Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986801

RESUMO

Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, a poor tissue penetration of activation light and low target specificity seriously hindered the clinical application of PDT. Here, we designed and constructed a size-controllable nanosystem (UPH) with inside-out responsive for deep PDT with enhanced biosafety. To obtain nanoparticles with the best quantum yield, a series of core-shell nanoparticles (UCNP@nPCN) with different thicknesses were synthesized by a layer-by-layer self-assembly method to incorporate a porphyritic porous coordination network (PCN) onto the surface of upconverting nanoparticles (UCNPs), followed by coating with hyaluronic acid (HA) on the surface of nanoparticles with optimized thickness to form the UPH nanoparticles. With the aid of HA, the UPH nanoparticles were capable of preferentially enriching in tumor sites and specific endocytosis by CD44 receptors as well as responsive degradation by hyaluronidase in cancer cells after intravenous administration. Subsequently, after being activated by strong penetrating 980 nm near-infrared light (NIR), the UPH nanoparticles efficiently converted oxygen into strongly oxidizing reactive oxygen species based on the fluorescence resonance energy transfer (FRET) effect, thereby significantly inhibiting tumor growth. Experimental results in vitro and in vivo indicated that such dual-responsive nanoparticles successfully realize the photodynamic therapy of deep-seated cancer with negligible side effects, which showed great potential for potential clinical translational research.

3.
Ecotoxicol Environ Saf ; 252: 114605, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753971

RESUMO

BACKGROUND: The omnipresence of human phthalate (PAE) exposure is linked to various adverse health issues, including breast cancer. However, the effects of low-dose PAE exposure on breast cancer stem cells (BCSCs) and the underlying mechanism remain unexplored. METHODS: BCSCs from breast cancer cell lines (MDA-MB-231 and MCF-7) were enriched using a tumorsphere formation assay. Gene and protein expression was detected by measurement of quantitative real-time reverse transcription PCR, western blot, and immunofluorescence assays. Transient transfection assays were used to evaluate the involvement of Gli1, a signaling pathway molecule and ΔNp63α, an oncogene in influencing the PAE-induced characteristics of BCSCs. RESULTS: PAE (butylbenzyl phthalate, BBP; di-butyl phthalate, DBP; di-2-ethylhexyl phthalate, DEHP) exposure of 10-9 M significantly promoted the tumorsphere formation ability in BCSCs. Breast cancer spheroids with a 10-9 M PAE exposure had higher levels of BCSC marker mRNA and protein expression, activated sonic hedgehog (SHH) pathway, and increased mRNA and protein levels of an oncogene, ΔNp63α. Furthermore, suppression of the SHH pathway attenuated the effects of PAEs on BCSCs. And the overexpression of ΔNp63α enhanced PAE-induced characteristics of BCSCs, while low expression of ΔNp63α inhibited the promotion effects of PAEs on BCSCs and the SHH pathway. CONCLUSION: Low-dose PAE exposure promoted the stem cell properties of BCSCs in a ΔNp63α- and SHH-dependent manner. The influence of low-dose exposure of PAEs and its relevance for the lowest observed effect concentrations requires further investigation, and the precise underlying mechanism needs to be further explored.


Assuntos
Neoplasias da Mama , Proteínas Hedgehog , Humanos , Feminino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transdução de Sinais , Oncogenes , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
4.
ACS Nano ; 16(12): 20915-20921, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36416763

RESUMO

The multivalent effect is often used to engineer microfluidic affinity interfaces to improve the target separation efficiency. Currently, no design rules exist for thermodynamic and kinetic tuning of properly joining multiple ligands. Herein, we developed a thermodynamic and kinetic modulating strategy of the microfluidic affinity interface via a merit-complementary-heteromultivalent aptamers functionalized DNA nanoassembly. Our strategy is built on the two types of identified aptamers that bind to distinct sites of EpCAM. The aptamer binding of one type is more rapid but less tight, while the other is opposite. By assembling the two types of aptamers together with a tetrahedral DNA framework, we fully exploited these aptamers' merits for tight and rapid recognition of EpCAM, leading to target cell capture with high efficiency and throughput. Our strategy provides a perspective on engineering multivalent recognition molecules through thermodynamic and kinetic tuning.


Assuntos
Aptâmeros de Nucleotídeos , Microfluídica , Molécula de Adesão da Célula Epitelial , DNA/química , Termodinâmica , Oligonucleotídeos , Aptâmeros de Nucleotídeos/química
5.
ACS Nano ; 16(9): 15310-15317, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36073793

RESUMO

Natural ligand-receptor interactions that play pivotal roles in biological events are ideal models for design and assembly of artificial recognition molecules. Herein, aiming at the structural characteristics of the spike trimer and infection mechanism of SARS-CoV-2, we have designed a DNA framework-guided spatial-patterned neutralizing aptamer trimer for SARS-CoV-2 neutralization. The ∼5.8 nm tetrahedral DNA framework affords precise spatial organization and matched valence as four neutralizing aptamers (MATCH-4), which matches with nanometer precision the topmost surface of SARS-CoV-2 spike trimer, enhancing the interaction between MATCH-4 and spike trimer. Moreover, the DNA framework provides a dimensionally complementary nanoscale barrier to prevent the spike trimer-ACE2 interaction and the conformational transition, thereby inhibiting SARS-CoV-2-host cell fusion and infection. As a result, the spatial- and valence-matched MATCH-4 ensures improved binding affinity and neutralizing activity against SARS-CoV-2 and its varied mutant strains, particularly the current Omicron variant, that are evasive of the majority of existing neutralizing antibodies. In addition, because neutralizing aptamers specific to other targets can be evolved and assembled, the present design has the potential to inhibit other wide-range and emerging pathogens.


Assuntos
COVID-19 , Nanoestruturas , Enzima de Conversão de Angiotensina 2 , Anticorpos Neutralizantes , Anticorpos Antivirais , DNA , Humanos , Ligantes , Glicoproteínas de Membrana , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Proteínas do Envelope Viral/química
6.
ACS Appl Bio Mater ; 5(5): 1954-1979, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35014838

RESUMO

Liquid biopsy capable of noninvasive and real-time molecular profiling is considered as a breakthrough technology, endowing an opportunity for precise diagnosis of individual patients. Extracellular vesicles (EVs) and circulating tumor cells (CTCs) consisting of substantial disease-related molecular information play an important role in liquid biopsy. Therefore, it is critically significant to exploit high-performance recognition ligands for efficient isolation and analysis of EVs and CTCs from complex body fluids. Aptamers exhibit extraordinary merits of high specificity and affinity, which are considered as superior recognition ligands for liquid biopsy. In this review, we first summarize recent advanced strategies for the evolution of high-performance aptamers and the construction of various aptamer-based recognition elements. Subsequently, we mainly discuss the isolation and analysis of EVs and CTCs based on the aptamer functioned biomaterials/biointerface. Ultimately, we envision major challenges and future direction of aptamer-based liquid biopsy for clinical utilities.


Assuntos
Vesículas Extracelulares , Células Neoplásicas Circulantes , Vesículas Extracelulares/patologia , Humanos , Ligantes , Biópsia Líquida , Células Neoplásicas Circulantes/patologia , Oligonucleotídeos
7.
Adv Healthc Mater ; 11(2): e2101971, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751505

RESUMO

Traditional tumor treatments, including chemotherapy, radiotherapy, photodynamic therapy, and photothermal therapy, are developed and used to treat different types of cancer. Recently, chemodynamic therapy (CDT) has been emerged as a novel cancer therapeutic strategy. CDT utilizes Fenton or Fenton-like reaction to generate highly cytotoxic hydroxyl radicals (•OH) from endogenous hydrogen peroxide (H2 O2 ) to kill cancer cells, which displays promising therapeutic potentials for tumor treatment. However, the low catalytic efficiency and off-target side effects of Fenton reaction limit the biomedical application of CDT. In this regard, various strategies are implemented to potentiate CDT against tumor, including retrofitting the tumor microenvironment (e.g., increasing H2 O2 level, decreasing reductive substances, and reducing pH), enhancing the catalytic efficiency of nanocatalysts, and other strategies. This review aims to summarize the development of CDT and summarize these recent progresses of nanocatalyst-mediated CDT for antitumor application. The future development trend and challenges of CDT are also discussed.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Catálise , Linhagem Celular Tumoral , Humanos , Peróxido de Hidrogênio , Nanopartículas/química , Neoplasias/tratamento farmacológico , Microambiente Tumoral
8.
Chem Rev ; 121(19): 12035-12105, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33667075

RESUMO

The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.


Assuntos
Aptâmeros de Nucleotídeos , Vesículas Extracelulares , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ligantes , Medicina de Precisão/métodos , Técnica de Seleção de Aptâmeros/métodos
9.
Anal Chem ; 92(22): 15229-15235, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33124804

RESUMO

As a malignant disease that seriously threatens human health, hepatocellular carcinoma (HCC) lacks effective early screening and prognostic assessment methods. Herein, we developed a method for efficient capture and multiphenotype analysis of circulating tumor cells (CTCs) of hepatocellular carcinoma. The anti-ASGPR antibody and the anti-EpCAM antibody were modified in parallel on a deterministic lateral displacement (DLD)-patterned microfluidic Synergetic-Chip to enhance capture efficiency by a complementary effect. CTCs were detected in 45 out of 45 (100%) HCC patients, with a sensitivity and specificity of 97.8 and 100%, respectively. Patients with more total CTCs and nonepithelial CTCs were in later stages of HCC and had more malignant progression. This strategy proposes a feasible approach for early diagnosis and prognosis of hepatocellular carcinoma.


Assuntos
Anticorpos Imobilizados/química , Carcinoma Hepatocelular/patologia , Separação Celular/instrumentação , Dispositivos Lab-On-A-Chip , Neoplasias Hepáticas/patologia , Células Neoplásicas Circulantes/patologia , Fenótipo , Anticorpos Imobilizados/imunologia , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/imunologia , Humanos
10.
ACS Appl Mater Interfaces ; 12(3): 3474-3493, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31874023

RESUMO

Vasculogenesis (de novo formation of vessels) induced by endothelial progenitor cells (EPCs) is requisite for vascularized bone regeneration. However, there exist few available options for promoting vasculogenesis within artificial bone grafts except for exogenous EPC transplantation, which suffers from the source of EPC, safety, cost, and time concerns in clinical applications. This study aimed at endogenous EPC recruitment for vascularized bone regeneration by using a bioinspired EPC-induced graft. The EPC-induced graft was created by immobilizing two bioactive peptides, WKYMVm and YIGSR, on the surface of poly(ε-caprolactone) (PCL)/poliglecaprone (PGC) nanofibrous scaffolds via a polyglycolic acid (PGA)-binding peptide sequence. Remarkable immobilization efficacy of WKYMVm and YIGSR peptides and their sustained release (over 14 days) from scaffolds were observed. In vivo and in vitro studies showed robust recruitment of EPCs, which subsequently contributed to early vasculogenesis and ultimate bone regeneration. The dual-peptide-functionalized nanofibrous scaffolds proposed in this study provide a promising therapeutic strategy for vasculogenesis in bone defect repair.


Assuntos
Doenças Ósseas/terapia , Células Progenitoras Endoteliais/citologia , Nanofibras/química , Peptídeos/química , Crânio/anormalidades , Crânio/irrigação sanguínea , Animais , Doenças Ósseas/fisiopatologia , Regeneração Óssea , Adesão Celular , Proliferação de Células , Células Progenitoras Endoteliais/transplante , Humanos , Masculino , Neovascularização Patológica , Peptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Crânio/cirurgia , Engenharia Tecidual , Alicerces Teciduais/química
11.
Phytother Res ; 33(10): 2783-2791, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31342620

RESUMO

Genistein, a soy derived isoflavanoid compound, exerts anticancer effects in various cancers. Nasopharyngeal cancer stem cells (NCSCs) are a small subpopulation of cancer cells which are responsible for initiation, progression, metastasis, and recurrence of nasopharyngeal cancer. The present study aimed to investigate the suppressive effects of genistein on NCSCs and its underlying mechanism. NCSCs were enriched from human nasopharyngeal cancer cell lines CNE2 and HONE1 through tumorsphere-forming assay. It was shown that genistein inhibited the tumorsphere formation capacity, decreased the number of EpCAM+ cells, downregulated the expression of NCSCs markers, suppressed cell proliferation, and induced apoptosis of NCSCs. Genistein suppressed the activity of Sonic hedgehog (SHH) signaling, which was important for the maintenance of NCSCs, while activation of SHH signaling by purmorphamine diminished the inhibitory effects of genistein on NCSCs. Our data suggested that genistein inhibited NCSCs through the suppression of SHH signaling. These findings support the use of genistein for targeting NCSCs.


Assuntos
Genisteína/farmacologia , Proteínas Hedgehog/fisiologia , Neoplasias Nasofaríngeas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/efeitos dos fármacos
12.
ACS Nano ; 13(6): 6561-6571, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31136707

RESUMO

Here, a Mn(III)-sealed metal-organic framework (MOF) nanosystem based on coordination between Mn(III) and porphyrin (TCPP) via a one-pot method was designed and constructed. Mn(III), as a sealer, not only quenched TCPP-based fluorescence but also inhibited reactive oxygen species (ROS) generation, which made MOFs an "inert" theranostic nanoparticle. Interestingly, upon endocytosis by tumor cells, MOFs were disintegrated into Mn(II) and free TCPP by intracellular glutathione (GSH) in tumor cells, owing to redox reaction between Mn(III) and GSH. This disintegration would lead to consumption of antioxidant GSH and activated Mn(II)-based magnetic resonance imaging (MRI) as well as TCPP-based fluorescent imaging. More importantly, such a GSH-regulated TCPP release could implement controllable ROS generation under irradiation, which avoided side effects (inflammation and damage of normal tissues). As a consequence, after unlocking by GSH, Mn(III)-sealed MOFs could significantly improve the therapeutic efficiency of photodynamic therapy by combining controlled ROS generation and GSH depletion after precise dual tumor homing.

13.
ACS Cent Sci ; 5(2): 327-340, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30834321

RESUMO

In this article, an adenosine-triphosphate-regulated (ATP-regulated) ion transport nanosystem [SQU@PCN, porphyrinic porous coordination network (PCN) incorporated with squaramide (SQU)] was designed and synthesized for homeostatic perturbation therapy (HPT) and sensitizing photodynamic therapy (PDT) of tumors. It was found that this nanotransporter SQU@PCN easily accumulated in tumor sites while avoiding metabolic clearance and side effects. In response to a high expression of ATP in the tumor, SQU@PCN was decomposed because of the strong coordination of ATP with metal ligand of PCN. Subsequently, incorporated SQU was released and then simultaneously transported chloride ions across membrane of the cell and lysosome along with the chloride ion concentration gradient. On one hand, influx of chloride ions by SQU increased intracellular ion concentration, which disrupted ion homeostasis and further induced tumor cell apoptosis. On the other hand, SQU-medicated coupling transport of H+/Cl- across the lysosomal membrane alkalized the lysosome, resulting in inhibition of autophagy. This SQU-mediated autophagy inhibition would sensitize PCN-based PDT since activated autophagy by traditional PDT would resist and weaken the therapeutic efficacy. In vivo animal test results revealed that combined HPT and sensitized PDT could realize tumor eradication while blocking metastasis, which provided a paradigm for complementary multimodal tumor treatment.

14.
Nano Lett ; 18(12): 7609-7618, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30383966

RESUMO

Chemodynamic therapy (CDT) can efficiently destroy tumor cells via Fenton reaction in the presence of H2O2 and a robust catalyst. However, it has faced severe challenges including the limited amounts of H2O2 and inefficiency of catalysts. Here, an adenosine triphosphate (ATP)-responsive autocatalytic Fenton nanosystem (GOx@ZIF@MPN), incorporated with glucose oxidase (GOx) in zeolitic imidazolate framework (ZIF) and then coated with metal polyphenol network (MPN), was designed and synthesized for tumor ablation with self-supplied H2O2 and TA-mediated acceleration of Fe(III)/Fe(II) conversion. In the ATP-overexpressed tumor cells, the outer shell MPN of GOx@ZIF@MPN was degraded into Fe(III) and tannic acid (TA) and the internal GOx was exposed. Then, GOx reacted with the endogenous glucose to produce plenty of H2O2, and TA reduced Fe(III) to Fe(II), which is a much more vigorous catalyst for the Fenton reaction. Subsequently, self-produced H2O2 was catalyzed by Fe(II) to generate highly toxic hydroxyl radical (•OH) and Fe(III). The produced Fe(III) with low catalytic activity was quickly reduced to reactive Fe(II) mediated by TA, forming an accelerated Fe(III)/Fe(II) conversion to guarantee efficient Fenton reaction-mediated CDT. This autocatalytic Fenton nanosystem might provide a good paradigm for effective tumor treatment.

15.
Biomaterials ; 185: 51-62, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218836

RESUMO

This study reports a tumor-specific ROS-responsive nanoplatform capable of the combination of nitric oxide (NO)-based gas therapy and sensitized photodynamic therapy (PDT). The nanoplatform is constructed on porous coordination network (PCN), which contains NO donor L-Arg and is concurrently coated with cancer cell membrane (L-Arg@PCN@Mem). Under near infrared light (NIR) irradiation, L-Arg@PCN@Mem produces plenty of reactive oxygen species (ROS) directly for PDT therapy, while a part of ROS take the role of oxidative to converse L-Arg into NO for combined gas therapy. The results indicate that the transformation of ROS to NO can enhance PDT efficacy in hypoxic tumors owing to the ability of NO in freely diffusing into deep hypoxic tumor site. Moreover, homologous targeting function originated from the coating of cancer cells membrane further improves the tumor treatment effect owing to the biotargeting toward homologous tumors. This L-Arg@PCN@Mem nanoplatform provides a new therapy paradigm of overcoming the hypoxia barrier of tumor therapy, and holds great potential for the treatment of tumor and NO-related diseases.


Assuntos
Nanoestruturas/administração & dosagem , Neoplasias/tratamento farmacológico , Doadores de Óxido Nítrico/administração & dosagem , Óxido Nítrico/metabolismo , Fármacos Fotossensibilizantes/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanoestruturas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Doadores de Óxido Nítrico/uso terapêutico , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Porosidade , Hipóxia Tumoral/efeitos dos fármacos
16.
Phytother Res ; 32(12): 2447-2455, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30159926

RESUMO

Cancer stem cells (CSCs) are considered to play essential roles in the process of origination, proliferation, migration, and invasion of cancer, and their properties are regulated by Wnt/ß-catenin pathway. Phenethyl isothiocyanate (PEITC) is a natural product obtained from cruciferous vegetables with anticancer activities. The present study aimed to investigate the inhibitory effect and the underlying mechanisms of PEITC on colorectal CSCs. In this study, we found that PEITC can significantly reduce the size and number of colorectal cancer cell spheroids in serum-free medium. With increasing PEITC concentrations (10-40 µM), the number of spheroids was reduced to about 10% of the control group, and the percentage of CD133+ cells was decreased by about 3-16 folds. PEITC also decreased the expression of CSC markers. Meanwhile, inhibition of proliferation as well as induction of apoptosis of colorectal CSCs was observed after PEITC treatment. Furthermore, through activating Wnt/ß-catenin pathway with LiCl, the inhibitory effects of PEITC on colorectal CSCs were diminished. Our data suggested that PEITC can be an effective inhibitor of colorectal CSCs by targeting Wnt/ß-catenin pathway.


Assuntos
Neoplasias Colorretais/patologia , Isotiocianatos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Regulação para Baixo/efeitos dos fármacos , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo
17.
Biomaterials ; 142: 149-161, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28735175

RESUMO

Modulating tumor microenvironment to amplify the therapeutic efficiency would be a novel strategy for effective cancer treatment. In this work, based on the TPZ-loaded porphyrinic metal organic framework PCN-224 (PCN stands for porous coordination network), a cancer cell membrane-coated nanoplatform (TPZ@PCN@Mem) was fabricated for tumor targeted PDT and the successively resulting hypoxia-amplified bioreductive therapy. After administration, TPZ@PCN@Mem exhibited the selective accumulation and long-term retention at tumor tissue due to the immune escape and homologous targeting endowed by the cancer membrane coating. Upon light irradiation, PCN-224-mediated toxic reactive oxygen species (ROS) were generated for PDT, and the resulting local hypoxia microenvironment would further accelerate the activation of TPZ for enhanced chemotherapy in 4T1 orthotopic tumor. The cascade synergistic therapeutic effects of TPZ@PCN@Mem could significantly suppress the primary tumor growth, and also inhibit its distal metastasis with minimal side effects. The study indicated an overwhelming superiority of utilizing this bioinspired strategy for tumor targeted PDT and hypoxia-activated bioreductive therapy, which provided a new insight for precise and effective tumor treatment.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/metabolismo , Materiais Revestidos Biocompatíveis/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Animais , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Endocitose , Fluorescência , Injeções Intravenosas , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/secundário , Camundongos , Porosidade , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Tirapazamina , Triazinas/síntese química , Triazinas/química , Triazinas/farmacologia , Triazinas/uso terapêutico
18.
ACS Nano ; 11(7): 7006-7018, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28665106

RESUMO

Selectively cuting off the nutrient supply and the metabolism pathways of cancer cells would be a promising approach to improve the efficiency of cancer treatment. Here, a cancer targeted cascade bioreactor (designated as mCGP) was constructed for synergistic starvation and photodynamic therapy (PDT) by embedding glucose oxidase (GOx) and catalase in the cancer cell membrane-camouflaged porphyrin metal-organic framework (MOF) of PCN-224 (PCN stands for porous coordination network). Due to biomimetic surface functionalization, the immune escape and homotypic targeting behaviors of mCGP would dramatically enhance its cancer targeting and retention abilities. Once internalized by cancer cells, mCGP was found to promote microenvironmental oxygenation by catalyzing the endogenous hydrogen peroxide (H2O2) to produce oxygen (O2), which would subsequently accelerate the decomposition of intracellular glucose and enhance the production of cytotoxic singlet oxygen (1O2) under light irradiation. Consequently, mCGP displayed amplified synergistic therapeutic effects of long-term cancer starvation therapy and robust PDT, which would efficiently inhibit the cancer growth after a single administration. This cascade bioreactor would further facilitate the development of complementary modes for spatiotemporally controlled cancer treatment.


Assuntos
Catalase/uso terapêutico , Glucose Oxidase/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Animais , Células COS , Catalase/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Chlorocebus aethiops , Glucose/metabolismo , Glucose Oxidase/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/metabolismo , Oxigênio/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Porfirinas/química , Células RAW 264.7
19.
ACS Appl Mater Interfaces ; 9(1): 255-265, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27966867

RESUMO

Intracellularly biotriggered decomposition of gene vectors is generally thought to benefit transfection. However, the bioresponsiveness is far from satisfactory, and the exact role of biodecomposition in the transfection process remains unclear to date. To overcome the challenges, highly rapid bioresponse of vectors has to be achieved so as to greatly amplify the intracellular deviation compared with the noncontrolled pattern. To this end, a supramolecular polyrotaxane has been elaborately designed by integrating reversible dynamics of supramolecular assembly and chemically labile bonds, in order to effectively propel intracellular decomposition. Inside tumor cells, the redox-responsive bulk dissociation of the supramolecular vector readily took place and was further accelerated by the lysosomal-acidity-triggered terminal decomposition. Both the in vitro and in vivo experiments have demonstrated that this supramolecule could mediate considerably more rapid gene accumulation in nuclei than the nonresponsive controls including PEI25K, the gold standard of nonviral vectors. Along with the structural decomposition, the supramolecule simultaneously underwent the transition of fluorescence quenching, favoring the evaluation over the bioresponsiveness inside cells. Based on the resulting data, it is suggested that the biotriggered volume expansion of supramolecule/DNA complexes may be the major factor accounting for that dramatically accelerated transnuclear gene transport during cellular mitosis, thus affecting the transfection. This study offers an understanding of the intracellular gene transport from a new viewpoint.


Assuntos
Vetores Genéticos/genética , Núcleo Celular , DNA , Humanos , Oxirredução , Transfecção
20.
Nanoscale ; 7(38): 16061-70, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26372069

RESUMO

Drug delivery systems (DDSs) with biocompatibility and precise drug delivery are eagerly needed to overcome the paradox in chemotherapy that high drug doses are required to compensate for the poor biodistribution of drugs with frequent dose-related side effects. In this work, we reported a metal-organic framework (MOF) based tumor targeting DDS developed by a one-pot, and organic solvent-free "green" post-synthetic surface modification procedure, starting from the nanoscale MOF MIL-101. Owing to the multifunctional surface coating, premature drug release from this DDS was prevented. Due to the pH responsive benzoic imine bond and the redox responsive disulfide bond at the modified surface, this DDS exhibited tumor acid environment enhanced cellular uptake and intracellular reducing environment triggered drug release. In vitro and in vivo results showed that DOX loaded into this DDS exhibited effective cancer cell inhibition with much reduced side effects.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Nanopartículas , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA