Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Medicine (Baltimore) ; 103(31): e39104, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39093800

RESUMO

Diabetes mellitus (DM) and heart failure frequently coexist, presenting significant public health challenges. QiShenYiQi Dropping Pills (QSDP) are widely employed in the treatment of diabetes mellitus concomitant with heart failure (DM-HF). Nevertheless, the precise mechanisms underlying their efficacy have yet to be elucidated. Active ingredients and likely targets of QSDP were retrieved from the TCMSP and UniProt databases. Genes associated with DM-HF were pinpointed through searches in the GeneCards, OMIM, DisGeNET, and TTD databases. Differential genes connected to DM-HF were sourced from the GEO database. Enrichment analyses via gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways, as well as immune infiltration assessments, were conducted using R software. Further analysis involved employing molecular docking strategies to explore the interactions between the identified targets and active substances in QSDP that are pertinent to DM-HF treatment. This investigation effectively discerned 108 active compounds and 257 targets relevant to QSDP. A protein-protein interaction network was constructed, highlighting 6 central targets for DM-HF treatment via QSDP. Gene ontology enrichment analysis predominantly linked these targets with responses to hypoxia, metabolism of reactive oxygen species, and cytokine receptor interactions. Analysis of Kyoto Encyclopedia of Genes and Genomes pathways demonstrated that these targets mainly participate in pathways linked to diabetic complications, such as AGE-RAGE signaling, dyslipidemia, arteriosclerosis, the HIF-1 signaling pathway, and the tumor necrosis factor signaling pathway. Further, immune infiltration analysis implied that QSDP's mechanism in treating DM-HF might involve immune-mediated inflammation and crucial signaling pathways. Additionally, molecular docking studies showed that the active substances in QSDP have strong binding affinities with these identified targets. This research presents a new model for addressing DM-HF through the use of QSDP, providing novel insights into incorporating traditional Chinese medicine (TCM) principles in the clinical treatment of DM-HF. The implications of these findings are substantial for both clinical application and further scientific inquiry.


Assuntos
Biologia Computacional , Medicamentos de Ervas Chinesas , Insuficiência Cardíaca , Simulação de Acoplamento Molecular , Farmacologia em Rede , Mapas de Interação de Proteínas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Humanos , Insuficiência Cardíaca/tratamento farmacológico , Biologia Computacional/métodos , Mapas de Interação de Proteínas/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Medicina Tradicional Chinesa/métodos , Ontologia Genética
2.
Mol Pharm ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069891

RESUMO

Nectin cell adhesion molecule 4 (Nectin-4) is overexpressed in various malignant tumors and has emerged as a promising target for tumor imaging. Bicyclic peptides, known for their conformational rigidity, metabolic stability, and membrane permeability, are ideal tracers for positron emission tomography (PET) imaging. In this study, we evaluated the feasibility of visualizing Nectin-4-positive tumors using radiolabeled bicyclic peptide derivatives and optimized the pharmacokinetics of radiotracers by introducing PEG chains of different lengths. Five PEGylated radiotracers radiolabeled with 68Ga3+ exhibited high radiochemical purity and stability. As the chain length increased, the Log D values decreased from -2.32 ± 0.13 to -2.50 ± 0.16, indicating a gradual increase in the hydrophilicity of the radiotracers. In vitro cell-binding assay results showed that the PEGylated bicyclic peptide exhibits nanomolar affinity, and blocking experiments confirmed the specific binding of the tracers to the Nectin-4 receptor. In vivo PET imaging and biodistribution studies in SW780 and 5637 xenograft mice showed that [68Ga]Ga-NOTA-PEG12-BP demonstrated optimal pharmacokinetics, characterized by rapid and good tumor uptake, faster background clearance, and improved tumor-to-tissue contrast. Finally, compared with 18F-FDG, PET imaging, in vivo blocking assays of [68Ga]Ga-NOTA-PEG12-BP and histological staining confirmed that specific tumor uptake was mediated by Nectin-4 receptors. The results indicated that [68Ga]Ga-NOTA-PEG12-BP was a promising PET radiotracer for Nectin-4 targeting, with applications for clinical translation.

3.
Respir Res ; 25(1): 267, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970088

RESUMO

BACKGROUND: Lung cancer is the second most common cancer with the highest mortality in the world. Calumenin as a molecular chaperone that not only binds various proteins within the endoplasmic reticulum but also plays crucial roles in diverse processes associated with tumor development. However, the regulatory mechanism of calumenin in lung adenocarcinoma remains elusive. Here, we studied the impact of calumenin on lung adenocarcinoma and explored possible mechanisms. METHODS: 5-ethynyl-2'-deoxyuridine assay, colony formation, transwell and wound healing assays were performed to explore the effects of calumenin on the proliferation and migration of lung adenocarcinoma cells. To gain insights into the underlying mechanisms through which calumenin knockdown inhibits the migration and proliferation of lung adenocarcinoma, we performed Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Gene Set Enrichment Analysis and Ingenuity Pathway Analysis based on transcriptomics by comparing calumenin knockdown with normal A549 cells. RESULTS: The mRNA and protein levels of calumenin in lung adenocarcinoma are highly expressed and they are related to an unfavorable prognosis in this disease. Calumenin enhances the proliferation and migration of A549 and H1299 cells. Gene Set Enrichment Analysis revealed that knockdown of calumenin in A549 cells significantly inhibited MYC and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog signaling pathways while activating interferon signals, inflammatory signals, and p53 pathways. Ingenuity pathway analysis provided additional insights, indicating that the interferon and inflammatory pathways were prominently activated upon calumenin knockdown in A549 cells. CONCLUSIONS: The anti-cancer mechanism of calumenin knockdown might be related to the inhibition of MYC and KRAS signals but the activation of interferon signals, inflammatory signals and p53 pathways.


Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Proliferação de Células , Neoplasias Pulmonares , Invasividade Neoplásica , Humanos , Proliferação de Células/fisiologia , Movimento Celular/fisiologia , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Progressão da Doença , Células A549 , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Regulação Neoplásica da Expressão Gênica
4.
Fish Shellfish Immunol ; 150: 109645, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777254

RESUMO

Metallothioneins (MTs) are cysteine-rich metal-binding proteins whose expression is induced by exposure to essential and non-essential metals, making them potential biological markers for assessing metal pollution in various biomonitoring programs. However, the functional properties of these proteins are yet to be comprehensively characterized in most marine invertebrates. In this study, we identified and characterized an MT homolog from the disk abalone (Haliotis discus discus), referred to as disk abalone MT (AbMT). AbMT exhibited the same primary structural features as MTs from other mollusks containing two ß-domains (ß2ß1-form). AbMT protein demonstrated metal-binding and detoxification abilities against Zn, Cu, and Cd, as evidenced by Escherichia coli growth kinetics, metal tolerance analysis, and UV absorption spectrum. Transcriptional analysis revealed that AbMT was ubiquitously expressed in all analyzed tissues and upregulated in gill tissue following challenge with Vibrio parahaemolyticus, Listeria monocytogenes, and viral hemorrhagic septicemia virus (VHSV). Additionally, overexpression of AbMT suppressed LPS-induced NO production in RAW264.7 macrophages, protected cells against H2O2-induced oxidative stress, and promoted macrophage polarization toward the M1 phase. Conclusively, these findings suggest an important role for AbMT in environmental stress protection and immune regulation in disk abalone.


Assuntos
Gastrópodes , Imunidade Inata , Metalotioneína , Novirhabdovirus , Estresse Oxidativo , Vibrio parahaemolyticus , Animais , Metalotioneína/genética , Metalotioneína/imunologia , Gastrópodes/imunologia , Gastrópodes/genética , Gastrópodes/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Vibrio parahaemolyticus/fisiologia , Imunidade Inata/genética , Novirhabdovirus/fisiologia , Regulação da Expressão Gênica/imunologia , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência/veterinária , Listeria monocytogenes/fisiologia , Listeria monocytogenes/imunologia , Camundongos , Perfilação da Expressão Gênica/veterinária , Células RAW 264.7 , Metais Pesados/toxicidade , Poluentes Químicos da Água
5.
J Adv Res ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38685529

RESUMO

INTRODUCTION: Effective targeting drugs for KRAS mutation-mediated Lung Adenocarcinoma (LUAD) are currently are limited. OBJECTIVES: Investigating and intervening in the downstream key target genes of KRAS is crucial for clinically managing KRAS mutant-driven LUAD. GTF3C6, a newly identified member of the general transcription factor III (GTF3) family, plays a role in the transcription of RNA polymerase III (pol III)-dependent genes. However, its involvement in cancer remains unexplored. METHODS: This study examined the expression, roles, and potential molecular mechanisms of GTF3C6 in LUAD tissues, LSL-KrasG12D/+;LSL-p53-/- LUAD mouse models, and LUAD patients-derived organoid using Western blot, qRT-PCR, immunofluorescence, immunohistochemistry, and gene manipulation assays. RESULTS: We present the first evidence that GTF3C6 is highly expressed in LUAD tissues, LSL-KrasG12D/+;LSL-p53-/- LUAD mouse models, and LUAD organoids, correlating with poor clinical prognosis. Furthermore, GTF3C6 was found to promote anchorage-independent proliferation, migration, and invasion of LUAD cells. Mechanistically, KRAS mutation drives GTF3C6 expression through the PI3K pathway, and GTF3C6 knockdown reverses the malignant phenotype of KRAS mutation-driven LUAD cells. Additionally, the FAK pathway emerged as a crucial downstream signaling pathway through which GTF3C6 mediates the malignant phenotype of LUAD. Finally, GTF3C6 knockdown suppresses LUAD organoid formation and inhibits tumor growth in vivo. CONCLUSION: Our findings demonstrate that GTF3C6, driven by KRAS mutation, promotes LUAD development by regulating FAK phosphorylation, suggesting its potential as a biomarker and therapeutic target in KRAS mutant-driven LUAD.

6.
Dev Comp Immunol ; 156: 105175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574831

RESUMO

Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.


Assuntos
Proteínas de Peixes , Peroxirredoxinas , Filogenia , Vibrioses , Animais , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Vibrioses/imunologia , Poli I-C/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Vibrio/imunologia , Vibrio/fisiologia , Clonagem Molecular , Sequência de Aminoácidos , Perciformes/imunologia , Lipopolissacarídeos/imunologia , Alinhamento de Sequência , Espécies Reativas de Oxigênio/metabolismo
7.
EBioMedicine ; 102: 105053, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471398

RESUMO

BACKGROUND: To date, because of the difficulty in obtaining normal parathyroid gland samples in human or in animal models, our understanding of this last-discovered organ remains limited. METHODS: In the present study, we performed a single-cell transcriptome analysis of six normal parathyroid and eight parathyroid adenoma samples using 10 × Genomics platform. FINDINGS: We have provided a detailed expression atlas of parathyroid endocrine cells. Interestingly, we found an exceptional high expression levels of CD4 and CD226 in parathyroid endocrine cells, which were even higher than those in lymphocytes. This unusual expression of lymphocyte markers in parathyroid endocrine cells was associated with the depletion of CD4 T cells in normal parathyroid glands. Moreover, CD4 and CD226 expression in endocrine cells was significantly decreased in parathyroid adenomas, which was associated with a significant increase in Treg counts. Finally, along the developmental trajectory, we discovered the loss of POMC, ART5, and CES1 expression as the earliest signature of parathyroid hyperplasia. INTERPRETATION: We propose that the loss of CD4 and CD226 expression in parathyroid endocrine cells, coupled with an elevated number of Treg cells, could be linked to the pathogenesis of parathyroid adenoma. Our data also offer valuable information for understanding the noncanonical function of CD4 molecule. FUNDING: This work was supported by the National Key R&D Program of China (2022YFA0806100), National Natural Science Foundation of China (82130025, 82270922, 31970636, 32211530422), Shandong Provincial Natural Science Foundation of China (ZR2020ZD14), Innovation Team of Jinan (2021GXRC048) and the Outstanding University Driven by Talents Program and Academic Promotion Program of Shandong First Medical University (2019LJ007).


Assuntos
Glândulas Paratireoides , Neoplasias das Paratireoides , Humanos , Glândulas Paratireoides/metabolismo , Glândulas Paratireoides/patologia , Neoplasias das Paratireoides/genética , Neoplasias das Paratireoides/complicações , Neoplasias das Paratireoides/patologia , Regulação para Baixo , Carcinogênese/patologia , Transformação Celular Neoplásica/metabolismo , Hiperplasia/patologia , Linfócitos/metabolismo
8.
Fish Shellfish Immunol ; 146: 109434, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331055

RESUMO

Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a member of the TRAF family of adaptor proteins involved in the signal transduction pathways of both TNF receptor and interleukin-1 receptor/Toll-like receptor superfamilies. In this study, red-spotted grouper (Epinephelus akaara) TRAF6 (EaTraf6) was identified and characterized. The open reading frame of EaTraf6, 1713 bp in length, encodes a putative protein of 570 amino acids and has a predicted molecular weight and theoretical isoelectric point of 64.11 kDa and 6.07, respectively. EaTraf6 protein contains an N-terminal RING-type zinc finger domain, two TRAF-type zinc finger domains, a coiled-coil region (zf-TRAF), and a conserved C-terminal meprin and TRAF homology (MATH) domain. EaTraf6 shared the highest amino acid sequence identity with its ortholog from Epinephelus coioides, and phylogenetic analysis showed all fish TRAF6s clustered together and apart from other species. qRT-PCR results revealed that EaTraf6 was ubiquitously expressed in all examined tissues, with the highest level detected in the blood. In the immune challenge, EaTraf6 exhibited modulated mRNA expression levels in the blood and spleen. The subcellular localization analysis revealed that the EaTraf6 protein was predominantly present in the cytoplasm; however, it could translocate into the nucleus following poly (I:C) stimulation. The antiviral function of EaTraf6 was confirmed by analyzing the expression of host antiviral genes and viral genomic RNA during viral hemorrhagic septicemia virus infection. Additionally, luciferase reporter assay results indicated that EaTraf6 is involved in the activation of the NF-κB signaling pathway upon poly (I:C) stimulation. Finally, the effect of EaTraf6 on cytokine gene expression and its role in regulating macrophage M1 polarization were demonstrated. Collectively, these findings suggest that EaTraf6 is a crucial immune-related gene that significantly contributes to antiviral functions and regulation of NF-κB activity in the red-spotted grouper.


Assuntos
Bass , Doenças dos Peixes , Animais , Fator 6 Associado a Receptor de TNF , NF-kappa B/genética , NF-kappa B/metabolismo , Filogenia , Transdução de Sinais , Proteínas de Peixes/química , Imunidade Inata/genética
9.
Fish Shellfish Immunol ; 146: 109365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199263

RESUMO

DDX41, a member of the DEAD-box helicase family, serves as a vital cytosolic DNA sensor and plays a pivotal role in controlling the activation of type I interferon responses in mammals. However, the functional aspects of fish DDX41 remain relatively unexplored. In this study, we identified and characterized the DDX41 gene in Amphiprion clarkii transcriptomes and designated the gene as AcDDX41. The complete open reading frame of AcDDX41 encoded a putative protein comprising 617 amino acids. Notably, the predicted AcDDX41 protein shared several structural features that are conserved in DDX41, including DEXDc, HELICc, and zinc finger domains, as well as conserved sequence "Asp-Glu-Ala-Asp (D-E-A-D)." AcDDX41 exhibited the highest sequence homology (99.68 % similarity) with DDX41 from Acanthochromis polyacanthus. Phylogenetic analysis revealed that DDX41s from fish formed a branch distinct from that in other animals. All investigated tissues were shown to express AcDDX41 constitutively, with blood showing the highest expression levels, followed by the brain. Furthermore, AcDDX41 expression was significantly induced upon stimulation with poly I:C, lipopolysaccharide, and Vibrio harveyi, indicating its responsiveness to immune stimuli. We confirmed the antiviral function of AcDDX41 by analyzing gene expression and viral replication during viral hemorrhagic septicemia virus infection. Additionally, using a luciferase reporter assay, we validated the ability of AcDDX41 to activate the NF-κB signaling pathway upon stimulation with poly I:C. Finally, AcDDX41 influenced cytokine gene expression and played a regulatory role in macrophage M1 polarization in RAW 264.7 cells. Collectively, these results highlight the significance of AcDDX41 as an immune-related gene that contributes substantially to antiviral defense and regulation of NF-κB activity.


Assuntos
NF-kappa B , Perciformes , Animais , NF-kappa B/genética , Filogenia , RNA Helicases DEAD-box , Imunidade Inata/genética , Perciformes/metabolismo , Macrófagos/metabolismo , Antivirais , Poli I , Proteínas de Peixes , Mamíferos/metabolismo
10.
Eur J Nucl Med Mol Imaging ; 51(6): 1685-1697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246909

RESUMO

Due to the heterogeneity of tumors, strategies to improve the effectiveness of dual-targeting tracers in tumor diagnostics have been intensively practiced. In this study, the radiolabeled [18F]AlF-NOTA-FAPI-RGD (denoted as [18F]AlF-LNC1007), a dual-targeting heterodimer tracer targeting both fibroblast activation protein (FAP) and integrin αvß3 to enhance specific tumor uptake and retention, was synthesized and evaluated. The tracer was compared with [68Ga]Ga-LNC1007 in preclinical and clinical settings. METHODS: The preparation of [18F]AlF- and 68Ga-labeled FAPI-RGD was carried out with an optimized protocol. The stability was tested in PBS and fetal bovine serum (FBS). Cellular uptake and in vivo distribution of the two products were compared and carried out on the U87MG cell line and its xenograft model. The safety and dosimetry of [18F]AlF-LNC1007 PET/CT scan were evaluated in six patients with malignant tumors. RESULTS: Two radiolabeling protocols of [18F]AlF-/[68Ga]Ga-LNC1007 were developed and optimized to give a high yield of tracers with good stability. In vivo microPET images showed that the two tracers exhibited comparable pharmacokinetic characteristics, with high tumor uptake and prolonged tumor retention. In vivo distribution data showed that the target-to-non-target ratios of [18F]AlF-LNC1007 were similar to[68Ga]Ga-LNC1007. A total of six patients underwent [18F]AlF-LNC1007 PET/CT evaluation while two had head-to-head [18F]FDG PET/CT scans. The total body effective dose was 9.94E-03 mSv/MBq. The biodistribution curve showed optimal normal organ uptake with high tumor uptake and long retention of up to 3h p.i., and notably, the tumor-to-background ratio increased over time. CONCLUSION: We successfully prepared an [18F]AlF-LNC1007 dual-targeting PET probe with comparable performances as [68Ga]Ga-LNC1007. With prolonged tumor retention and tumor specificity, it produced good imaging quality in preclinical and clinical translational studies, indicating that [18F]AlF-LNC1007 is a promising non-invasive tracer for detecting tumors expressing FAP and/or integrin avß3, with the prospect of clinical implementation.


Assuntos
Compostos de Alumínio , Endopeptidases , Fluoretos , Radioisótopos de Flúor , Proteínas de Membrana , Oligopeptídeos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Humanos , Animais , Camundongos , Radioisótopos de Flúor/química , Linhagem Celular Tumoral , Oligopeptídeos/química , Oligopeptídeos/farmacocinética , Feminino , Distribuição Tecidual , Radioisótopos de Gálio , Projetos Piloto , Masculino , Marcação por Isótopo , Neoplasias/diagnóstico por imagem , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos/farmacocinética , Compostos Radiofarmacêuticos/química
11.
J Colloid Interface Sci ; 656: 146-154, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37989048

RESUMO

The use of light-assisted cathode is regarded as an effective approach to reduce the overpotential of lithium carbon dioxide (Li - CO2) batteries. However, the inefficient electron-hole separation and the complex discharge-charge reactions hamper the efficiency of CO2 photocatalytic reaction in battery. Herein, a highly reversible force-assisted Li - CO2 battery has been established for the first time by employing a Bi0.5Na0.5TiO3 nanorods piezoelectric cathode. The high-energy electron and holes generated by the piezoelectric cathode with ultrasonic force can effectively enhance the carbon dioxide reduction reaction (CDRR) and carbon dioxide evolution reaction (CDER) kinetics, thereby reducing the overpotentials during the discharge-charge processes. Moreover, the morphology of the discharge product (Li2CO3) can be modified via the dense surface electrons of the piezoelectric cathode, resulting in the promoted decomposition kinetics of Li2CO3 in charging progress. Thus, the force-assisted Li - CO2 battery with the unique piezoelectric cathode can adjust the output and input energy by ultrasonic wave, and provides an ultra-low charging platform of 3.52 V, and exhibits excellent cycle stability (a charging platform of 3.42 V after 100 h cycles). The investigation of the force-assisted process described herein provides significant insights to solve overpotential in the Li - CO2 batteries system.

12.
Metabolism ; 152: 155761, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38104924

RESUMO

BACKGROUND: Mitochondrial dysfunction and metabolic reprogramming are key features of hepatocellular carcinoma (HCC). Despite its significance, the precise underlying mechanism behind these processes has not been fully elucidated. The latest investigations, along with our previous discoveries, have substantiated the significant role of mitochondrial ribosomal protein L12 (MRPL12), a newly identified gene involved in mitochondrial transcription regulation, in the modulation of mitochondrial metabolism. Nevertheless, the role of MRPL12 in tumorigenesis has yet to be investigated. METHODS: The expression of MRPL12 in HCC was assessed using an online database. Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), and immunohistochemistry (IHC) were employed to determine the expression of MRPL12 in HCC tissues, patient-derived organoid (PDO), and cell lines. The correlation between MRPL12 expression and clinicopathological features, as well as prognosis, was examined using tissue microarray analysis. An in vivo subcutaneous tumor xenograft model, gene knockdown or overexpression assay, chromatin immunoprecipitation (ChIP) assay, Seahorse XF96 assay, and cell function assay were employed to investigate the biological function and potential molecular mechanism of MRPL12 in HCC. RESULTS: A significant upregulation of MRPL12 was observed in HCC cells, PDO and patient tissues, which correlated with advanced tumor stage, higher grade and poor prognosis. MRPL12 overexpression promoted cell proliferation, migration, and invasion in vitro, as well as tumorigenicity in vivo, whereas MRPL12 knockdown showed the opposite effect. MRPL12 knockdown also inhibited the capacity of organoids proliferation capacity. Furthermore, MRPL12 was found to be crucial for maintaining mitochondrial homeostasis. Both gain and loss-of-function experiments targeting MRPL12 in HCC cells altered oxidative phosphorylation (OXPHOS) and mitochondrial DNA content. Notably, suppression of OXPHOS effectively mitigates the tumor-promoting effect attributed to MRPL12 overexpression, implying the involvement of MRPL12 in HCC through the modulation of mitochondrial metabolism. Besides, Yin Yang 1 (YY1) was identified as a transcription factor responsible for regulating MRPL12, while the PI3K/mTOR pathway was found to act as an upstream regulator of YY1. MRPL12 knockdown attenuated the YY1 overexpression or PI3K/mTOR activation-induced malignant phenotype in HCC cells. CONCLUSION: Our findings provide compelling evidence that MRPL12 is implicated in driving the malignant phenotype of HCC via regulating mitochondrial metabolism. Moreover, the aberrant expression of MRPL12 in HCC is mediated by the upstream PI3K/mTOR/YY1 pathway. These results highlight the potential of targeting MRPL12 as a promising therapeutic strategy for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Ribossômicas , Humanos , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Reprogramação Metabólica , Biogênese de Organelas , Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Anal Chim Acta ; 1284: 341995, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37996166

RESUMO

Tumor-derived exosome (TD-Ex) serves as a crucial early diagnostic biomarker of pancreatic cancer (PC). However, accurate identification of TD-Ex from PC is still a challenging work. In this paper, a detection microsystem that integrates magnetic separation and FET biosensor is developed, which is capable of selectively separating TD-Ex of PC from the plasma and detecting exosomal miRNA10b in a sensitive and specific manner. The magnetic beads were functionalized with dual antibody (GPC-1 antibody and EpCAM antibody), enabling selective recognition and capture of PC-derived exosomes. On the other hand, a peptide nucleic acid (PNA)- functionalized reduced graphene oxide field-effect transistor (RGO FET) biosensor was subsequently utilized to detect the exosomal miRNA10b, which is highly expressed in PC- derived exosomes. This system could achieve a low detection limit down to 78 fM, and selectively identify miRNA10b from single-base mismatched miRNA. In addition, 40 clinical plasma samples were tested with this microsystem, and the results indicate that it could effectively distinguish PC patients from healthy individuals. The assay combines specific capture and enrichment of PC-derived exosomes with sensitive and selective detection of exosomal miRNA, showing its potential to be used as an effective scheme for PC early diagnosis.


Assuntos
Técnicas Biossensoriais , Exossomos , MicroRNAs , Neoplasias Pancreáticas , Humanos , MicroRNAs/genética , Neoplasias Pancreáticas/diagnóstico , Técnicas Biossensoriais/métodos , Neoplasias Pancreáticas
14.
Fish Shellfish Immunol ; 143: 109172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858785

RESUMO

Galectin 9 (Gal9) is a tandem repeat type ß-galactoside-binding galectin that mediates various cellular biochemical and immunological functions. Many studies have investigated the functional properties of Gal9 in mammals; however, knowledge of fish Gal9 is limited to antibacterial studies. In this context, our aim was to clone Gal9 from Planiliza haematocheilus (PhGal9) and investigate its structural and functional characteristics. We discovered the PhGal9 open reading frame, which was 969 base pairs long and encoded a 322 amino acid protein. PhGal9 had a projected molecular weight of 35.385 kDa but no signal peptide sequence. PhGal9 mRNA was ubiquitously produced in all investigated tissues but was predominant in the intestine, spleen, and brain. Its mRNA expression was increased in response to stimulation by Poly(I:C), LPS, and L. garvieae. The rPhGal9 exhibited a dose-dependent agglutination potential toward gram-positive and gram-negative bacteria at a minimum concentration of 50 µg/mL. Overexpression of PhGal9 promoted M2-like phenotype changes in mouse macrophages, and RT-qPCR analysis of M1 and M2 marker genes confirmed M2 polarization with upregulation of M2 marker genes. In the antiviral assay, the expression levels of Viral Hemorrhagic Septicemia Virus (VHSV) glycoproteins, phosphoproteins, nucleoproteins, non-virion proteins, matrix proteins, and RNA polymerase were significantly reduced in PhGal9-overexpressed cells. Furthermore, the mRNA expression of autophagic genes (sqstm1, tax1bp1b, rnf13, lc3, and atg5) and antiviral genes (viperin) were upregulated in PhGal9 overexpressed cells. For the first time in teleosts, our study demonstrated that PhGal9 promotes M2 macrophage polarization by upregulating M2-associated genes (egr2 and cmyc) and suppressing M1-associated genes (iNOS and IL-6). Furthermore, our results show that exogenous and endogenous PhGal9 prevented VHSV attachment and replication by neutralizing virion and autophagy, respectively. Gal9 may be a potent modulator of the antimicrobial immune response in teleost fish.


Assuntos
Antivirais , Autofagia , Galectinas , Smegmamorpha , Replicação Viral , Animais , Camundongos , Antibacterianos/metabolismo , Anti-Inflamatórios/metabolismo , Antivirais/metabolismo , Peixes/genética , Galectinas/genética , Galectinas/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Macrófagos , RNA Mensageiro/metabolismo , Smegmamorpha/genética
15.
FEBS J ; 290(22): 5340-5352, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37526061

RESUMO

Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease worldwide and the strongest predictor of mortality in patients with diabetes. Despite its significance, the pathological mechanism underlying the onset and progression of DKD remains incompletely understood. In this study, we have shown that mitochondrial ribosomal protein L12 (MRPL12) plays a significant role in DKD by modulating mitochondrial function. We demonstrated that MRPL12 was mainly ubiquitinated at K150 in renal tubular epithelial cells. We have found that Cullin3 (CUL3), an E3 ubiquitin ligase, directly interacts with MRPL12 and induces the K63-linked ubiquitination of MRPL12, resulting in mitochondrial biosynthesis dysfunction. Moreover, under high-glucose (HG) conditions in renal tubular epithelial cells, we observed up-regulation of CUL3 expression, significant increase in CUL3-mediated ubiquitination of MRPL12 and dysregulation of mitochondrial biosynthesis. Notably, CUL3 knockdown stabilised the MRPL12 protein and protected mitochondrial biosynthesis under HG conditions. Our findings provide novel insight into how CUL3 affects mitochondrial biosynthesis in renal tubular epithelial cells through MRPL12 ubiquitination and suggest a potential therapeutic strategy for DKD in the future.


Assuntos
Nefropatias Diabéticas , Doenças Mitocondriais , Humanos , Células Epiteliais/metabolismo , Ubiquitinação , Mitocôndrias/metabolismo , Nefropatias Diabéticas/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/genética , Proteínas Culina/metabolismo
16.
iScience ; 26(5): 106656, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37182101

RESUMO

Acute kidney injury (AKI) is a serious disease with no effective treatment. Abnormal opening of mitochondrial permeability transition pore (MPTP) is an important pathological process in ischemia reperfusion injury (IRI), the key factor of AKI. It is essential to elucidate MPTP regulation mechanism. Here, we identified mitochondrial ribosomal protein L7/L12 (MRPL12) specifically binds to adenosine nucleotide translocase 3 (ANT3) under normal physiological conditions, stabilizes MPTP and maintains mitochondrial membrane homeostasis in renal tubular epithelial cells (TECs). During AKI, MRPL12 expression was significantly decreased in TECs, and MRPL12-ANT3 interaction was reduced, leading to ANT3 conformation change, MPTP abnormal opening, and cell apoptosis. Importantly, MRPL12 overexpression protected TECs from MPTP abnormal opening and apoptosis during hypoxia/reoxygenation (H/R). Our results suggest MRPL12-ANT3 axis involves in AKI by regulating MPTP, and MRPL12 could be potential intervention target for treatment of AKI.

17.
Clin Respir J ; 17(5): 456-467, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37071990

RESUMO

INTRODUCTION: The aim was to develop and validate a nomogram for the prediction of brain metastases (BM) in small cell lung cancer (SCLC), to explore the risk factors and assist clinical decision-making. METHODS: We reviewed the clinical data of SCLC patients between 2015 and 2021. Patients between 2015 and 2019 were included to develop, whereas patients between 2020 and 2021 were used for external validation. Clinical indices were analysed by using the least absolute shrinkage and selection operator (LASSO) logistic regression analyses. The final nomogram was constructed and validated by bootstrap resampling. RESULTS: A total of 631 SCLC patients between 2015 and 2019 were included to construct model. Gender, T stage, N stage, Eastern Cooperative Oncology Group (ECOG), haemoglobin (HGB), the absolute value of lymphocyte (LYMPH #), platelet (PLT), retinol-binding protein (RBP), carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) were identified as risk factors and included into the model. The C-indices were 0.830 and 0.788 in the internal validation by 1000 bootstrap resamples. The calibration plot revealed excellent agreement between the predicted and the actual probability. Decision curve analysis (DCA) showed better net benefits with a wider range of threshold probability (net clinical benefit was 1%-58%). The model was further externally validated in patients between 2020 and 2021 with a C-index of 0.818. CONCLUSIONS: We developed and validated a nomogram to predict the risk of BM in SCLC patients, which could help clinicians to rationally schedule follow-ups and promptly implement interventions.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Plaquetas , Nomogramas
18.
Environ Int ; 175: 107933, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37088008

RESUMO

Recent studies on risks assessment of heavy metal(loid) are usually based on their total concentrations. Nevertheless, such an analysis does not assess their real amounts absorbed by human body. To scientifically assess the health risks, in this study medical earthworms were analyzed for relative bioavailability (RBA) of arsenic (As) and lead (Pb) using a multiple gavage mouse model with liver, kidneys, brain, and leg bones as biomarkers for the first time. Metal(loid) bioaccessibility was determined using in vitro physiologically based extraction (PBET) assay. We are the first to develop a novel accumulative health risk assessment strategy by combinational analyzing bioavailability of heavy metal(loid) levels to calculate target organ toxicity dose (TTD) modification of the HI and total cancer risk (TCR), which has capacity to evaluate the health risks of co-exposure of Pb and As in medical earthworms. As a result, As-RBA ranged from 7.2% to 45.1%, and Pb-RBA ranged from 16.1% to 49.8%. Additionally, As and Pb bioaccessibility varied from 6.7% to 48.3% and 7.8% to 52.5%, respectively. Moreover, strong in vivo-in vitro correlations (IVIVCs) were observed between metal-RBA and bioaccessibility, indicating the robustness of the in vitro PBET assay to predict metal-RBA in medical earthworms. The refined accumulative assessment strategy revealed that when adjusted by heavy metal(loid) bioavailability, the TTD modification of HI method typically exhibited an acceptable health risk caused by the co-exposure of Pb and As for cardiovascular, hematological, neurological, and renal system. The TCR levels associated with exposure to Pb and As due to the ingestion of medical earthworms were also acceptable after adjustment by bioavailability. Collectively, our innovation on accumulative risk assessment based on in vivo-in vitro correlation provides a novel approach engaging in assessing the risks due to co-exposure of As and Pb in medical earthworms.


Assuntos
Arsênio , Metais Pesados , Oligoquetos , Poluentes do Solo , Animais , Camundongos , Humanos , Arsênio/toxicidade , Arsênio/análise , Chumbo/toxicidade , Chumbo/análise , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Medição de Risco , Disponibilidade Biológica , Receptores de Antígenos de Linfócitos T , Solo , Metais Pesados/análise
19.
Fish Shellfish Immunol ; 133: 108552, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36669605

RESUMO

Peroxiredoxin 1 is a member of the typical 2-Cys peroxiredoxin family, which serves diverse functions in gene expression, immune and inflammatory responses, and tumor progression. In this study, we aimed to analyze the structural, functional, and immunomodulatory properties of peroxiredoxin 1 from Epinephelus akaara (EaPrx1). The open reading frame of EaPrx1 is 597 base pairs in length, encoding 198 amino acids, with a molecular weight of approximately 22 kDa. The in silico analysis revealed that EaPrx1 shares a conserved thioredoxin fold and signature motifs that are critical for its catalytic activity and oligomerization. Further, EaPrx1 is closely related to Epinephelus lanceolatus Prx1 and clustered in the Fishes group of the vertebrate clade, revealing that EaPrx1 was conserved throughout evolution. In terms of tissue distribution, a high level of EaPrx1 expression was observed in the spleen, brain, and blood tissues. Likewise, in immune challenge experiments, significant transcriptional modulations of EaPrx1 upon lipopolysaccharide, polyinosinic:polycytidylic acid, and nervous necrosis virus injections were noted at different time points, indicating the immunological role of EaPrx1 against pathogenic infections. In the functional analysis, rEaPrx1 exhibited substantial DNA protection, insulin disulfide reduction, and tissue repair activities, which were concentration-dependent. EaPrx1/pcDNA™ 3.1 (+)-transfected fathead minnow cells revealed high cell viability upon arsenic toxicity, indicating the heavy metal detoxification activity of EaPrx1. Taken together, the transcriptional and functional studies imply critical roles of EaPrx1 in innate immunity, redox regulation, apoptosis, and tissue-repair processes in E. akaara.


Assuntos
Bass , Doenças dos Peixes , Animais , Peroxirredoxinas/genética , Peroxirredoxinas/química , Bass/genética , Bass/metabolismo , Imunidade Inata/genética , Antioxidantes/metabolismo , Oxirredução , Filogenia , Regulação da Expressão Gênica , Proteínas de Peixes/química
20.
Front Oncol ; 12: 1047010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568172

RESUMO

Purpose: To explore the difference in the effectiveness of gallium-68 fibroblast activation protein inhibitor (68Ga-FAPI-04) PET/CT and fluorine-18 fluorodeoxyglucose (18F-FDG) PET/CT for the initial staging of patients with nasopharyngeal carcinoma (NPC). Methods: The Affiliated Hospital of Southwest Medical University hosted this single-center prospective investigation (Clinical Trials registration No.ChiCTR2100044131) between March 2020 and September 2021. Within a week, all subjects underwent MR scans, 68Ga-FAPI-04 PET/CT, and 18F-FDG PET/CT in order. The effectiveness of medical staging employing 68Ga-FAPI-04 and 18F-FDG PET/CT was compared. Results: Twenty-eight patients with primary NPC were evaluated (mean age53 ± 11 years). 68Ga-FAPI-04 PET/CT indicated an elevated recognition rate for diagnosing primary tumors (28/28 [100%] vs. 27/28 [96%]) and lymph node metastases (263/285 [92%] vs. 228/285 [80%]), but a lower detection rate for distant metastases (5/7 [71%] vs. 7/7 [100%]) compared with 18F-FDG PET/CT. A significant association between the maximum standard uptake value (SUVmax) of 18F-FDG PET and 68Ga-FAPI-04 PET was found in the primary cancers (r = 0.691, p < 0.001). In comparison to 18F-FDG PET/CT, 68Ga-FAPI-04 PET/CT upstaged the T stage in five patients while downstaging the N stage in seven patients. 68Ga-FAPI-04 PET/CT corrected the overall staging of five patients on18F-FDG PET/CT. Conclusion: 68Ga-FAPI-04 PET/CT is preferable to 18F-FDG PET/CT for NPC staging in terms of the detection efficiency for primary tumors and lymph node metastasis. This is especially true when evaluating the primary cancer and any spread to contiguous tissues. It is possible to improve the staging assessment of NPC by using 68Ga-FAPI-04 PET/CT in conjunction with 18F-FDG PET/CT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA