Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(12): 8934-8951, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483284

RESUMO

Spinal cord injury is a disease that causes severe damage to the central nervous system. Currently, there is no cure for spinal cord injury. Azithromycin is commonly used as an antibiotic, but it can also exert anti-inflammatory effects by down-regulating M1-type macrophage genes and up-regulating M2-type macrophage genes, which may make it effective for treating spinal cord injury. Bone mesenchymal stem cells possess tissue regenerative capabilities that may help promote the repair of the injured spinal cord. In this study, our objective was to explore the potential of promoting repair in the injured spinal cord by delivering bone mesenchymal stem cells that had internalized nanoparticles preloaded with azithromycin. To achieve this objective, we formulated azithromycin into nanoparticles along with a trans-activating transcriptional activator, which should enhance nanoparticle uptake by bone mesenchymal stem cells. These stem cells were then incorporated into an injectable hydrogel. The therapeutic effects of this formulation were analyzed in vitro using a mouse microglial cell line and a human neuroblastoma cell line, as well as in vivo using a rat model of spinal cord injury. The results showed that the formulation exhibited anti-inflammatory and neuroprotective effects in vitro as well as therapeutic effects in vivo. These results highlight the potential of a hydrogel containing bone mesenchymal stem cells preloaded with azithromycin and trans-activating transcriptional activator to mitigate spinal cord injury and promote tissue repair.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Ratos , Humanos , Animais , Hidrogéis/farmacologia , Azitromicina/farmacologia , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal , Anti-Inflamatórios/farmacologia
2.
BMC Cancer ; 24(1): 290, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438956

RESUMO

BACKGROUND: Primary prostate cancer with metastasis has a poor prognosis, so assessing its risk of metastasis is essential. METHODS: This study combined comprehensive ultrasound features with tissue proteomic analysis to obtain biomarkers and practical diagnostic image features that signify prostate cancer metastasis. RESULTS: In this study, 17 ultrasound image features of benign prostatic hyperplasia (BPH), primary prostate cancer without metastasis (PPCWOM), and primary prostate cancer with metastasis (PPCWM) were comprehensively analyzed and combined with the corresponding tissue proteome data to perform weighted gene co-expression network analysis (WGCNA), which resulted in two modules highly correlated with the ultrasound phenotype. We screened proteins with temporal expression trends based on the progression of the disease from BPH to PPCWOM and ultimately to PPCWM from two modules and obtained a protein that can promote prostate cancer metastasis. Subsequently, four ultrasound image features significantly associated with the metastatic biomarker HNRNPC (Heterogeneous nuclear ribonucleoprotein C) were identified by analyzing the correlation between the protein and ultrasound image features. The biomarker HNRNPC showed a significant difference in the five-year survival rate of prostate cancer patients (p < 0.0053). On the other hand, we validated the diagnostic efficiency of the four ultrasound image features in clinical data from 112 patients with PPCWOM and 150 patients with PPCWM, obtaining a combined diagnostic AUC of 0.904. In summary, using ultrasound imaging features for predicting whether prostate cancer is metastatic has many applications. CONCLUSION: The above study reveals noninvasive ultrasound image biomarkers and their underlying biological significance, which provide a basis for early diagnosis, treatment, and prognosis of primary prostate cancer with metastasis.


Assuntos
Neoplasias dos Genitais Femininos , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Feminino , Humanos , Proteoma , Proteômica , Fenótipo , Ultrassonografia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/genética , Biomarcadores
3.
Chem Biol Interact ; 366: 110150, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36084721

RESUMO

Aquatic organisms are often exposed to contaminants that occur in the natural environment. Nevertheless, the toxic effects of chemical combinations on aquatic animals and their underlying toxic mechanisms for dealing with such exposures are still not fully understood. In this study, we investigated the combined effects of cadmium (Cd) and acetamiprid (ACE) on zebrafish (Danio rerio) using various endpoints. Cd exhibited a 96-h LC50 value of 4.77 mg a.i. L-1 against zebrafish embryos, which was lower than that of ACE (152.6 mg a.i. L-1). In contrast, the 96-h LC50 value of the mixture of Cd and ACE was 157.4 mg a.i. L-1. The mixture of Cd and ACE had a synergetic effect on the organisms. The activities of T-SOD, POD, and CarE were significantly changed in most exposures compared with the control group. In addition, five genes (TRα, crh, Tnf, IL, and P53) involved in oxidative stress, cellular apoptosis, the immune system, and the endocrine system exhibited more remarkable changes when exposed to chemical mixtures relative to their individual counterparts, demonstrating variations in the cellular and mRNA expression levels induced by the mixture exposure of ACE and Cd during the embryonic development of zebrafish. Therefore, these results indicated that the combined pollution of ACE and Cd could be a potentially hazardous factor, and further investigation is necessary for the safety evaluation and application of ACE. Moreover, further investigation on the combined toxicities of various chemicals must be performed to determine the chemical mixtures with synergistic responses.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Cádmio/toxicidade , Embrião não Mamífero , Larva , Neonicotinoides , Estresse Oxidativo , RNA Mensageiro/metabolismo , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Poluentes Químicos da Água/toxicidade
4.
Sci Rep ; 12(1): 16045, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163367

RESUMO

Different pollutants usually co-exist in the natural environment, and the ecological and health risk assessment of agrochemicals needs to be carried out based on the combined toxicological effects of pollutants. To examine the combined toxicity to aquatic organisms, the effects of cadmium (Cd) and five pesticides (acetamiprid, carbendazim, azoxystrobin, chlorpyrifos, and bifenthrin) mixture on zebrafish (Danio rerio) larvae were assessed. The data from the 96-h toxicity test indicated that bifenthrin possessed the highest toxicity to D. rerio with the LC50 value of 0.15 mg L-1, followed by chlorpyrifos (0.36 mg L-1) and azoxystrobin (0.63 mg L-1). Cd (6.84 mg L-1) and carbendazim (8.53 mg L-1) induced the intermediate toxic responses, while acetamiprid (58.39 mg L-1) presented the lowest toxicity to the organisms. Pesticide mixtures containing chlorpyrifos and bifenthrin or acetamiprid and carbendazim showed synergistic impacts on the zebrafish. Besides, two binary combinations of Cd-acetamiprid and Cd-chlorpyrifos also displayed a synergistic effect on D. rerio. Our results offered a better idea of the mixed ecological risk assessment of Cd and different agricultural chemicals to aquatic organisms. Our findings better interpreted how the interaction between Cd and various agrochemicals changed their toxicity to aquatic vertebrates and provided valuable insights into critical impacts on the ecological hazard of their combinations.


Assuntos
Clorpirifos , Poluentes Ambientais , Praguicidas , Poluentes Químicos da Água , Agroquímicos/toxicidade , Animais , Benzimidazóis , Cádmio/toxicidade , Carbamatos , Clorpirifos/toxicidade , Poluentes Ambientais/farmacologia , Larva , Praguicidas/toxicidade , Piretrinas , Pirimidinas , Estrobilurinas , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
5.
BME Front ; 2022: 9786242, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850170

RESUMO

The immunohistochemical (IHC) staining of the human epidermal growth factor receptor 2 (HER2) biomarker is widely practiced in breast tissue analysis, preclinical studies, and diagnostic decisions, guiding cancer treatment and investigation of pathogenesis. HER2 staining demands laborious tissue treatment and chemical processing performed by a histotechnologist, which typically takes one day to prepare in a laboratory, increasing analysis time and associated costs. Here, we describe a deep learning-based virtual HER2 IHC staining method using a conditional generative adversarial network that is trained to rapidly transform autofluorescence microscopic images of unlabeled/label-free breast tissue sections into bright-field equivalent microscopic images, matching the standard HER2 IHC staining that is chemically performed on the same tissue sections. The efficacy of this virtual HER2 staining framework was demonstrated by quantitative analysis, in which three board-certified breast pathologists blindly graded the HER2 scores of virtually stained and immunohistochemically stained HER2 whole slide images (WSIs) to reveal that the HER2 scores determined by inspecting virtual IHC images are as accurate as their immunohistochemically stained counterparts. A second quantitative blinded study performed by the same diagnosticians further revealed that the virtually stained HER2 images exhibit a comparable staining quality in the level of nuclear detail, membrane clearness, and absence of staining artifacts with respect to their immunohistochemically stained counterparts. This virtual HER2 staining framework bypasses the costly, laborious, and time-consuming IHC staining procedures in laboratory and can be extended to other types of biomarkers to accelerate the IHC tissue staining used in life sciences and biomedical workflow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA