Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 95: 103566, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935604

RESUMO

A docking study of a novel series of benzofuran derivatives with ERα was conducted. In this study, we report the synthesis of a novel series of benzofuran derivatives and evaluation of their anticancer activity in vitro against MCF-7 human breast cancer cells, as well as their potential toxicity to ER-independent MDA-MB-231 breast cancer cells, human renal epithelial HEK-293 cells, and human immortal keratinocytes (HaCaT cells) by using the MTT colorimetric assay. The screening results indicated that the target compounds exhibited anti-breast cancer activity. The target compound 2-benzoyl-3-methyl-6-[2-(morpholin-4-yl)ethoxy]benzofuran hydrochloride (4e) exhibited excellent activity against anti-oestrogen receptor-dependent breast cancer cells and low toxicity. The preliminary structure-activity relationships of the target benzofuran derivatives have been summarised. In conclusion, the novel benzofuran scaffold may be a promising lead for the development of potential oestrogen receptor inhibitors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Benzofuranos/química , Benzofuranos/farmacologia , Neoplasias da Mama/patologia , Desenho de Fármacos , Receptores de Estrogênio/metabolismo , Antineoplásicos/síntese química , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Simulação de Acoplamento Molecular , Análise Espectral/métodos , Relação Estrutura-Atividade
2.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3837-3846, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251699

RESUMO

Chemokine receptor CXCR4 was involved in the progression of breast cancer to a metastatic phenotype, leading to the major cause of death in patients. A more in-depth understanding of signaling mechanism underlying CXCR4 is critical to develop effective therapies toward metastasis. Recently, the role of antimicrobial peptide LL-37 in contributing to the metastasis of breast cancer cells was observed. Clinical analysis of data herein demonstrated for the first time that overexpression of LL-37 and CXCR4 co-existed in human primary breast tumors with lymph node metastases. Further study disclosed that forced expression of CXCR4 led to the enhancement of pro-migratory signaling and migration rate induced by LL-37 in breast cancer cells. Moreover, LL-37 affected tumor microenvironment including induction of migration of mesenchymal stem cells and CXCR4-dependent capillary-like tubule formation. Functional analysis showed that LL-37 induced the internalization of CXCR4 through approaching Glu268, the residue of CXCR4, independent of the binding pocket (Asp171, Asp262, and Glu288) for CXCR4 inhibitor AMD3100, signifying that LL-37 is a distinct agonist of CXCR4. These results suggest the reciprocal roles of LL-37 and CXCR4 in promoting breast cancer cell migration and provide new insight into the design of CXCR4 inhibitor for intervention of metastatic breast cancer.


Assuntos
Neoplasias da Mama/patologia , Catelicidinas/metabolismo , Movimento Celular , Receptores CXCR4/metabolismo , Adulto , Idoso , Peptídeos Catiônicos Antimicrobianos , Benzilaminas , Sítios de Ligação , Mama/patologia , Catelicidinas/química , Linhagem Celular Tumoral , Proliferação de Células , Ciclamos , Feminino , Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Metástase Linfática , Células-Tronco Mesenquimais , Pessoa de Meia-Idade , Simulação de Acoplamento Molecular , Ligação Proteica/efeitos dos fármacos , Receptores CXCR4/agonistas , Receptores CXCR4/antagonistas & inibidores , Receptores CXCR4/química , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima
3.
Molecules ; 23(8)2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30096806

RESUMO

The epidermal growth factor receptors (EGFRs), in which overexpression (known as upregulation) or overactivity have been associated with a number of cancers, has become an attractive molecular target for the treatment of selective cancers. We report here the design and synthesis of a novel series of 4,5-dihydro-1H-thieno [2',3':2,3]thiepino[4,5-c]pyrazole-3-carboxamide derivatives and the screening for their inhibitory activity on the EGFR high-expressing human A549 cell line using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). A Docking simulation was performed to fit compound 6g and gifitinib into the EGFR to determine the probable binding models, and the binding sites and modes conformation of 6g and gifitinib were exactly similar, the two compounds were stabilized by hydrogen bond interactions with MET769. Combining with the biological activity evaluation, compound 6g demonstrated the most potent inhibitory activity (IC50 = 9.68 ± 1.95 µmol·L⁻1 for A549). Conclusively, 4,5-dihydro-1H-thieno[2',3':2,3]thiepino[4,5-c]pyrazole-3-carboxamide derivatives as the EGFR tyrosine kinase inhibitors were discovered, and could be used as potential lead compounds against cancer cells.


Assuntos
Receptores ErbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Células A549 , Gefitinibe , Células Hep G2 , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Pirazóis/síntese química , Pirazóis/química , Quinazolinas/química , Quinazolinas/farmacologia
4.
Int J Nanomedicine ; 12: 2143-2160, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28356733

RESUMO

A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP), was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD), comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC) as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4-and 7.1-fold longer than wild PACAP (~5 min) and DBAYL (~1.98 h), respectively. SCD (10 nmol/L) significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H2O2-injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug through its insulinotropic effect), DBAYL, SeNPs or SC. A single injection of SCD (20 nmol/kg) into db/db mice with type 2 diabetes leads to enhanced insulin secretion and sustained hypoglycemic effect, and the effectiveness and duration of SCD in enhancing insulin secretion and reducing blood glucose levels are much stronger than Exendin-4, SeNPs or SC. In db/db mice, chronic administration of SCD by daily injection for 12 weeks markedly improved glucose and lipid profiles, insulin sensitivity and the structures of pancreatic and adipose tissue. The results indicate that SC can play a role as a carrier for the slow release of bioactive peptides and SCD could be a hopeful therapeutic against type 2 diabetes through the synergy effects of DBAYL and SeNPs.


Assuntos
Quitosana/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nanopartículas/química , Peptídeos/uso terapêutico , Receptores Tipo II de Peptídeo Intestinal Vasoativo/agonistas , Selênio/química , Animais , Glicemia/metabolismo , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/patologia , Liberação Controlada de Fármacos , Exenatida , Jejum/sangue , Glucose/metabolismo , Glucose/farmacologia , Meia-Vida , Peróxido de Hidrogênio/toxicidade , Insulina/genética , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Peptídeos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor de Insulina/metabolismo , Peçonhas/uso terapêutico
5.
Appl Microbiol Biotechnol ; 99(17): 6997-7008, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26198883

RESUMO

Milk contains an array of proteins with useful bioactivities. Many milk proteins encompassing native or chemically modified casein, lactoferrin, alpha-lactalbumin, and beta-lactoglobulin demonstrated antiviral activities. Casein and alpha-lactalbumin gained anti-HIV activity after modification with 3-hydroxyphthalic anhydride. Many milk proteins inhibited HIV reverse transcriptase. Bovine glycolactin, angiogenin-1, lactogenin, casein, alpha-lactalbumin, beta-lactoglobulin, bovine lactoferrampin, and human lactoferrampin inhibited HIV-1 protease and integrase. Several mammalian lactoferrins prevented hepatitis C infection. Lactoferrin, methylated alpha-lactalbumin and methylated beta-lactoglobulin inhibited human cytomegalovirus. Chemically modified alpha-lactalbumin, beta-lactoglobulin and lysozyme, lactoferrin and lactoferricin, methylated alpha-lactalbumin, methylated and ethylated beta-lactoglobulins inhibited HSV. Chemically modified bovine beta-lactoglobulin had antihuman papillomavirus activity. Beta-lactoglobulin, lactoferrin, esterified beta-lactoglobulin, and esterified lactoferrindisplayed anti-avian influenza A (H5N1) activity. Lactoferrin inhibited respiratory syncytial virus, hepatitis B virus, adenovirus, poliovirus, hantavirus, sindbis virus, semliki forest virus, echovirus, and enterovirus. Milk mucin, apolactoferrin, Fe(3+)-lactoferrin, beta-lactoglobulin, human lactadherin, bovine IgG, and bovine kappa-casein demonstrated antihuman rotavirus activity.


Assuntos
Antivirais/farmacologia , Vírus/efeitos dos fármacos , Proteínas do Soro do Leite/farmacologia , Animais , Humanos , Mamíferos , Replicação Viral/efeitos dos fármacos
6.
Oncotarget ; 6(26): 22513-25, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26068968

RESUMO

Recently, the long non-coding RNA (lncRNA) H19 has been identified as an oncogenic gene in multiple cancer types and elevated expression of H19 was tightly linked to tumorigenesis and cancer progression. However, the molecular basis for this observation has not been characterized in colorectal cancer (CRC) especially during epithelial to mesenchymal transition (EMT) progression. In our studies, H19 was characterized as a novel regulator of EMT in CRC. We found that H19 was highly expressed in mesenchymal-like cancer cells and primary CRC tissues. Stable expression of H19 significantly promotes EMT progression and accelerates in vivo and in vitro tumor growth. Furthermore, by using bioinformatics study and RNA immunoprecipitation combined with luciferase reporter assays, we demonstrated that H19 functioned as a competing endogenous RNA (ceRNA) for miR-138 and miR-200a, antagonized their functions and led to the de-repression of their endogenous targets Vimentin, ZEB1, and ZEB2, all of which were core marker genes for mesenchymal cells. Taken together, these observations imply that the lncRNA H19 modulated the expression of multiple genes involved in EMT by acting as a competing endogenous RNA, which may build up the missing link between the regulatory miRNA network and EMT progression.


Assuntos
Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HCT116 , Células HEK293 , Células HT29 , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima
7.
Phytomedicine ; 21(11): 1310-7, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25172795

RESUMO

PURPOSE: C-X-C chemokine receptor type 4 (CXCR4) signaling has been demonstrated to be involved in cancer invasion and migration; therefore, CXCR4 antagonist can serve as an anti-cancer drug by preventing tumor metastasis. This study aimed to identify the CXCR4 antagonists that could reduce and/or inhibit tumor metastasis from natural products. METHODS AND RESULTS: According to the molecular docking screening, we reported here silibinin as a novel CXCR4 antagonist. Biochemical characterization showed that silibinin blocked chemokine ligand 12 (CXCL12)-induced CXCR4 internalization by competitive binding to CXCR4, therefore inhibiting downstream intracellular signaling. In human breast cancer cells MDA-MB-231, which expresses high levels of CXCR4, inhibition of CXCL12-induced chemomigration can be found under silibinin treatment. Overexpression of CXCL12 sensitized MDA-MB-231 cells to the inhibition of silibinin, which was abolished by CXCR4 knockdown. The inhibition of silibinin was also observed in MCF-7/CXCR4 cells rather than MCF-7 cells that express low level of CXCR4. CONCLUSIONS: Our work demonstrated that silibinin is a novel CXCR4 antagonist that may have potential therapeutic use for prevention of tumor metastasis.


Assuntos
Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Receptores CXCR4/antagonistas & inibidores , Silimarina/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos , Silibina
8.
RNA Biol ; 11(7): 845-54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24921656

RESUMO

The Krüppel like factor 6 (KLF6) gene encodes multiple protein isoforms derived from alternative mRNA splicing, most of which are intimately involved in hepatocarcinogenesis and tumor progression. Recent bioinformatics analysis shows that alternative mRNA splicing of the KLF6 gene produces around 16 alternatively spliced variants with divergent or even opposing functions. Intriguingly, the full-length KLF6 (KLF6-FL) is a tumor suppressor gene frequently inactivated in liver cancer, whereas KLF6 splice variant 1 (KLF6-SV1) is an oncogenic isoform with antagonistic function against KLF6-FL. Compelling evidence indicates that miRNA, the small endogenous non-coding RNA (ncRNA), acts as a vital player in modulating a variety of cellular biological processes through targeting different mRNA regions of protein-coding genes. To identify the potential miRNAs specifically targeting KLF6-FL, we utilized bioinformatics analysis in combination with the luciferase reporter assays and screened out two miRNAs, namely miR-210 and miR-1301, specifically targeted the tumor suppressive KLF6-FL rather than the oncogenic KLF6-SV1. Our in vitro experiments demonstrated that stable expression of KLF6-FL inhibited cell proliferation, migration and angiogenesis while overexpression of miR-1301 promoted cell migration and angiogenesis. Further experiments demonstrated that miR-1301 was highly expressed in liver cancer cell lines as well as clinical specimens and we also identified the potential methylation and histone acetylation for miR-1301 gene. To sum up, our findings unveiled a novel molecular mechanism that specific miRNAs promoted tumorigenesis by targeting the tumor suppressive isoform KLF6-FL rather than its oncogenic isoform KLF6-SV1.


Assuntos
Carcinoma Hepatocelular/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Hep G2 , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/metabolismo , Metilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas/genética
9.
Carbohydr Polym ; 103: 244-9, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24528726

RESUMO

Immunomodulation of natural polysaccharides has been the hot topic of research in recent years. In order to explore the immunomodulatory effect of Houttuynia cordata Thunb., the water extract was studied and a polysaccharide HCP-2 with molecular weight of 60,000 Da was isolated by chromatography using DEAE Sepharose CL-6B and Sephacryl S-500 [corrected] HR columns. The structure characterization of HCP-2 was performed by Fourier transform infrared spectroscopy (FTIR), acidic hydrolysis, PMP derivation, HPLC analysis and nuclear magnetic resonance spectra (NMR). HCP-2 was elucidated as a pectic polysaccharide with a linear chain of 1,4-linked α-D-galacturonic acid residues in which part of the 6-carboxyl groups were methyl esterified and part of 2-hydroxyl groups were acetylated. The bioactivity assays showed that HCP-2 could increase the secretions of interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), macrophage inhibitory protein-1α (MIP-1α), macrophage inhibitory protein-1ß (MIP-1ß), and RANTES (regulated on activation, normal T cell expressed and secreted) in human peripheral blood mononuclear cells (PBMCs), which play critical roles in the innate immune system and shape the adaptive immunity. Our results implied that HCP-2 could be an immune enhancer.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Houttuynia/química , Imunomodulação , Leucócitos Mononucleares/efeitos dos fármacos , Polissacarídeos/farmacologia , Configuração de Carboidratos , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Peso Molecular , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Relação Estrutura-Atividade
10.
Chem Biol Interact ; 213: 21-7, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24480521

RESUMO

Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 µM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 µM. Compound 15 might supply useful structural information for further anti-HIV agent discovery.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Naftalenos/química , Tiofenos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Integrase de HIV/química , Inibidores de Integrase de HIV/química , Humanos , Concentração Inibidora 50 , Peptídeos e Proteínas de Sinalização Intercelular/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Naftalenos/farmacologia , Bibliotecas de Moléculas Pequenas , Tiofenos/farmacologia , Replicação Viral/efeitos dos fármacos
11.
J Cell Biochem ; 114(12): 2699-707, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23798503

RESUMO

Although accumulating evidences indicate that miRNA emerge as a vital player in cell growth, development, and differentiation, how they contribute to the process of adipocyte differentiation remains elusive. In the present study, we revealed that the expression level of miR-210 was dramatically upregulated during 3T3-L1 adipogenesis. Ectopic introduction of miR-210 into 3T3-L1 cells promoted terminal differentiation as well as the expression of adipogenic markers. MTT assay showed that miR-210 significantly inhibited cell proliferation whereas the BrdU incorporation assay and flow cytometry analysis showed that miR-210 did not impair G1/S phase transition. Further experiments demonstrated that enhanced expression of miR-210 in 3T3-L1 cells provoked adipocyte differentiation via activation of PI3K/Akt pathway by targeting SHIP1, a negative regulator of PI3K/Akt pathway. Moreover, blockade of endogenous miR-210 during adipogenesis significantly repressed adipocyte differentiation. In summary, we have identified miR-210 as an important positive regulator in adipocyte differentiation through the activation of PI3K/Akt pathway.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , MicroRNAs/genética , Células 3T3-L1 , Adipócitos/metabolismo , Animais , Proliferação de Células , Camundongos , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação
12.
Eur J Med Chem ; 59: 1-6, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23202846

RESUMO

Coronaviral infection is associated with up to 5% of respiratory tract diseases. The 3C-like protease (3CL(pro)) of coronaviruses is required for proteolytic processing of polyproteins and viral replication, and is a promising target for the development of drugs against coronaviral infection. We designed and synthesized four nitrile-based peptidomimetic inhibitors with different N-terminal protective groups and different peptide length, and examined their inhibitory effect on the in-vitro enzymatic activity of 3CL(pro) of severe-acute-respiratory-syndrome-coronavirus. The IC(50) values of the inhibitors were in the range of 4.6-49 µM, demonstrating that the nitrile warhead can effectively inactivate the 3CL(pro) autocleavage process. The best inhibitor, Cbz-AVLQ-CN with an N-terminal carbobenzyloxy group, was ~10x more potent than the other inhibitors tested. Crystal structures of the enzyme-inhibitor complexes showed that the nitrile warhead inhibits 3CL(pro) by forming a covalent bond with the catalytic Cys145 residue, while the AVLQ peptide forms a number of favourable interactions with the S1-S4 substrate-binding pockets. We have further showed that the peptidomimetic inhibitor, Cbz-AVLQ-CN, has broad-spectrum inhibition against 3CL(pro) from human coronavirus strains 229E, NL63, OC43, HKU1, and infectious bronchitis virus, with IC(50) values ranging from 1.3 to 3.7 µM, but no detectable inhibition against caspase-3. In summary, we have shown that the nitrile-based peptidomimetic inhibitors are effective against 3CL(pro), and they inhibit 3CL(pro) from a broad range of coronaviruses. Our results provide further insights into the future design of drugs that could serve as a first line defence against coronaviral infection.


Assuntos
Coronavirus/efeitos dos fármacos , Desenho de Fármacos , Nitrilas , Peptidomiméticos , Inibidores de Proteases , Cristalografia por Raios X , Concentração Inibidora 50 , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Nitrilas/farmacologia , Peptídeos/química , Peptídeos/genética , Inibidores de Proteases/síntese química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia
13.
PLoS One ; 6(11): e27228, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22073294

RESUMO

BACKGROUND: Coronaviruses (CoVs) can be classified into alphacoronavirus (group 1), betacoronavirus (group 2), and gammacoronavirus (group 3) based on diversity of the protein sequences. Their 3C-like protease (3CL(pro)), which catalyzes the proteolytic processing of the polyproteins for viral replication, is a potential target for anti-coronaviral infection. METHODOLOGY/PRINCIPAL FINDINGS: Here, we profiled the substrate specificities of 3CL(pro) from human CoV NL63 (group 1), human CoV OC43 (group 2a), severe acute respiratory syndrome coronavirus (SARS-CoV) (group 2b) and infectious bronchitis virus (IBV) (group 3), by measuring their activity against a substrate library of 19 × 8 of variants with single substitutions at P5 to P3' positions. The results were correlated with structural properties like side chain volume, hydrophobicity, and secondary structure propensities of substituting residues. All 3CL(pro) prefer Gln at P1 position, Leu at P2 position, basic residues at P3 position, small hydrophobic residues at P4 position, and small residues at P1' and P2' positions. Despite 3CL(pro) from different groups of CoVs share many similarities in substrate specificities, differences in substrate specificities were observed at P4 positions, with IBV 3CL(pro) prefers P4-Pro and SARS-CoV 3CL(pro) prefers P4-Val. By combining the most favorable residues at P3 to P5 positions, we identified super-active substrate sequences 'VARLQ↓SGF' that can be cleaved efficiently by all 3CL(pro) with relative activity of 1.7 to 3.2, and 'VPRLQ↓SGF' that can be cleaved specifically by IBV 3CL(pro) with relative activity of 4.3. CONCLUSIONS/SIGNIFICANCE: The comprehensive substrate specificities of 3CL(pro) from each of the group 1, 2a, 2b, and 3 CoVs have been profiled in this study, which may provide insights into a rational design of broad-spectrum peptidomimetic inhibitors targeting the proteases.


Assuntos
Coronavirus/enzimologia , Peptídeo Hidrolases/metabolismo , Clonagem Molecular , Coronavirus/classificação , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/genética , Especificidade por Substrato
14.
PLoS One ; 5(10): e13197, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20949131

RESUMO

BACKGROUND: The 3C-like protease (3CL(pro)) of severe acute respiratory syndrome-coronavirus is required for autoprocessing of the polyprotein, and is a potential target for treating coronaviral infection. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a thorough understanding of substrate specificity of the protease, a substrate library of 198 variants was created by performing saturation mutagenesis on the autocleavage sequence at P5 to P3' positions. The substrate sequences were inserted between cyan and yellow fluorescent proteins so that the cleavage rates were monitored by in vitro fluorescence resonance energy transfer. The relative cleavage rate for different substrate sequences was correlated with various structural properties. P5 and P3 positions prefer residues with high ß-sheet propensity; P4 prefers small hydrophobic residues; P2 prefers hydrophobic residues without ß-branch. Gln is the best residue at P1 position, but observable cleavage can be detected with His and Met substitutions. P1' position prefers small residues, while P2' and P3' positions have no strong preference on residue substitutions. Noteworthy, solvent exposed sites such as P5, P3 and P3' positions favour positively charged residues over negatively charged one, suggesting that electrostatic interactions may play a role in catalysis. A super-active substrate, which combined the preferred residues at P5 to P1 positions, was found to have 2.8 fold higher activity than the wild-type sequence. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated a strong structure-activity relationship between the 3CL(pro) and its substrate. The substrate specificity profiled in this study may provide insights into a rational design of peptidomimetic inhibitors.


Assuntos
Cisteína Endopeptidases/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Proteínas Virais/metabolismo , Proteases Virais 3C , Transferência Ressonante de Energia de Fluorescência , Hidrólise , Especificidade por Substrato
15.
FEBS Lett ; 581(17): 3253-9, 2007 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-17592732

RESUMO

RNA interference (RNAi) has become one of the most powerful and popular approach on gene silencing in clinical research study especially in virology due to the gene-specific suppression property of small interfering RNA (siRNA). In this report, we demonstrate that expression of vector-mediated small hairpin RNA (shRNA) against human immunodeficiency virus type 1 (HIV-1) integrase (IN), one of the three important enzymes in HIV infection by controlling the integration of viral RNA to host DNA, could suppress the protein synthesis of EGFP-tagged IN in HeLa cell model efficiently. Furthermore, we show that IN shRNA can successfully reduce the HIV particles production in 293T cells at the level similar to the positive control of HIV-1 tat shRNA. These results provide the therapeutic possibility of HIV replication using RNAi against HIV-1 integrase.


Assuntos
Integrase de HIV , HIV-1/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Replicação Viral/efeitos dos fármacos , Células Cultivadas , Regulação Viral da Expressão Gênica , Produtos do Gene gag/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Integrase de HIV/genética , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , HIV-1/genética , HIV-1/fisiologia , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA