Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(25): e2300756, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37442756

RESUMO

Liver metastasis is the most fatal event of colon cancer patients. Warburg effect has been long challenged by the fact of upregulated oxidative phosphorylation (OXPHOS), while its mechanism remains unclear. Here, metastasis-associated antigen 1 (MTA1) is identified as a newly identified adenosine triphosphate (ATP) synthase modulator by interacting with ATP synthase F1 subunit alpha (ATP5A), facilitates colon cancer liver metastasis by driving mitochondrial bioenergetic metabolism reprogramming, enhancing OXPHOS; therefore, modulating ATP synthase activity and downstream mTOR pathways. High-throughput screening of an anticancer drug shows MTA1 knockout increases the sensitivity of colon cancer to mitochondrial bioenergetic metabolism-targeted drugs and mTOR inhibitors. Inhibiting ATP5A enhances the sensitivity of liver-metastasized colon cancer to sirolimus in an MTA1-dependent manner. The therapeutic effects are verified in xenograft models and clinical cases. This research identifies a new modulator of mitochondrial bioenergetic reprogramming in cancer metastasis and reveals a new mechanism on upregulating mitochondrial OXPHOS as the reversal of Warburg effect in cancer metastasis is orchestrated.


Assuntos
Neoplasias do Colo , Neoplasias Hepáticas , Humanos , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Fosforilação Oxidativa , Neoplasias Hepáticas/tratamento farmacológico
2.
ACS Sens ; 8(6): 2319-2330, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172078

RESUMO

Nowadays, trifluoromethyl sulfonyl fluoride (CF3SO2F) has shown great potential to replace SF6 as an eco-friendly insulation medium in the power industry. In this work, an effective and low-cost design strategy toward ideal gas sensors for the decomposed gas products of CF3SO2F was proposed. The strategy achieved high-throughput screening from a large candidate space based on first-principle calculation and machine learning (ML). The candidate space is made up of different transition metal-embedded graphic carbon nitrides (TM/g-C3N4) owing to their high surface area and subtle electronic structure. Four main noteworthy decomposition gases of CF3SO2F, namely, CF4, SO2, SO2F2, and HF, as well as their initial stable structure on TM/g-C3N4 were determined. The best-performing ML model was established and implemented to predict the interaction strength between gas products and TM/g-C3N4, thus determining the promising gas-sensing materials for target gases with the requirements of interaction strength, recovery time, sensitivity, and selectivity. Further analysis guarantees their stability and reveals the origin of excellent properties as a gas sensor. The high-throughput strategy opens a new avenue of rational and low-cost design principles of desirable gas-sensing materials in an interdisciplinary view.


Assuntos
Ensaios de Triagem em Larga Escala , Materiais Inteligentes , Eletrônica , Gases , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA