Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Life (Basel) ; 12(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35743803

RESUMO

Colorectal cancer (CRC) ranks second among the most commonly occurring cancers in Malaysia, and unfortunately, its pathobiology remains unknown. CRC pathobiology can be understood in detail with the implementation of omics technology that is able to generate vast amounts of molecular data. The generation of omics data has introduced a new challenge for data organization. Therefore, a knowledge-based repository, namely TCGA-My, was developed to systematically store and organize CRC omics data for Malaysian patients. TCGA-My stores the genome and metabolome of Malaysian CRC patients. The genome and metabolome datasets were organized using a Python module, pandas. The variants and metabolites were first annotated with their biological information using gene ontologies (GOs) vocabulary. The TCGA-My relational database was then built using HeidiSQL PorTable 9.4.0.512, and Laravel was used to design the web interface. Currently, TCGA-My stores 1,517,841 variants, 23,695 genes, and 167,451 metabolites from the samples of 50 CRC patients. Data entries can be accessed via search and browse menus. TCGA-My aims to offer effective and systematic omics data management, allowing it to become the main resource for Malaysian CRC research, particularly in the context of biomarker identification for precision medicine.

2.
Front Pharmacol ; 13: 844199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392560

RESUMO

Emerging reports have shown therapeutic potential of hydroxychavicol (HC) and epigallocatechin-3-gallate (EGCG) against cancer cells, however high concentrations are required to achieve the anticancer activity. We reported the synergy of low combination doses of EGCG+HC in glioma cell lines 1321N1, SW1783, and LN18 by assessing the effects of EGCG+HC through functional assays. Using high throughput RNA sequencing, the molecular mechanisms of EGCG+HC against glioma cell lines were revealed. EGCG/HC alone inhibited the proliferation of glioma cell lines, with IC50 values ranging from 82 to 302 µg/ml and 75 to 119 µg/ml, respectively. Sub-effective concentrations of combined EGCG+HC enhanced the suppression of glioma cell growth, with SW1783 showing strong synergism with a combination index (CI) of 0.55 and LN18 showing a CI of 0.51. A moderate synergistic interaction of EGCG+HC was detected in 1321N1 cells, with a CI value of 0.88. Exposure of 1321N1, SW1783, and LN18 cells to EGCG+HC for 24 h induces cell death, with caspase-3 activation rates of 52%, 57%, and 9.4%, respectively. However, the dose for SW1783 is cytotoxic to normal cells, thus this dose was excluded from other tests. EGCG+HC induced cell cycle arrest at S phase and reduced 1321N1 and LN18 cell migration and invasion. Combined EGCG+HC amplified its anticancer effect by downregulating the axon guidance process and metabolic pathways, while simultaneously interfering with endoplasmic reticulum unfolded protein response pathway. Furthermore, EGCG+HC exerted its apoptotic effect through the alteration of mitochondrial genes such as MT-CO3 and MT-RNR2 in 1321N1 and LN18 cells respectively. EGCG+HC dynamically altered DYNLL1 alternative splicing expression in 1321N1 and DLD splicing expression in LN18 cell lines. Our work indicated the pleiotropic effects of EGCG+HC treatment, as well as particular target genes that might be investigated for future glioma cancer therapeutic development.

3.
Bioimpacts ; 11(2): 147-156, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842285

RESUMO

Introduction: Metabolomic studies on various colorectal cancer (CRC) cell lines have improved our understanding of the biochemical events underlying the disease. However, the metabolic profile dynamics associated with different stages of CRC progression is still lacking. Such information can provide further insights into the pathophysiology and progression of the disease that will prove useful in identifying specific targets for drug designing and therapeutics. Thus, our study aims to characterize the metabolite profiles in the established cell lines corresponding to different stages of CRC. Methods: Metabolite profiling of normal colon cell lines (CCD 841 CoN) and CRC cell lines corresponding to different stages, i.e., SW 1116 (stage A), HT 29 and SW 480 (stage B), HCT 15 and DLD-1 (stage C), and HCT 116 (stage D), was carried out using liquid chromatography-mass spectrometry (LC-MS). Mass Profiler Professional and Metaboanalyst 4.0 software were used for statistical and pathway analysis. METLIN database was used for the identification of metabolites. Results: We identified 72 differential metabolites compared between CRC cell lines of all the stages and normal colon cells. Principle component analysis and partial least squares discriminant analysis score plot were used to segregate normal and CRC cells, as well as CRC cells in different stages of the disease. Variable importance in projection score identified unique differential metabolites in CRC cells of the different stages. We identified 7 differential metabolites unique to stage A, 3 in stage B, 5 in stage C, and 5 in stage D. Conclusion: This study highlights the differential metabolite profiling in CRC cell lines corresponding to different stages. The identification of the differential metabolites in CRC cells at individual stages will lead to a better understanding of the pathophysiology of CRC development and progression and, hence, its application in treatment strategies.

4.
Bioimpacts ; 11(1): 33-43, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33469506

RESUMO

Introduction: The serum metabolomics approach has been used to identify metabolite biomarkers that can diagnose colorectal cancer (CRC) accurately and specifically. However, the biomarkers identified differ between studies suggesting that more studies need to be performed to understand the influence of genetic and environmental factors. Therefore, this study aimed to identify biomarkers and affected metabolic pathways in Malaysian CRC patients. Methods: Serum from 50 healthy controls and 50 CRC patients were collected at UKM Medical Centre. The samples were deproteinized with acetonitrile and untargeted metabolomics profile determined using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOFMS, Agilent USA). The data were analysed using Mass Profiler Professional (Agilent, USA) software. The panel of biomarkers determined were then used to identify CRC from a new set of 20 matched samples. Results: Eleven differential metabolites were identified whose levels were significantly different between CRC patients compared to normal controls. Based on the analysis of the area under the curve, 7 of these metabolites showed high sensitivity and specificity as biomarkers. The use of the 11 metabolites on a new set of samples was able to differentiate CRC from normal samples with 80% accuracy. These metabolites were hypoxanthine, acetylcarnitine, xanthine, uric acid, tyrosine, methionine, lysoPC, lysoPE, citric acid, 5-oxoproline, and pipercolic acid. The data also showed that the most perturbed pathways in CRC were purine, catecholamine, and amino acid metabolisms. Conclusion: Serum metabolomics profiling can be used to identify distinguishing biomarkers for CRC as well as to further our knowledge of its pathophysiological mechanisms.

5.
Sci Rep ; 10(1): 8962, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488024

RESUMO

Vitamin E acts as an antioxidant and reduces the level of reactive oxygen species (ROS) in Alzheimer's disease (AD). Alpha-tocopherol (ATF) is the most widely studied form of vitamin E besides gamma-tocopherol (GTF) which also shows beneficial effects in AD. The levels of amyloid-beta (Aß) and amyloid precursor protein (APP) increased in the brains of AD patients, and mutations in the APP gene are known to enhance the production of Aß. Mitochondrial function was shown to be affected by the increased level of Aß and may induce cell death. Here, we aimed to compare the effects of ATF and GTF on their ability to reduce Aß level, modulate mitochondrial function and reduce the apoptosis marker in SH-SY5Y cells stably transfected with the wild-type or mutant form of the APP gene. The Aß level was measured by ELISA, the mitochondrial ROS and ATP level were quantified by fluorescence and luciferase assay respectively whereas the complex V enzyme activity was measured by spectrophotometry. The expressions of genes involved in the regulation of mitochondrial membrane permeability such as voltage dependent anion channel (VDAC1), adenine nucleotide translocase (ANT), and cyclophilin D (CYPD) were determined by quantitative real-time polymerase chain reaction (qRT-PCR), while the expressions of cyclophilin D (CypD), cytochrome c, Bcl2 associated X (BAX), B cell lymphoma-2 (Bcl-2), and pro-caspase-3 were determined by western blot. Our results showed that mitochondrial ROS level was elevated accompanied by decreased ATP level and complex V enzyme activity in SH-SY5Y cells expressing the mutant APP gene (p < 0.05). Treatment with both ATF and GTF reduced the mitochondrial ROS level with maximum reduction was observed in the cells treated with high concentrations of ATF and GTF (p < 0.05). However, only GTF at 80 µM significantly increase the ATP level and complex V enzyme activity (p < 0.05). VDAC1 and CYPD were downregulated and CypD protein was significantly overexpressed in cells transfected with the wild-type (WT) and mutant APP gene (p < 0.05). Cytochrome c release, the ratio of BAX/Bcl-2, and pro-caspase-3 expression increased in cells expressing mutated APP gene (p < 0.05). The expression of CypD and pro-caspase 3 protein, and the ratio of BAX/Bcl-2 were increased in the following order; SH-SY5Y-APP-WT < SH-SY5Y-APP Swe

Assuntos
Mitocôndrias/efeitos dos fármacos , alfa-Tocoferol/farmacologia , gama-Tocoferol/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citocromos c/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tocoferóis/farmacologia
6.
J Alzheimers Dis ; 72(1): 229-246, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31594216

RESUMO

Tocotrienol-rich fraction (TRF) is a mixture of vitamin E analogs derived from palm oil. We previously demonstrated that supplementation with TRF improved cognitive function and modulated amyloid pathology in AßPP/PS1 mice brains. The current study was designed to examine proteomic profiles underlying the therapeutic effect of TRF in the brain. Proteomic analyses were performed on samples of hippocampus, medial prefrontal cortex (mPFC), and striatum using liquid chromatography coupled to Q Exactive HF Orbitrap mass spectrometry. From these analyses, we profiled a total of 5,847 proteins of which 155 proteins were differentially expressed between AßPP/PS1 and wild-type mice. TRF supplementation of these mice altered the expression of 255 proteins in the hippocampus, mPFC, and striatum. TRF also negatively modulated the expression of amyloid beta A4 protein and receptor-type tyrosine-protein phosphatase alpha protein in the hippocampus. The expression of proteins in metabolic pathways, oxidative phosphorylation, and those involved in Alzheimer's disease were altered in the brains of AßPP/PS1 mice that received TRF supplementation.


Assuntos
Corpo Estriado/metabolismo , Hipocampo/metabolismo , Óleo de Palmeira/farmacologia , Córtex Pré-Frontal/metabolismo , Proteoma/metabolismo , Tocotrienóis/farmacologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Antioxidantes/farmacologia , Corpo Estriado/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/efeitos dos fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Proteoma/genética , Proteômica/métodos
7.
J Physiol Biochem ; 75(4): 499-517, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31414341

RESUMO

Gamma-tocotrienol (GTT) and hydroxychavicol (HC) exhibit anticancer activity in glioma cancer cells, where the combination of GTT + HC was shown to be more effective than single agent. The aim of this study was to determine the effect of GTT + HC by measuring the cell cycle progression, migration, invasion, and colony formation of glioma cancer cells and elucidating the changes in gene expression mitigated by GTT + HC that are critical to the chemoprevention of glioma cell lines 1321N1 (grade II), SW1783 (grade III), and LN18 (grade IV) using high-throughput RNA sequencing (RNA-seq). Results of gene expression levels and alternative splicing transcripts were validated by qPCR. Exposure of glioma cancer cells to GTT + HC for 24 h promotes cell cycle arrest at G2M and S phases and inhibits cell migration, invasion, and colony formation of glioma cancer cells. The differential gene expression induced by GTT + HC clustered into response to endoplasmic reticulum (ER) stress, cell cycle regulations, apoptosis, cell migration/invasion, cell growth, and DNA repair. Subnetwork analysis of genes altered by GTT + HC revealed central genes, ATF4 and XBP1. The modulation of EIF2AK3, EDN1, and FOXM1 were unique to 1321N1, while CSF1, KLF4, and FGF2 were unique to SW1783. PLK2 and EIF3A gene expressions were only altered in LN18. Moreover, GTT + HC treatment dynamically altered transcripts and alternative splicing expression. GTT + HC showed therapeutic potential against glioma cancer as evident by the inhibition of cell cycle progression, migration, invasion, and colony formation of glioma cancer cells, as well as the changes in gene expression profiles with key targets in ER unfolded protein response pathway, apoptosis, cell cycle, and migration/invasion.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cromanos/farmacologia , Eugenol/análogos & derivados , Glioma/tratamento farmacológico , Vitamina E/análogos & derivados , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Eugenol/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Vitamina E/farmacologia
8.
J Nat Med ; 73(4): 745-760, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31177355

RESUMO

Our previous study reported that combined treatment of γ-tocotrienol with 6-gingerol showed promising anticancer effects by synergistically inhibiting proliferation of human colorectal cancer cell lines. This study aimed to identify and elucidate molecular mechanisms involved in the suppression of SW837 colorectal cancer cells modulated by combined treatment of γ-tocotrienol and 6-gingerol. Total RNA from both untreated and treated cells was prepared for transcriptome analysis using RNA sequencing techniques. We performed high-throughput sequencing at approximately 30-60 million coverage on both untreated and 6G + γT3-treated cells. The results showed that cancer-specific differential gene expression occurred and functional enrichment pathway analysis suggested that more than one pathway was modulated in 6G + γT3-treated cells. Combined treatment with 6G + γT3 augmented its chemotherapeutic effect by interfering with the cell cycle process, downregulating the Wnt signalling pathway and inducing apoptosis mainly through caspase-independent programmed cell death through mitochondrial dysfunction, activation of ER-UPR, disruption of DNA repair mechanisms and inactivation of the cell cycle process through the downregulation of main genes in proliferation such as FOXM1 and its downstream genes. The combined treatment exerted its cytotoxic effect through upregulation of genes in stress response activation and cytostatic effects demonstrated by downregulation of main regulator genes in the cell cycle. Selected genes involved in particular pathways including ATF6, DDIT3, GADD34, FOXM1, CDK1 and p21 displayed concordant patterns of gene expression between RNA sequencing and RT-qPCR. This study provides new insights into combined treatment with bioactive compounds not only in terms of its pleiotropic effects that enhance multiple pathways but also specific target genes that could be exploited for therapeutic purposes, especially in suppressing cancer cell growth.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Catecóis/farmacologia , Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Álcoois Graxos/farmacologia , Tocotrienóis/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromanos , Reparo do DNA/efeitos dos fármacos , Proteína Forkhead Box M1/biossíntese , Perfilação da Expressão Gênica , Humanos , Transdução de Sinais , Vitamina E/análogos & derivados , Via de Sinalização Wnt/efeitos dos fármacos
9.
Oncol Lett ; 16(1): 73-82, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29930713

RESUMO

Optimization of critical factors affects transduction efficiency and is able to reduce reagent consumption. The present study aimed to determine the optimum transduction conditions of small hairpin (sh)RNA against peroxiredoxin 4 (PRDX4) in the HepG2 cell line. Cell viability assays were conducted based on serum condition, incubation time, polybrene concentration and antibiotic dose selection. Non-targeting control shRNA was transduced into HepG2 cells in a 5-fold serial dilution, and colonies positive for green fluorescent protein were counted using ImageJ software. Reverse transcription-quantitative polymerase chain reaction and western blot analysis were performed to validate PRDX4 expression. The optimum cell density for transduction was 5.0×103 cells/well in 96-well plates to achieve 40 to 50% confluency the following day. The transduction media consisted of 10% fetal bovine serum (FBS) and 12 µg/ml polybrene, and was used to dilute lentiviral particles at a functional titer of 4.9×105 TU/ml for multiplicity of infection (MOI) of 20, 15 and 10, for 24 h of incubation. Selection with 7 µg/ml puromycin was performed in transduced cells. shRNA 3 was revealed to inhibit PRDX4 mRNA and protein expression. In conclusion, PRDX4 was successfully silenced in 5.0×103 HepG2 cells cultured with 10% FBS and 12 µg/ml polybrene, at a 4.9×105 TU/ml functional titer for MOI of 20, 15 and 10.

10.
J Alzheimers Dis ; 64(1): 249-267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29889072

RESUMO

We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AßPP/PS1 double transgenic (Tg) Alzheimer's disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aß interaction or independent of Aß interaction.


Assuntos
Antioxidantes/uso terapêutico , Encéfalo/metabolismo , Transtornos Mentais/tratamento farmacológico , Redes e Vias Metabólicas/efeitos dos fármacos , Óleo de Palmeira/química , Tocotrienóis/uso terapêutico , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Sinais (Psicologia) , Modelos Animais de Doenças , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos Mentais/etiologia , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Presenilina-1/genética , Presenilina-1/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Navegação Espacial/efeitos dos fármacos , Estatísticas não Paramétricas , Fatores de Tempo
11.
Antioxidants (Basel) ; 7(6)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29843393

RESUMO

BACKGROUND: Tocotrienol and tocopherol are known to prevent numerous degenerative diseases. The aim of this study is to compare the effects of tocotrienol-rich fraction (TRF) with α-tocopherol (α-TF) on the antioxidant status of healthy individuals aged between 50 and 55 years. METHODS: Volunteers were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24). Fasting venous blood samples were taken at baseline (0 month), 3 months and 6 months of supplementation for the determination of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities as well as for reduced glutathione (GSH) and oxidized glutathione (GSSG) concentrations. RESULTS: CAT and GPx were unaffected by TRF and α-TF supplementations. SOD activity increased significantly after six months of TRF supplementation. Analysis by gender showed that only female subjects had significant increases in SOD and GPx activities after six months of TRF supplementation. GPx activity was also significantly higher in females compared to males after six months of TRF supplementation. The GSH/GSSG ratio increased significantly after six months of TRF and α-TF supplementation in only the female subjects. CONCLUSION: TRF and α-TF supplementation exhibited similar effects to the antioxidant levels of older adults with TRF having more significant effects in females.

12.
BMC Cancer ; 17(1): 879, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29268718

RESUMO

BACKGROUND: Chlorella vulgaris (ChV), a unicellular green algae has been reported to have anticancer and antioxidant effects. The aim of this study was to determine the chemopreventive effect of ChV on liver cancer induced rats by determining the level and expression of several liver tumour markers. METHODS: Male Wistar rats (200-250 g) were divided into 4 groups according to the diet given: control group (normal diet), ChV group with three different doses (50, 150 and 300 mg/kg body weight), liver cancer- induced group (choline deficient diet + 0.1% ethionine in drinking water or CDE group), and the treatment group (CDE group treated with three different doses of ChV). Rats were killed at 0, 4, 8 and 12 weeks of experiment and blood and tissue samples were taken from all groups for the determination of tumour markers expression alpha-fetoprotein (AFP), transforming growth factor-ß (TGF-ß), M2-pyruvate kinase (M2-PK) and specific antigen for oval cells (OV-6). RESULTS: Serum level of TGF-ß increased significantly (p < 0.05) in CDE rats. However, ChV at all doses managed to decrease (p < 0.05) its levels to control values. Expressions of liver tumour markers AFP, TGF-ß, M2-PK and OV-6 were significantly higher (p < 0.05) in tissues of CDE rats when compared to control showing an increased number of cancer cells during hepatocarcinogenesis. ChV at all doses reduced their expressions significantly (p < 0.05). CONCLUSIONS: Chlorella vulgaris has chemopreventive effect by downregulating the expression of tumour markers M2-PK, OV-6, AFP and TGF-ß, in HCC-induced rats.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/prevenção & controle , Chlorella vulgaris/química , Dieta/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Extratos Vegetais/farmacologia , Animais , Antígenos de Diferenciação/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Deficiência de Colina/complicações , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Piruvato Quinase/metabolismo , Ratos , Ratos Wistar , Fator de Crescimento Transformador beta1/metabolismo , alfa-Fetoproteínas/metabolismo
13.
Free Radic Res ; 51(9-10): 787-798, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28899235

RESUMO

Identifying patients at risk of developing premature coronary artery disease (PCAD) which occurs at age below 45 years old and constitutes approximately 7-10% of coronary artery disease (CAD) worldwide remains a problem. Oxidative stress has been proposed as a crucial step in the early development of PCAD. This study was conducted to determine the oxidative status of PCAD in comparison to CAD patients. PCAD (<45 years old) and CAD (>60 years old) patients were recruited with age-matched controls (n = 30, each group). DNA damage score, plasma malondialdehyde (MDA) and protein carbonyl content were measured for oxidative damage markers. Antioxidants such as erythrocyte glutathione (GSH), oxidised glutathione (GSSG), and glutathione peroxidase activity (GPx), superoxide dismutase (SOD) and catalase (CAT) were also determined. DNA damage score and protein carbonyl content were significantly higher in both PCAD and CAD when compared to age-matched controls while MDA level was increased only in PCAD (p<.05). In contrast, GSH, GSH/GSSG ratio, α-tocotrienol isomer, and GPx activity were significantly decreased, but only in PCAD when compared to age-matched controls. The decrease in GSH was associated with PCAD (OR = 0.569 95%CI [0.375 - 0.864], p = .008) and cut-off values of 6.69 µM with areas under the ROC curves (AUROC) 95%CI: 0.88 [0.80-0.96] (sensitivity of 83.3%; specificity of 80%). However, there were no significant differences in SOD and CAT activities in all groups. A higher level of oxidative stress indicated by elevated MDA levels and low levels of GSH, α-tocotrienol and GPx activity in patients below 45 years old may play a role in the development of PCAD and has potential as biomarkers for PCAD.


Assuntos
Doença da Artéria Coronariana/sangue , Glutationa/sangue , Adulto , Idade de Início , Biomarcadores/sangue , Estudos de Casos e Controles , Humanos , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Estresse Oxidativo , Carbonilação Proteica
14.
Appl Biochem Biotechnol ; 183(3): 853-866, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28417423

RESUMO

Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aß). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aß42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aß42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aß42 alone and that more extensive Aß formation, such as accumulation of intraneuronal Aß, Aß plaques, soluble oligomeric Aß (oAß), and insoluble fibrillar Aß (fAß) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aß42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aß2/40 ratio compared to wild-type and single-mutant cells.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Mutação , Fragmentos de Peptídeos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Humanos , Plasmídeos/genética , Transfecção
15.
Oxid Med Cell Longev ; 2017: 3868305, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243354

RESUMO

During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF) modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants (α-tocopherol (ATF) and N-acetyl-cysteine (NAC)). Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS) generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2), catalase (CAT), and glutathione peroxidase (GPX1) was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts.


Assuntos
Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Tocotrienóis/farmacologia , Células Cultivadas , Radicais Livres/metabolismo , Glutationa/metabolismo , Humanos , Mioblastos/metabolismo , Mioblastos/patologia
16.
Clin Nutr ESPEN ; 21: 1-12, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-30014863

RESUMO

Vitamin E is a fat-soluble compound and powerful antioxidant that have been shown to protect the cell membranes against damage caused by free radicals. Human vitamin E supplementation studies are usually limited to α-tocopherol but currently tocotrienols are also available. This study aims to compare the effects of tocotrienol rich fraction (TRF) with α-tocopherol (α-TF) supplementation on oxidative stress in healthy male and female older adults aged 50-55 years old. A total of 71 subjects both male and female aged between 50 and 55 years were divided into groups receiving placebo (n = 23), α-TF (n = 24) and TRF (n = 24) for six months. Blood was taken at baseline (month 0), 3 months and 6 months osf supplementation for determination of plasma malondialdehyde (MDA), protein carbonyl, total DNA damage, vitamin D concentration and vitamin E isomers. α-TF supplementation reduced plasma MDA and protein carbonyl in female subjects after 3 and 6 months. TRF supplementation reduced MDA levels in both males and females as early as 3 months while DNA damage was reduced in females only at 6 months. Supplementation with α-TF and TRF increased plasma vitamin D concentration in both males and females after 6 months, but vitamin D concentration in male subjects were significantly higher compared to female subjects in TRF group. Vitamin E isomer determination showed α-TF, α-tocotrienol and γ-tocotrienol were increased in both male and female subjects. In conclusion, TRF supplementation effects were different from α-TF in reducing oxidative stress markers and vitamin D levels with a more pronounced effect in female subjects.


Assuntos
Cromanos/administração & dosagem , Estresse Oxidativo , Óleo de Palmeira/administração & dosagem , Tocotrienóis/administração & dosagem , Vitamina E/análogos & derivados , alfa-Tocoferol/administração & dosagem , Cromanos/sangue , Ensaio Cometa , Dano ao DNA , Suplementos Nutricionais , Feminino , Humanos , Masculino , Malondialdeído/sangue , Pessoa de Meia-Idade , Óleo de Palmeira/química , Carbonilação Proteica , Espécies Reativas de Oxigênio/metabolismo , Tocotrienóis/sangue , Vitamina D/sangue , Vitamina E/administração & dosagem , Vitamina E/sangue , alfa-Tocoferol/sangue
17.
J Alzheimers Dis ; 55(2): 597-612, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27716672

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. The cardinal neuropathological characteristic of AD is the accumulation of amyloid-ß (Aß) into extracellular plaques that ultimately disrupt neuronal function and lead to neurodegeneration. One possible therapeutic strategy therefore is to prevent Aß aggregation. Previous studies have suggested that vitamin E analogs slow AD progression in humans. In the present study, we investigated the effects of the tocotrienol-rich fraction (TRF), a mixture of vitamin E analogs from palm oil, on amyloid pathology in vitro and in vivo. TRF treatment dose-dependently inhibited the formation of Aß fibrils and Aß oligomers in vitro. Moreover, daily TRF supplementation to AßPPswe/PS1dE9 double transgenic mice for 10 months attenuated Aß immunoreactive depositions and thioflavin-S-positive fibrillar type plaques in the brain, and eventually improved cognitive function in the novel object recognition test compared with control AßPPswe/PS1dE9 mice. The present result indicates that TRF reduced amyloid pathology and improved cognitive functions, and suggests that TRF is a potential therapeutic agent for AD.


Assuntos
Doença de Alzheimer/complicações , Antioxidantes/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Tocotrienóis/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Amiloide/efeitos dos fármacos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Fragmentos de Peptídeos/metabolismo , Presenilina-1/genética
18.
Int J Oncol ; 49(6): 2359-2366, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27840905

RESUMO

Glioblastoma multiforme (GBM) is an aggressive brain tumor and most patients have poor prognosis. Despite many advances in research, there has been no significant improvement in the patient survival rate. New molecular therapies are being studied and RNA interference (RNAi) therapy is one of the promising approaches to improve prognosis and increase survival in patients with GBM. We performed a meta­analysis of five different microarray datasets and identified 460 significantly upregulated genes in GBM. Loss­of­function screening of these upregulated genes using LN18 cells was performed to identify the significant target genes for glioma. Further investigations were performed using siRNA in LN18 cells and various functional assays were carried out on the selected candidate gene to understand further its role in GBM. We identified PROS1 as a candidate gene for GBM from the meta­analysis and RNAi screening. Knockdown of PROS1 in LN18 cells significantly induced apoptosis compared to siPROS1­untreated cells (p<0.05). Migration in cells treated with siPROS1 was reduced significantly (p<0.05) and this was confirmed with wound-healing assay. PROS1 knockdown showed substantial reduction in cell invasion up to 82% (p<0.01). In addition, inhibition of PROS1 leads to decrease in cellular proliferation by 18%. Knockdown of PROS1 in LN18 cells caused activation of both of the extrinsic and intrinsic apoptotic pathways. It caused major upregulation of FasL which is important for death receptor signaling activation and also downregulation of GAS6 and other members of TAM family of receptors. PROS1 may play an important role in the development of GBM through cellular proliferation, migration and invasion as well as apoptosis. Targeting PROS1 in GBM could be a novel therapeutic strategy in GBM treatment.


Assuntos
Apoptose/genética , Proteínas Sanguíneas/genética , Neoplasias Encefálicas/genética , Movimento Celular/genética , Proliferação de Células/genética , Glioblastoma/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Glioblastoma/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Invasividade Neoplásica/genética , Proteína S , Proteínas Proto-Oncogênicas/biossíntese , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Receptores Proteína Tirosina Quinases/biossíntese , c-Mer Tirosina Quinase , Receptor Tirosina Quinase Axl
19.
BMC Med Genomics ; 9(1): 58, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27609023

RESUMO

BACKGROUND: Histopathological assessment has a low potential to predict clinical outcome in patients with the same stage of colorectal cancer. More specific and sensitive biomarkers to determine patients' survival are needed. We aimed to determine gene expression signatures as reliable prognostic marker that could predict survival of colorectal cancer patients with Dukes' B and C. METHODS: We examined microarray gene expression profiles of 78 archived tissues of patients with Dukes' B and C using the Illumina DASL assay. The gene expression data were analyzed using the GeneSpring software and R programming. RESULTS: The outliers were detected and replaced with randomly chosen genes from the 90 % confidence interval of the robust mean for each group. We performed three statistical methods (SAM, LIMMA and t-test) to identify significant genes. There were 19 significant common genes identified from microarray data that have been permutated 100 times namely NOTCH2, ITPRIP, FRMD6, GFRA4, OSBPL9, CPXCR1, SORCS2, PDC, C12orf66, SLC38A9, OR10H5, TRIP13, MRPL52, DUSP21, BRCA1, ELTD1, SPG7, LASS6 and DUOX2. This 19-gene signature was able to significantly predict the survival of patients with colorectal cancer compared to the conventional Dukes' classification in both training and test sets (p < 0.05). The performance of this signature was further validated as a significant independent predictor of survival using patient cohorts from Australia (n = 185), USA (n = 114), Denmark (n = 37) and Norway (n = 95) (p < 0.05). Validation using quantitative PCR confirmed similar expression pattern for the six selected genes. CONCLUSION: Profiling of these 19 genes may provide a more accurate method to predict survival of patients with colorectal cancer and assist in identifying patients who require more intensive treatment.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Biologia Computacional , Transcriptoma , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Análise de Sobrevida
20.
J Nutr Biochem ; 31: 28-37, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133421

RESUMO

Bcl-2 family proteins are crucial regulators of apoptosis. Both pro- and antiapoptotic members exist, and overexpression of the latter facilitates evasion of apoptosis in many cancer types. Bcl-2 homology domain 3 (BH3) mimetics are small molecule inhibitors of antiapoptotic Bcl-2 family members, and these inhibitors are promising anticancer agents. In this study, we report that gamma-tocotrienol (γT3), an isomer of vitamin E, can inhibit Bcl-2 to induce apoptosis. We demonstrate that γT3 induces cell death in human neuroblastoma SH-SY5Y cells by depolarising the mitochondrial membrane potential, enabling release of cytochrome c to the cytosol and increasing the activities of caspases-9 and -3. Treatment of cells with inhibitors of Bax or caspase-9 attenuated the cell death induced by γT3. Simulated docking analysis suggested that γT3 binds at the hydrophobic groove of Bcl-2, while a binding assay showed that γT3 competed with a fluorescent probe to bind at the hydrophobic groove. Our data suggest that γT3 mimics the action of BH3-only protein by binding to the hydrophobic groove of Bcl-2 and inducing apoptosis via the intrinsic pathway in a Bax- and caspase-9-dependent manner.


Assuntos
Apoptose/efeitos dos fármacos , Cromanos/farmacologia , Mimetismo Molecular , Neuroblastoma/patologia , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/farmacologia , Vitamina E/análogos & derivados , Linhagem Celular Tumoral , Humanos , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Vitamina E/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA