Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1102174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866371

RESUMO

The cultivated Peanut (Arachis hypogaea L.), an important oilseed and edible legume, are widely grown worldwide. The R2R3-MYB transcription factor, one of the largest gene families in plants, is involved in various plant developmental processes and responds to multiple stresses. In this study we identified 196 typical R2R3-MYB genes in the genome of cultivated peanut. Comparative phylogenetic analysis with Arabidopsis divided them into 48 subgroups. The motif composition and gene structure independently supported the subgroup delineation. Collinearity analysis indicated polyploidization, tandem, and segmental duplication were the main driver of the R2R3-MYB gene amplification in peanut. Homologous gene pairs between the two subgroups showed tissue specific biased expression. In addition, a total of 90 R2R3-MYB genes showed significant differential expression levels in response to waterlogging stress. Furthermore, we identified an SNP located in the third exon region of AdMYB03-18 (AhMYB033) by association analysis, and the three haplotypes of the SNP were significantly correlated with total branch number (TBN), pod length (PL) and root-shoot ratio (RS ratio), respectively, revealing the potential function of AdMYB03-18 (AhMYB033) in improving peanut yield. Together, these studies provide evidence for functional diversity in the R2R3-MYB genes and will contribute to understanding the function of R2R3-MYB genes in peanut.

2.
Front Genet ; 13: 821163, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356435

RESUMO

Cystathionine γ-synthase (CGS), methionine γ-lyase (MGL), cystathionine ß-lyase (CBL) and cystathionine γ-lyase (CGL) share the Cys_Met_Meta_PP domain and play important roles in plant stress response and development. In this study, we defined the genes containing the Cys_Met_Meta_PP domain (PF01053.20) as CBL-like genes (CBLL). Twenty-nine CBLL genes were identified in the peanut genome, including 12 from cultivated peanut and 17 from wild species. These genes were distributed unevenly at the ends of different chromosomes. Evolution, gene structure, and motif analysis revealed that CBLL proteins were composed of five different evolutionary branches. Chromosome distribution pattern and synteny analysis strongly indicated that whole-genome duplication (allopolyploidization) contributed to the expansion of CBLL genes. Comparative genomics analysis showed that there were three common collinear CBLL gene pairs among peanut, Arabidopsis, grape, and soybean, but no collinear CBLL gene pairs between peanut and rice. The prediction results of cis-acting elements showed that AhCBLLs, AdCBLLs, and AiCBLLs contained different proportions of plant growth, abiotic stress, plant hormones, and light response elements. Spatial expression profiles revealed that almost all AhCBLLs had significantly higher expression in pods and seeds. All AhCBLLs could respond to heat stress, and some of them could be rapidly induced by cold, salt, submergence, heat and drought stress. Furthermore, one polymorphic site in AiCBLL7 was identified by association analysis which was closely associated with pod length (PL), pod width (PW), hundred pod weight (HPW) and hundred seed weight (HSW). The results of this study provide a foundation for further research on the function of the CBLL gene family in peanut.

3.
Front Plant Sci ; 7: 1491, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27790222

RESUMO

Seed-coat cracking and undesirable color of seed coat highly affects external appearance and commercial value of peanuts (Arachis hypogaea L.). With an objective to find genetic solution to the above problems, a peanut mutant with cracking and brown colored seed coat (testa) was identified from an EMS treated mutant population and designated as "peanut seed coat crack and brown color mutant line (pscb)." The seed coat weight of the mutant was almost twice of the wild type, and the germination time was significantly shorter than wild type. Further, the mutant had lower level of lignin, anthocyanin, proanthocyanidin content, and highly increased level of melanin content as compared to wild type. Using RNA-Seq, we examined the seed coat transcriptome in three stages of seed development in the wild type and the pscb mutant. The RNA-Seq analysis revealed presence of highly differentially expressed phenylpropanoid and flavonoid pathway genes in all the three seed development stages, especially at 40 days after flowering (DAF40). Also, the expression of polyphenol oxidases and peroxidase were found to be activated significantly especially in the late seed developmental stage. The genome-wide comparative study of the expression profiles revealed 62 differentially expressed genes common across all the three stages. By analyzing the expression patterns and the sequences of the common differentially expressed genes of the three stages, three candidate genes namely c36498_g1 (CCoAOMT1), c40902_g2 (kinesin), and c33560_g1 (MYB3) were identified responsible for seed-coat cracking and brown color phenotype. Therefore, this study not only provided candidate genes but also provided greater insights and molecular genetic control of peanut seed-coat cracking and color variation. The information generated in this study will facilitate further identification of causal gene and diagnostic markers for breeding improved peanut varieties with smooth and desirable seed coat color.

4.
Planta ; 237(6): 1443-51, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23420309

RESUMO

OsERF3 is a transcriptional repressor with an ethylene-responsive element-binding factor-associated amphiphilic repression (EAR) motif (F/LDLNxxP), which transcriptionally represses the ethylene emission and drought tolerance in rice. However, its molecular mechanism to explore repression function remains unknown. Here, we first revealed that the expression of OsERF3 was induced by drought, salt, ACC and ABA treatment. In addition, it showed a higher expression level in the root and sheath than that in the leaf. Then, we generated transgenic rice overexpressing full-length OsERF3 (OE) and its mutation of EAR motif with the A 680/C substitution (mEAR), respectively. The physiological analyses showed that mEAR lines showed better drought tolerance and more ethylene emission compared with those of OE lines and wild type plants. Consistent with our previous research, the expression of ethylene synthesis genes, including ACO2, ACS2, and ACS6 was down-regulated in OE lines. However, the repression of OsERF3 was eliminated in mEAR lines. Specifically, ACS2 was up-regulated in mEAR lines compared with that in OE lines and WT plants, suggesting that the Leu/Ala substitution within the EAR motif resulted in loss of repression of OsERF3. Thus, our data reveal that the EAR motif is required for OsERF3 to transcriptionally regulate the ethylene synthesis and drought tolerance in rice, providing new insight to the roles of ethylene-response factor proteins in regulating ethylene biosynthesis and stress response.


Assuntos
Adaptação Fisiológica/genética , Secas , Etilenos/biossíntese , Mutação/genética , Oryza/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Adaptação Fisiológica/efeitos dos fármacos , Motivos de Aminoácidos , Sequência de Aminoácidos , Desidratação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Oryza/genética , Filogenia , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Análise de Sequência de Proteína , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos
5.
Plant Mol Biol ; 78(3): 275-88, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130861

RESUMO

Increasing evidence has revealed the major enzymes-involved in Arabidopsis and maize wax/cutin synthesis; however, there is limited information about the genes-associated with wax/cutin synthesis in rice. Here we report the characterization of an ethylene response factor gene in rice. This rice wax synthesis regulatory gene 1 (OsWR1) is a homolog of Arabidopsis wax/cutin synthesis regulatory gene WIN1/SHN1. Transcript analysis showed that OsWR1 is induced by drought, abscisic acid and salt, and is predominantly expressed in leaves. Functional analyses indicated that overexpressing OsWR1 (Ox-WR1) improved while RNA interference OsWR1 rice (RI-WR1) decreased drought tolerance, consistent with water loss and cuticular permeability, suggesting that OsWR1-triggered drought response might be associated with cuticular characteristics. In addition, OsWR1 activated the expression of the genes-related to oxidative stress response and membrane stability. Gas chromatograph-mass spectrometry analysis further showed that OsWR1 modulated the wax synthesis through alteration of long chain fatty acids and alkanes, evidencing the regulation of OsWR1 in wax synthesis. Detection with real-time PCR amplification indicated that Ox-WR1 enhanced while RI-WR1 decreased the expression of wax/cutin synthesis related genes. Furthermore, OsWR1 physically interacted with the DRE and GCC box in the promoters of wax related genes OsLACS2 and OsFAE1'-L, indicating that OsWR1 at least directly modulates the expression of these genes. Thus our results indicate that OsWR1 is a positive regulator of wax synthesis related genes in rice, and this regulation, distinct from its homology regulator of WIN1/SHN1 in cutin synthesis, subsequently contributes to reduced water loss and enhanced drought tolerance.


Assuntos
Genes de Plantas , Oryza/genética , Oryza/metabolismo , Ceras/metabolismo , Ácido Abscísico/farmacologia , Aclimatação/genética , Aclimatação/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Secas , Etilenos/metabolismo , Genes de Plantas/efeitos dos fármacos , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Homologia de Sequência de Aminoácidos , Cloreto de Sódio/farmacologia , Estresse Fisiológico , Transativadores/genética , Ativação Transcricional , Ceras/química
6.
PLoS One ; 6(9): e25216, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966459

RESUMO

The phytohormone ethylene is a key signaling molecule that regulates a variety of developmental processes and stress responses in plants. Transcriptional modulation is a pivotal process controlling ethylene synthesis, which further triggers the expression of stress-related genes and plant adaptation to stresses; however, it is unclear how this process is transcriptionally modulated in rice. In the present research, we report the transcriptional regulation of a novel rice ethylene response factor (ERF) in ethylene synthesis and drought tolerance. Through analysis of transcriptional data, one of the drought-responsive ERF genes, OsDERF1, was identified for its activation in response to drought, ethylene and abscisic acid. Transgenic plants overexpressing OsDERF1 (OE) led to reduced tolerance to drought stress in rice at seedling stage, while knockdown of OsDERF1 (RI) expression conferred enhanced tolerance at seedling and tillering stages. This regulation was supported by negative modulation in osmotic adjustment response. To elucidate the molecular basis of drought tolerance, we identified the target genes of OsDERF1 using the Affymetrix GeneChip, including the activation of cluster stress-related negative regulators such as ERF repressors. Biochemical and molecular approaches showed that OsDERF1 at least directly interacted with the GCC box in the promoters of ERF repressors OsERF3 and OsAP2-39. Further investigations showed that OE seedlings had reduced expression (while RI lines showed enhanced expression) of ethylene synthesis genes, thereby resulting in changes in ethylene production. Moreover, overexpression of OsERF3/OsAP2-39 suppressed ethylene synthesis. In addition, application of ACC recovered the drought-sensitive phenotype in the lines overexpressing OsERF3, showing that ethylene production contributed to drought response in rice. Thus our data reveal that a novel ERF transcriptional cascade modulates drought response through controlling the ethylene synthesis, deepening our understanding of the regulation of ERF proteins in ethylene related drought response.


Assuntos
Secas , Etilenos/biossíntese , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
7.
Transgenic Res ; 19(5): 809-18, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20087656

RESUMO

Ethylene response factor (ERF) proteins play important roles in regulating plant stress response and development. Our previous studies have shown that JERF3 activates the expression of oxidative stress responsive genes in transgenic tobacco and enhances tolerance to salt, drought, and freezing, indicating that JERF3 is a very important transcriptional regulator in dicot plants. In the study reported here, we further addressed the regulatory function of JERF3 in a monocot, rice, by generating transgenic rice plants overexpressing JERF3 and comparing these with non-transgenic rice plants for physiological and molecular alterations and tolerance to drought and osmotic stresses. Growth and development under normal growth conditions were the same in both the transgenic and non-transgenic rice. Interestingly, the JERF3 transgenic plants exhibited better stress tolerance, whereas the non-transgenic rice seedlings showed serious stress symptoms and ultimately died after the drought and osmotic treatments. Biochemical analysis revealed that the contents of soluble sugars and proline were significantly increased in transgenic rice compared with non-transgenic plants under dehydration conditions. In addition, overexpression of JERF3 in rice led to the up-regulated expression of two OsP5CS genes in response to drought treatment compared with their expression in non-transgenic plants. JERF3 also activated the expression of stress-responsive genes, including WCOR413-like, OsEnol, and OsSPDS2, in transgenic rice under normal growth conditions. These data suggest that JERF3 plays important roles in transgenic rice and that it is likely to be beneficial in engineering crop plants with improved tolerance to drought and osmotic stresses.


Assuntos
Adaptação Fisiológica/genética , Secas , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Pressão Osmótica , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Fatores de Transcrição/fisiologia , Carboidratos/análise , Vetores Genéticos , Solanum lycopersicum/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Prolina/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA