial and antiviral activity and show surprising versatility depending on the clinical need.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/química , Antivirais/farmacologia , Descoberta de Drogas , Interferons/imunologia , Macrolídeos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Anti-Inflamatórios não Esteroides/uso terapêutico , Antivirais/isolamento & purificação , Antivirais/uso terapêutico , Asma/tratamento farmacológico , Brônquios/citologia , Brônquios/efeitos dos fármacos , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Haemophilus influenzae/efeitos dos fármacos , Humanos , Interferon beta/imunologia , Interferons/biossíntese , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucina-8/imunologia , Interleucina-8/metabolismo , Macrolídeos/química , Macrolídeos/uso terapêutico , Proteínas de Resistência a Myxovirus/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Proteínas/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Rhinovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
5.
Clin Sci (Lond) ; 129(3): 245-58, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25783022

RESUMO

Viral exacerbations of chronic obstructive pulmonary disease (COPD), commonly caused by rhinovirus (RV) infections, are poorly controlled by current therapies. This is due to a lack of understanding of the underlying immunopathological mechanisms. Human studies have identified a number of key immune responses that are associated with RV-induced exacerbations including neutrophilic inflammation, expression of inflammatory cytokines and deficiencies in innate anti-viral interferon. Animal models of COPD exacerbation are required to determine the contribution of these responses to disease pathogenesis. We aimed to develop a short-term mouse model that reproduced the hallmark features of RV-induced exacerbation of COPD. Evaluation of complex protocols involving multiple dose elastase and lipopolysaccharide (LPS) administration combined with RV1B infection showed suppression rather than enhancement of inflammatory parameters compared with control mice infected with RV1B alone. Therefore, these approaches did not accurately model the enhanced inflammation associated with RV infection in patients with COPD compared with healthy subjects. In contrast, a single elastase treatment followed by RV infection led to heightened airway neutrophilic and lymphocytic inflammation, increased expression of tumour necrosis factor (TNF)-α, C-X-C motif chemokine 10 (CXCL10)/IP-10 (interferon γ-induced protein 10) and CCL5 [chemokine (C-C motif) ligand 5]/RANTES (regulated on activation, normal T-cell expressed and secreted), mucus hypersecretion and preliminary evidence for increased airway hyper-responsiveness compared with mice treated with elastase or RV infection alone. In summary, we have developed a new mouse model of RV-induced COPD exacerbation that mimics many of the inflammatory features of human disease. This model, in conjunction with human models of disease, will provide an essential tool for studying disease mechanisms and allow testing of novel therapies with potential to be translated into clinical practice.


Assuntos
Asma/imunologia , Infecções por Picornaviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/virologia , Rhinovirus/imunologia , Animais , Asma/virologia , Quimiocinas/imunologia , Modelos Animais de Doenças , Feminino , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/imunologia , Fatores de Tempo
6.
Respirology ; 16(2): 367-77, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21199160

RESUMO

BACKGROUND AND OBJECTIVE: A hallmark of asthma is airway remodelling, which includes increased deposition of extracellular matrix (ECM) protein. Viral infections may promote the development of asthma and are the most common causes of asthma exacerbations. We evaluated whether rhinovirus (RV) infection induces airway remodelling, as assessed by ECM deposition. METHODS: Primary human bronchial epithelial cells and lung parenchymal fibroblasts were infected with RV-2 or RV-16, or treated with RV-16 RNA, imiquimod (Toll-like receptor (TLR) 7/8 agonist) or polyinosinic : polycytidylic acid (poly I : C) (activator of TLR 3, retinoic-acid-inducible protein I and melanoma-differentiated-associated gene 5). Changes in ECM proteins and their transcription were measured by ELISA and quantitative real-time PCR. In addition, gene expression for ECM proteins was assessed in a mouse model of RV infection. RESULTS: RV infection increased deposition of the ECM protein, perlecan, by human bronchial epithelial cells, and collagen V and matrix-bound vascular endothelial growth factor were increased in both human bronchial epithelial cell and fibroblast cultures. Purified RV-16 RNA, poly I : C and imiquimod induced similar increases in ECM deposition to those observed with RV-infected fibroblasts. However, only poly I : C induced ECM deposition by bronchial epithelial cells, suggesting that RV-induced ECM deposition is mediated through TLR. Furthermore, gene expression for fibronectin and collagen I was increased in lung homogenates of mice infected with RV-1b. CONCLUSIONS: RV infection and TLR ligands promote ECM deposition in isolated cell systems and RV induces ECM gene expression in vivo, thus demonstrating that RV has the potential to contribute to remodelling of the airways through induction of ECM deposition.


Assuntos
Remodelação das Vias Aéreas , Asma/virologia , Brônquios/virologia , Infecções por Picornaviridae/virologia , Aminoquinolinas/farmacologia , Animais , Asma/metabolismo , Brônquios/metabolismo , Células Cultivadas , Colágeno Tipo V/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/virologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Imiquimode , Camundongos , Infecções por Picornaviridae/metabolismo , Poli I-C/farmacologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas
7.
PLoS Pathog ; 6(11): e1001178, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21079690

RESUMO

The relative roles of the endosomal TLR3/7/8 versus the intracellular RNA helicases RIG-I and MDA5 in viral infection is much debated. We investigated the roles of each pattern recognition receptor in rhinovirus infection using primary bronchial epithelial cells. TLR3 was constitutively expressed; however, RIG-I and MDA5 were inducible by 8-12 h following rhinovirus infection. Bronchial epithelial tissue from normal volunteers challenged with rhinovirus in vivo exhibited low levels of RIG-I and MDA5 that were increased at day 4 post infection. Inhibition of TLR3, RIG-I and MDA5 by siRNA reduced innate cytokine mRNA, and increased rhinovirus replication. Inhibition of TLR3 and TRIF using siRNA reduced rhinovirus induced RNA helicases. Furthermore, IFNAR1 deficient mice exhibited RIG-I and MDA5 induction early during RV1B infection in an interferon independent manner. Hence anti-viral defense within bronchial epithelium requires co-ordinated recognition of rhinovirus infection, initially via TLR3/TRIF and later via inducible RNA helicases.


Assuntos
Brônquios/metabolismo , RNA Helicases DEAD-box/metabolismo , Epitélio/metabolismo , Infecções por Picornaviridae/metabolismo , Rhinovirus/patogenicidade , Receptor 3 Toll-Like/metabolismo , Animais , Western Blotting , Brônquios/imunologia , Brônquios/virologia , Células Cultivadas , Proteína DEAD-box 58 , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/genética , Epitélio/imunologia , Epitélio/virologia , Feminino , Imunofluorescência , Células HeLa , Humanos , Imunidade Inata , Helicase IFIH1 Induzida por Interferon , Camundongos , Camundongos Knockout , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , RNA de Cadeia Dupla , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Receptor de Interferon alfa e beta/fisiologia , Receptores Imunológicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 3 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA