Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985395

RESUMO

Consumption of legumes has been shown to enhance health and lower the risk of cardiovascular disease and specific types of cancer. ACE inhibitors, antioxidants, and synthetic anti-inflammatories are widely used today; however, they have several undesirable side effects. Thus, researchers have focused on finding ACE inhibitors, antioxidant, and anti-inflammatory peptides from natural sources, such as legumes. Recently, in vitro and in vivo research has shown the bioactive peptides generated from legume protein hydrolysates, such as antioxidant, anti-hypertensive, anticancer, anti-proliferative, anti-inflammatory, etc., in the context of different disease mitigation. Therefore, this review aims to describe the recent advances in in vitro and in vivo studies of antioxidant, anti-hypertensive and anti-inflammatory peptides isolated from legume-derived protein hydrolysates. The results indicated that antioxidant legumes peptides are characterized by short-chain sequence amino acids and possess anti-hypertensive properties by reducing systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR).


Assuntos
Anti-Hipertensivos , Fabaceae , Ratos , Animais , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Hidrolisados de Proteína/química , Antioxidantes/farmacologia , Antioxidantes/química , Fabaceae/metabolismo , Ratos Endogâmicos SHR , Peptídeos/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/química
2.
Molecules ; 27(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014347

RESUMO

Endoplasmic reticulum (ER) stress contributes to insulin resistance and macro- and microvascular complications associated with diabetes. This study aimed to evaluate the effect of ER stress inhibition on endothelial function in the aorta of type-2 diabetic rats. Type-2 diabetes was developed in male Sprague-Dawley rats using a high-fat diet and low-dose streptozotocin. Rat aortic tissues were harvested to study endothelial-dependent relaxation. The mechanisms for acetylcholine-mediated relaxation were investigated using pharmacological blockers, Western blotting, oxidative stress, and inflammatory markers. Acetylcholine-mediated relaxation was diminished in the aorta of diabetic rats compared to control rats; supplementation with TUDCA improved relaxation. In the aortas of control and diabetic rats receiving TUDCA, the relaxation was mediated via eNOS/PI3K/Akt, NAD(P)H, and the KATP channel. In diabetic rats, acetylcholine-mediated relaxation involved eNOS/PI3K/Akt and NAD(P)H, but not the KATP channel. The expression of ER stress markers was upregulated in the aorta of diabetic rats and reduced with TUDCA supplementation. The expression of eNOS and Akt were lower in diabetic rats but were upregulated after supplementation with TUDCA. The levels of MDA, IL-6, and SOD activity were higher in the aorta of the diabetic rats compared to control rats. This study demonstrated that endothelial function was impaired in diabetes, however, supplementation with TUDCA improved the function via eNOS/Akt/PI3K, NAD(P)H, and the KATP channel. The improvement of endothelial function was associated with increased expressions of eNOS and Akt. Thus, ER stress plays a crucial role in the impairment of endothelial-dependent relaxation. Mitigating ER stress could be a potential strategy for improving endothelial dysfunction in type-2 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Aorta , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático , Endotélio Vascular/metabolismo , Masculino , NAD/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Vasodilatação
3.
PLoS One ; 16(3): e0249091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33784348

RESUMO

Lignosus rhinocerotis Cooke. (L. rhinocerotis) is a medicinal mushroom traditionally used in the treatment of asthma and several other diseases by the indigenous communities in Malaysia. In this study, the effects of L. rhinocerotis on allergic airway inflammation and hyperresponsiveness were investigated. L. rhinocerotis extract (LRE) was prepared by hot water extraction using soxhlet. Airway hyperresponsiveness (AHR) study was performed in house dust mite (HDM)-induced asthma in Balb/c mice while airway inflammation study was performed in ovalbumin (OVA)-induced asthma in Sprague-Dawley rats. Treatment with different doses of LRE (125, 250 and 500 mg/kg) significantly inhibited AHR in HDM-induced mice. Treatment with LRE also significantly decreased the elevated IgE in serum, Th2 cytokines in bronchoalveolar lavage fluid and ameliorated OVA-induced histological changes in rats by attenuating leukocyte infiltration, mucus hypersecretion and goblet cell hyperplasia in the lungs. LRE also significantly reduced the number of eosinophils and neutrophils in BALF. Interestingly, a significant reduction of the FOXP3+ regulatory T lymphocytes was observed following OVA induction, but the cells were significantly elevated with LRE treatment. Subsequent analyses on gene expression revealed regulation of several important genes i.e. IL17A, ADAM33, CCL5, IL4, CCR3, CCR8, PMCH, CCL22, IFNG, CCL17, CCR4, PRG2, FCER1A, CLCA1, CHIA and Cma1 which were up-regulated following OVA induction but down-regulated following treatment with LRE. In conclusion, LRE alleviates allergy airway inflammation and hyperresponsiveness, thus suggesting its therapeutic potential as a new armamentarium against allergic asthma.


Assuntos
Asma/metabolismo , Asma/microbiologia , Muco/metabolismo , Polyporaceae/fisiologia , Animais , Asma/imunologia , Asma/terapia , Modelos Animais de Doenças , Camundongos , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA