Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37905135

RESUMO

Cancer patients often experience changes in mental health, prompting an exploration into whether nerves infiltrating tumors contribute to these alterations by impacting brain functions. Using a male mouse model for head and neck cancer, we utilized neuronal tracing techniques and show that tumor-infiltrating nerves indeed connect to distinct brain areas via the ipsilateral trigeminal ganglion. The activation of this neuronal circuitry led to behavioral alterations represented by decreased nest-building, increased latency to eat a cookie, and reduced wheel running. Tumor-infiltrating nociceptor neurons exhibited heightened activity, as indicated by increased calcium mobilization. Correspondingly, the specific brain regions receiving these neural projections showed elevated cFos and delta FosB expression in tumor-bearing mice, alongside markedly intensified calcium responses compared to non-tumor-bearing counterparts. The genetic elimination of nociceptor neurons in tumor-bearing mice led to decreased brain Fos expression and mitigated the behavioral alterations induced by the presence of the tumor. While analgesic treatment successfully restored behaviors involving oral movements to normalcy in tumor-bearing mice, it did not have a similar therapeutic effect on voluntary wheel running. This discrepancy points towards an intricate relationship, where pain is not the exclusive driver of such behavioral shifts. Unraveling the interaction between the tumor, infiltrating nerves, and the brain is pivotal to developing targeted interventions to alleviate the mental health burdens associated with cancer. Significance Statement: Head and neck cancers are infiltrated by sensory nerves which connect to a pre-existing circuit that includes areas in the brain. Neurons within this circuit are altered and mediate modifications in behavior.

2.
Sci Adv ; 9(19): eade4443, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163587

RESUMO

The molecular and functional contributions of intratumoral nerves to disease remain largely unknown. We localized synaptic markers within tumors suggesting that these nerves form functional connections. Consistent with this, electrophysiological analysis shows that malignancies harbor significantly higher electrical activity than benign disease or normal tissues. We also demonstrate pharmacologic silencing of tumoral electrical activity. Tumors implanted in transgenic animals lacking nociceptor neurons show reduced electrical activity. These data suggest that intratumoral nerves remain functional at the tumor bed. Immunohistochemical staining demonstrates the presence of the neuropeptide, Substance P (SP), within the tumor space. We show that tumor cells express the SP receptor, NK1R, and that ligand/receptor engagement promotes cellular proliferation and migration. Our findings identify a mechanism whereby intratumoral nerves promote cancer progression.


Assuntos
Neoplasias da Mama , Neurônios , Neoplasias Ovarianas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Camundongos , Modelos Animais de Doenças , Humanos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Substância P/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/secundário , Neurônios/patologia , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos , Ovário/inervação , Papillomavirus Humano , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA