Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Nanobiotechnology ; 22(1): 159, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589859

RESUMO

Brain metastasis (BM) is one of the leading causes of cancer-related deaths in patients with advanced non-small cell lung cancer (NSCLC). However, limited treatments are available due to the presence of the blood-brain barrier (BBB). Upregulation of lysophosphatidylcholine acyltransferase 1 (LPCAT1) in NSCLC has been found to promote BM. Conversely, downregulating LPCAT1 significantly suppresses the proliferation and metastasis of lung cancer cells. In this study, we firstly confirmed significant upregulation of LPCAT1 in BM sites compared to primary lung cancer by analyzing scRNA dataset. We then designed a delivery system based on a single-chain variable fragment (scFv) targeting the epidermal growth factor receptor (EGFR) and exosomes derived from HEK293T cells to enhance cell-targeting capabilities and increase permeability. Next, we loaded LPCAT1 siRNA (siLPCAT1) into these engineered exosomes (exoscFv). This novel scFv-mounted exosome successfully crossed the BBB in an animal model and delivered siLPCAT1 to the BM site. Silencing LPCAT1 efficiently arrested tumor growth and inhibited malignant progression of BM in vivo without detectable toxicity. Overall, we provided a potential platform based on exosomes for RNA interference (RNAi) therapy in lung cancer BM.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Animais , Humanos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Interferente Pequeno/farmacologia , Exossomos/metabolismo , Células HEK293 , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo
2.
Abdom Radiol (NY) ; 49(2): 611-624, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051358

RESUMO

PURPOSE: Microvascular invasion (MVI) is a common complication of hepatocellular carcinoma (HCC) surgery, which is an important predictor of reduced surgical prognosis. This study aimed to develop a fully automated diagnostic model to predict pre-surgical MVI based on four-phase dynamic CT images. METHODS: A total of 140 patients with HCC from two centers were retrospectively included (training set, n = 98; testing set, n = 42). All CT phases were aligned to the portal venous phase, and were then used to train a deep-learning model for liver tumor segmentation. Radiomics features were extracted from the tumor areas of original CT phases and pairwise subtraction images, as well as peritumoral features. Lastly, linear discriminant analysis (LDA) models were trained based on clinical features, radiomics features, and hybrid features, respectively. Models were evaluated by area under curve (AUC), accuracy, sensitivity, specificity, positive and negative predictive values (PPV and NPV). RESULTS: Overall, 86 and 54 patients with MVI- (age, 55.92 ± 9.62 years; 68 men) and MVI+ (age, 53.59 ± 11.47 years; 43 men) were included. Average dice coefficients of liver tumor segmentation were 0.89 and 0.82 in training and testing sets, respectively. The model based on radiomics (AUC = 0.865, 95% CI: 0.725-0.951) showed slightly better performance than that based on clinical features (AUC = 0.841, 95% CI: 0.696-0.936). The classification model based on hybrid features achieved better performance in both training (AUC = 0.955, 95% CI: 0.893-0.987) and testing sets (AUC = 0.913, 95% CI: 0.785-0.978), compared with models based on clinical and radiomics features (p-value < 0.05). Moreover, the hybrid model also provided the best accuracy (0.857), sensitivity (0.875), and NPV (0.917). CONCLUSION: The classification model based on multimodal intra- and peri-tumoral radiomics features can well predict HCC patients with MVI.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Adulto , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Radiômica , Estudos Retrospectivos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Tomografia Computadorizada por Raios X
3.
ACS Appl Mater Interfaces ; 14(45): 50626-50636, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36342824

RESUMO

Exosomes serve as a promising therapeutic nanoplatform. However, the exosomes produced by donor cells are a heterogeneous group, with only a small portion having high therapeutic efficacy. Specific isolation of the subpopulation with high efficacy is important for lowering the dose and minimizing toxicity. In this study, we loaded target mRNA and displayed specific Flag in engineered exosomes simultaneously. Briefly, the donor cells were transfected with plasmid expressing a fusion protein Flag-TCS-PTGFRN-CTSL-MCP, namely, exosome sorter. During biogenesis, the RNA-binding motif MCP can specifically bind with MS2-containing RNA and sort the target RNA into the lumen of exosomes. Anti-Flag magnetic beads can capture and thus purify the engineered exosomes via recognition of the Flag on the surface of exosomes. After purification, the Flag could be cleaved by thrombin treatment while MCP can be separated from the fusion protein by CTSL autocleavage upon exosome acidification, minimizing the side effects and augmenting the therapeutic effects. By the proof-of-concept experiment, the exosome sorter-based "all-in-one" strategy was confirmed effective in both the encapsulation of therapeutic mRNA (Ldlr-MS2) into exosomes and the subsequent purification. The purified Ldlr-MS2-containing exosomes had much higher efficacy in alleviating atherosclerosis, in comparison with the bulk exosomes, confirming the advantage of the proposed "all-in-one" strategy.


Assuntos
Exossomos , Hiperlipoproteinemia Tipo II , Humanos , Exossomos/metabolismo , Hiperlipoproteinemia Tipo II/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo
4.
J Nanobiotechnology ; 20(1): 385, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999549

RESUMO

BACKGROUND: Exosomes are recognized as effective platforms for targeted delivery for their high physicochemical stability and biocompatibility. However, most of the exosomes are inevitably and rapidly cleared by mononuclear phagocytic system (MPS) during cancer therapy. How to engineer exosome to enhance the delivery efficiency is being intensively explored. In this study, we have constructed mPEG2000-TK-CP05 decorated exosomes as effective delivery platforms to achieve enhanced photodynamic/chemical cancer therapy. RESULTS: Exosomes were coated with CP05-TK-mPEG2000, in which CP05 is a peptide with high affinity to exosomal CD63 and TK could be cleaved by ROS. The resulted exosomes, namely stealth Exo, were electroporated to load RB (photosensitizer Rose Bengal) and Dox (Doxorubicin). We verified that the Stealth Exo@RB (Stealth Exo additionally loaded with RB) could escape MPS while accumulate in the tumor region efficiently in the xenograft model when laser irradiation conducted locally. Additionally, we revealed that the Stealth Exo serves as an efficient platform for Dox delivery. Dox, together with the RB mediated photodynamic therapy induce tumor cell damage synergistically in the tumor region. Moreover, the proposed switchable stealth exosomes minimized the dose of toxic Dox and thus allowed robust tumor immune response. CONCLUSIONS: Our results indicated that the proposed Stealth Exo greatly improves both the accessibility and efficiency of drug delivery, with minimal chemical or genetic engineering. The proposed Stealth Exo serve as a promising and powerful drug delivery nanoplatform in cancer treatment.


Assuntos
Exossomos , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio
5.
Front Surg ; 9: 875504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846957

RESUMO

With the increasing use of neoadjuvant therapy (NAT) in patients with pancreatic cancer to reduce tumor burden on prognosis, preoperative biliary drainage (PBD) is becoming increasingly necessary. The aim of this study was to summarize the latest evidence and compare the clinical efficacy of metal stents (MS) and plastic stents (PS) in patients undergoing neoadjuvant therapy for operable pancreatic cancer. Eligible studies were searched in PubMed, Embase and Cochrane Library from their inception to September 2021. In this study, RevMan 5.4 was used to perform the analyses. Two randomized controlled trials (RCTs) and six retrospective studies with 316 patients were included. All patients had pancreatic cancer and received NAT before surgical resection. Meta-analysis showed that the rate of endoscopic reintervention in MS (26/143, 18%) group was lower than that of PS (122/153, 80%) group (P < 0.05). The rate of stent-related complications in MS group was lower (18/118, 15%) than that of PS (52/117, 44%) group (P = 0.02). But there were no significant differences in operative time, operative blood loss, overall postoperative complications, postoperative hospitalization days and total medical costs between the two groups. For operable pancreatic cancer patients undergoing NAT surgery, MS was preferred over PS in terms of the incidence of endoscopic reintervention and stent-related complications. More clinical trials are needed in the future to confirm these data with higher levels of evidence.

6.
Exp Cell Res ; 418(2): 113269, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35817196

RESUMO

Due to the inflammatory responses associated with defect occurrence and materials implantation, immunoregulation has emerged as a promising strategy to enhance bone regeneration. It has been widely reported that a material could facilitate osteogenesis if it can guide macrophages to anti-inflammatory M2 phenotype, vice versa, a substrate will influence macrophage phenotype if it is osteoinductive. However, few studies have looked into the intercellular crosstalking directly. Herein, the compound catalpol was selected for its multiple functions to study the interactions between bone marrow mesenchymal stromal cells (BMSCs) and macrophages. This iridoid glucoside exhibits excellent anti-inflammatory and osteoinductive activities. The effects of catalpol on mediating M1/M2 polarization of macrophages, inhibiting osteoclast differentiation, promoting osteogenesis and angiogenesis were systematically investigated to correlate the biological responses of BMSCs and macrophages. To extend its in vivo application, the catalpol was then loaded onto an electrospun polylactide/gelatin composite fibrous mesh and subcutaneously implanted to evaluate the local inflammation and ectopic osteogenesis. The results revealed that the functions of catalpol displayed in modulating cellular behaviors are via cell paracrine to strengthen intercellular crosstalking, hence demonstrating that catalpol itself could serve as a promising bioactive stimulator for bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Diferenciação Celular , Glucosídeos Iridoides/farmacologia , Macrófagos
7.
Support Care Cancer ; 30(8): 7031-7038, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35585204

RESUMO

PURPOSE: The purpose of this study was to identify the incidence, sites and main pathogens, and risk factors for infectious complications occurring in patients with adult acute myeloid leukemia (AML) during the first course of venetoclax combined with decitabine or azacitidine. METHODS: A retrospective cohort analysis was performed of 81 patients with AML older than 14 years who received the first cycle of venetoclax combined with a hypomethylating agent (HMA) between March 2018 and March 2021 at our institution. Infectious complications, if any, were documented. RESULTS: Among a total of 81 cases of AML, 59 (72.8%) patients occurred infections, including fever without an identifiable source (28.8%), clinically documented infections (40.7%), and microbiologically documented infections (30.5%). The most commonly isolated organism in culture was Candida albicans, followed by Klebsiella pneumonia, and Pseudomonas aeruginosa. The 4-week and 8-week mortality rates were 3.7% and 7.4%, respectively. In multivariate analysis, a high proportion of blasts in bone marrow, decreased hemoglobin level, and fever with or without a documented infection at baseline were significant independent risk factors for infectious complications. CONCLUSION: Compared with conventional chemotherapy, the incidence of infectious complications of venetoclax combined with decitabine or azacitidine significantly decreased. Pretreatment high leukemia burden and fever were independent risk factors for infections.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Azacitidina/efeitos adversos , Compostos Bicíclicos Heterocíclicos com Pontes , Decitabina/efeitos adversos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Estudos Retrospectivos , Sulfonamidas , Resultado do Tratamento
8.
J Nanobiotechnology ; 20(1): 110, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35248085

RESUMO

BACKGROUND: Periodontitis is characterized by progressive inflammation and alveolar bone loss resulting in tooth loss finally. Macrophages including pro-inflammatory M1-like macrophages and reparative M2-like macrophages play a vital role in inflammation and tissue homeostasis in periodontitis. Among them, reparative M2-like macrophages have been shown to promote tissue repair and prevent bone loss. However, the mechanism of reparative M2 macrophages-induced osteoprotective effect remains elusive. RESULTS: Exosomes from reparative M2-like macrophages (M2-Exos) were isolated and identified successfully. M2-Exos could promote bone marrow stromal cells (BMSCs) osteogenic differentiation while suppressing bone marrow derived macrophage (BMDM) osteoclast formation, and prohibit pathological alveolar bone resorption because of the intercellular communication via exosomes. High expression level of IL-10 mRNA was detected not only in reparative M2-like macrophages but also in M2-Exos. Meanwhile, IL-10 expression level in BMSCs or BMDM was also upregulated significantly after co-culturing with M2-Exos in a concentration-dependent manner. In vitro, recombinant IL-10 proteins had the ability to selectively promote osteogenic differentiation of BMSCs and hinder osteoclast differentiation of BMDM. Moreover, after treatment with M2-Exos and IL-10R antibody together, the capacity of promoting osteogenesis and suppressing osteoclastogenesis of M2-Exos was significantly reversed. In vivo experiments further showed that M2-Exos reduced alveolar bone resorption in mice with periodontitis via IL-10/IL-10R pathway. CONCLUSION: In conclusion, our results demonstrate that the reparative M2-like macrophages could promote osteogenesis while inhibiting osteoclastogenesis in vitro as well as protect alveolar bone against resorption in vivo significantly. M2-Exos could upregulate the IL-10 cytokines expression of BMSCs and BMDM via delivering exosomal IL-10 mRNA to cells directly, leading to activation of the cellular IL-10/IL-10R pathway to regulate cells differentiation and bone metabolism. These results might partly account for the mechanism of osteoprotective effect of reparative M2-like macrophages and provide a novel perspective and a potential therapeutic approach on improving alveolar resorption by M2-Exos.


Assuntos
Exossomos , Periodontite , Animais , Diferenciação Celular , Exossomos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Macrófagos/metabolismo , Camundongos , Osteogênese , Periodontite/metabolismo , RNA Mensageiro/metabolismo
9.
Drug Deliv ; 29(1): 702-713, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35236203

RESUMO

Prostate cancer (PCa) responds poorly to routine immunotherapy due to the tumor immunosuppressive microenvironment. Here, we describe an ultrasound-based drug delivery strategy to stimulate potent anti-tumor immunity via exosomes encapsulated with sonosensitizers Chlorin e6 (Ce6) and immune adjuvant R848, namely ExoCe6+R848. ExoCe6+R848 was constructed by simple co-incubation of Ce6 and R848 with HEK 293T cell-derived exosomes. The properties of exosomes were not affected after loading Ce6 and R848, and the exosomes were accumulated in the tumor site after intratumoral injection. In vitro and in vivo assays showed that ultrasonic irradiation enhanced R848-mediated DCs maturation when ExoCe6+R848 was engulfed by DCs, as demonstrated by the upregulated expression of CD80 and CD86. Furthermore, these engineered exosomes together with ultrasound irradiation could synergistically reprogram macrophages from an immunosuppressive M2-like phenotype to an anti-tumor M1-like phenotype, further activating effector T cells and reverting the immunosuppressive microenvironment. The exosome delivery strategy not only supplies a paradigm for overcoming side effects of systemic delivery of Ce6 and R848, but also offers an effective combination regimen of cancer immunotherapy.


Assuntos
Exossomos , Neoplasias da Próstata , Linhagem Celular Tumoral , Humanos , Imunoterapia , Masculino , Neoplasias da Próstata/tratamento farmacológico , Microambiente Tumoral
10.
World J Clin Cases ; 9(30): 9144-9150, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34786398

RESUMO

BACKGROUND: The concurrence of acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL) is rare. Previous reports of such cases have focused mainly on clinical diagnosis and characteristics, so the mechanism remains unclear, and therapy options have been poorly explored. CASE SUMMARY: Here, we report two cases of synchronous AML and CLL. Flow cytometry revealed two distinct abnormal cell populations (myeloblasts and lymphoid cells) according to scatter characteristics. CD5-positive B cell lymphoma with myeloid leukemia invasion was observed on lymph node biopsy. Chemotherapy regimens indicated for both AML and CLL were used in our patients, and our patients achieved complete response after chemotherapy. Next-generation sequencing of 88 genes was performed. CONCLUSION: We conclude that early mutation and dysregulation at the hematopoietic stem cell stage and the accumulation of multiple rearrangements may cause the concurrence of CLL and AML. The treatment of infection and combination therapy aimed at the CLL component are significant in the management of patients with concurrent CLL and AML.

11.
Theranostics ; 11(17): 8185-8196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34373736

RESUMO

Background: Efficient and specific induction of cell death in liver cancer is urgently needed. In this study, we aimed to design an exosome-based platform to deliver ferroptosis inducer (Erastin, Er) and photosensitizer (Rose Bengal, RB) into tumor tissues with high specificity. Methods: Exosome donor cells (HEK293T) were transfected with control or CD47-overexpressing plasmid. Exosomes were isolated and loaded with Er and RB via sonication method. Hepa1-6 cell xenograft C57BL/6 model was injected with control and engineered exosomes via tail vein. In vivo distribution of the injected exosomes was analyzed via tracking the fluorescence labeled exosomes. Photodynamic therapy was conducted by 532 nm laser irradiation. The therapeutic effects on hepatocellular carcinoma and toxic side-effects were systemically analyzed. Results: CD47 was efficiently loaded on the exosomes from the donor cells when CD47 was forced expressed by transfection. CD47 surface functionalization (ExosCD47) made the exosomes effectively escape the phagocytosis of mononuclear phagocyte system (MPS), and thus increased the distribution in tumor tissues. Erastin and RB could be effectively encapsulated into exosomes after sonication, and the drug-loaded exosomes (Er/RB@ExosCD47) strongly induced ferroptosis both in vitro and in vivo in tumor cells after irradiation of 532 nm laser. Moreover, compared with the control exosomes (Er/RB@ExosCtrl), Er/RB@ExosCD47 displayed much lower toxicity in liver. Conclusion: The engineered exosomes composed of CD47, Erastin, and Rose Bengal, induce obvious ferroptosis in hepatocellular carcinoma (HCC) with minimized toxicity in liver and kidney. The proposed exosomes would provide a promising strategy to treat types of malignant tumors.


Assuntos
Carcinoma Hepatocelular , Sistemas de Liberação de Medicamentos/métodos , Exossomos , Ferroptose/efeitos dos fármacos , Piperazinas , Animais , Antígeno CD47/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/transplante , Corantes Fluorescentes/metabolismo , Células HEK293/metabolismo , Xenoenxertos , Humanos , Rim/efeitos dos fármacos , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fotoquimioterapia/métodos , Piperazinas/metabolismo , Piperazinas/farmacologia , Piperazinas/toxicidade , Rosa Bengala/metabolismo
12.
Front Oncol ; 11: 706798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307175

RESUMO

The NUP214-ABL1 fusion gene is a constitutively active tyrosine kinase that can be detected in 6% of T-cell acute lymphoblastic leukemia (T-ALL) patients, and it can also be found in B-cell acute lymphoblastic leukaemia (B-ALL). However the NUP214-ABL1 fusion in acute myeloid leukemia (AML) has not yet been reported. Up to now, the sensitivity of NUP214-ABL1-positive patients to tyrosine kinase inhibitor (TKI) is still controversial. Here we report the first case of an AML patient carrying NUP214-ABL1 fusion gene. The conventional AML chemotherapy regimen for the patient was successful. Identification of additional AML patients with NUP214-ABL1 fusion gene will provide treatment experience and prognostic evaluation.

13.
Front Immunol ; 12: 609762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968014

RESUMO

Cancer is one of the leading causes of death and a major public health problem all over the world. Immunotherapy is becoming a revolutionary clinical management for various cancer types. Restoration of aberrant immune surveillance on cancers has achieved markable progress in the past years by either in vivo or ex vivo engineering of the immune cells. Here, we summarized the central roles of immune cells in tumor progression and regression, and the existing and emerging strategies for different immune cell-based immunotherapies. In addition, the current challenges and the potential solutions in translating the immunotherapies into the clinic are also discussed.


Assuntos
Reprogramação Celular/imunologia , Imunomodulação , Neoplasias/imunologia , Neoplasias/terapia , Animais , Reprogramação Celular/genética , Engenharia Genética , Humanos , Imunoterapia/efeitos adversos , Imunoterapia/métodos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
16.
Bioact Mater ; 6(9): 2870-2880, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33718668

RESUMO

Immune suppressive microenvironment in tumor emerges as the main obstacle for cancer immunotherapy. In this study, we identified that HIF1α was activated in the tumor associated macrophages and acted as an important factor for the immune suppressive microenvironment. Epigenetically silencing of Hif1α via histone H3 methylation in the promoter region was achieved by CRISPR/dCas9-EZH2 system, in which histone H3 methylase EZH2 was recruited to the promoter region specifically. The Hif1α silenced macrophage, namely HERM (Hif1α Epigenetically Repressed Macrophage) manifested as inheritable tumor suppressing phenotype. In the subcutaneous B16-F10 melanoma syngeneic model, intratumoral injection of HERMs reprogrammed the immune suppressive microenvironment to the active one, reducing tumor burden and prolonging overall survival. Additionally, HERMs therapy remarkably inhibited tumor angiogenesis. Together, our study has not only identified a promising cellular and molecular target for reverting immune suppressive microenvironment, but also provided a potent strategy for reprogramming tumor microenvironment via epigenetically reprogrammed macrophages.

18.
Adv Biosyst ; 4(11): e2000061, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32700829

RESUMO

Exosomes, which are small lipid bilayer vesicles that can be released by multiple cell types, mediate communication between cells by transporting nucleic acids, proteins, and other bioactive molecules. Pioneering studies have revealed that exosomes can exert multiple functions in shaping tumor immune responses in the crosstalk between tumor cells and surrounding immune cells. Emerging studies have also demonstrated the powerful function of engineered exosomes in cancer immunotherapy. Here, the recent progress in this field and focus on exosomes as mediators, drug carriers, and prognostic biomarkers in tumor immunotherapy is summarized. This review not only summarizes the progress of this field, but also provides insights and perspectives on exosome-based strategies in cancer immunotherapy.


Assuntos
Portadores de Fármacos , Exossomos , Imunoterapia , Neoplasias , Animais , Biomarcadores Tumorais , Humanos , Camundongos , Neoplasias/diagnóstico , Neoplasias/terapia , Prognóstico
19.
Appl Microbiol Biotechnol ; 103(23-24): 9569-9582, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31701195

RESUMO

Imatinib resistance remains the biggest hurdle for the treatment of chronic myeloid leukemia (CML), with the underlying mechanisms not fully understood. In this study, we found that miR328 significantly and strikingly decreased among other miRNA candidates during the induction of imatinib resistance. Overexpression of miR328 sensitized resistant cells to imatinib via post-transcriptionally decreasing ABCG2 expression, while miR328 knockdown conferred imatinib resistance in parental K562 cells. Moreover, miR328 was found selectively degraded in the lysosomes of K562R cells, as inhibition of lysosome with chloroquine restored miR328 expression and increased sensitivity to imatinib. Moreover, delivery of alkalized exosomes increased endogenous miR328 expression. Compared with the corresponding controls, the alkalized exosomes with or without miR328 sensitized the chronic leukemia cells to imatinib. Taken together, our study has revealed that lysosomal clearance of miR328 in imatinib-resistant cells at least partially contributes to the drug resistance, while delivery of alkalized exosomes would sensitize the chromic leukemia cells to imatinib.


Assuntos
Antineoplásicos/farmacologia , Exossomos/química , Mesilato de Imatinib/farmacologia , Lisossomos/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Álcalis/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo , Células HEK293 , Humanos , Células K562 , Lisossomos/metabolismo
20.
Theranostics ; 9(19): 5642-5656, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534508

RESUMO

Rationale: Reciprocal interactions between leukemic cells and bone marrow mesenchymal stromal cells (BMMSC) remodel the normal niche into a malignant niche, leading to leukemia progression. Exosomes have emerged as an essential mediator of cell-cell communication. Whether leukemic exosomes involved in bone marrow niche remodeling remains unknown. Methods: We investigated the role of leukemic exosomes in molecular and functional changes of BMMSC in vitro and in vivo. RNA sequencing and bioinformatics were employed to screen for miRNAs that are selectively sorted into leukemic exosomes and the corresponding RNA binding proteins. Results: We demonstrated that leukemia cells significantly inhibited osteogenesis by BMMSC both in vivo and in vitro. Some tumor suppressive miRNAs, especially miR-320, were enriched in exosomes and thus secreted by leukemic cells, resulting in increased proliferation of the donor cells. In turn, the secreted exosomes were significantly endocytosed by adjacent BMMSC and thus inhibited osteogenesis at least partially via ß-catenin inhibition. Mechanistically, miR-320 and some other miRNAs were sorted out into the exosomes by RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1), as these miRNAs harbor the recognition site for HNRNPA1. Conclusion: HNRNPA1-mediated exosomal transfer of miR-320 from leukemia cells to BMMSC is an important mediator of leukemia progression and is a potential therapeutic target for CML.


Assuntos
Exossomos/metabolismo , Terapia Genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/terapia , MicroRNAs/genética , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Exossomos/genética , Ribonucleoproteína Nuclear Heterogênea A1/genética , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA