RESUMO
Proteostasis mechanisms mediated by macroautophagy/autophagy are altered in neurodegenerative diseases such as Alzheimer disease (AD) and their recovery/enhancement has been proposed as a therapeutic approach. From the two central nodes in the anabolism-catabolism balance, it is generally accepted that mechanistic target of rapamycin kinase complex 1 (MTORC1)_ activation leads to the inhibition of autophagy, whereas adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) has the opposite role. In AD, amyloid beta (Aß) production disturbs the optimal neuronal/glial proteostasis. As astrocytes are essential for brain homeostasis, the purpose of this work was to analyze if the upregulation of autophagy in this cell type, either by MTORC1 inhibition or AMPK activation, could modulate the generation/degradation of ß-amyloid. By using primary astrocytes from amyloid beta precursor protein (APP)/Presenilin 1 (PSEN1) mouse model of AD, we confirmed that MTORC1 inhibition reduced Aß secretion through moderate autophagy induction. Surprisingly, pharmacologically increased activity of AMPK did not enhance autophagy but had different effects on Aß secretion. Conversely, AMPK inhibition did not affect autophagy but reduced Aß secretion. These puzzling data were confirmed through the overexpression of different mutant AMPK isoforms: while only the constitutively active AMPK increased autophagy, all versions augmented Aß secretion. We conclude that AMPK has a significantly different role in primary astrocytes than in other reported cells, similar to our previous findings in neurons. Our data support that perhaps only a basal AMPK activity is needed to maintain autophagy whereas the increased activity, either physiologically or pharmacologically, has no direct effect on autophagy-dependent amyloidosis. These results shed light on the controversy about the therapeutic effect of AMPK activation on autophagy induction.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Astrócitos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Presenilina-1 , Doença de Alzheimer/metabolismo , Autofagia/fisiologiaRESUMO
The most accepted hypothesis in Alzheimer's disease (AD) is the amyloid cascade which establishes that Aß accumulation may induce the disease development. This accumulation may occur years before the clinical symptoms but it has not been elucidated if this accumulation is the cause or the consequence of AD. It is however, clear that Aß accumulation exerts toxic effects in the cerebral cells. It is important then to investigate all possible associated events that may help to design new therapeutic strategies to defeat or ameliorate the symptoms in AD. Alterations in the mitochondrial physiology have been found in AD but it is not still clear if they could be an early event in the disease progression associated to amyloidosis or other conditions. Using APP/PS1 mice, our results support published evidence and show imbalances in the mitochondrial dynamics in the cerebral cortex and hippocampus of these mice representing very early events in the disease progression. We demonstrate in cellular models that these imbalances are consequence of Aß accumulation that ultimately induce increased mitophagy, a mechanism which selectively removes damaged mitochondria by autophagy. Along with increased mitophagy, we also found that Aß independently increases autophagy in APP/PS1 mice. Therefore, mitochondrial dysfunction could be an early feature in AD, associated with amyloid overload.
Assuntos
Doença de Alzheimer , Amiloidose , Amiloide , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Animais , Autofagia , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Transgênicos , Dinâmica Mitocondrial , Modelos TeóricosRESUMO
YAP (Yes-associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) are transcription co-regulators that make up the terminal components of the Hippo signaling pathway, which plays a role in organ size control and derived tissue homeostasis through regulation of the proliferation, differentiation and apoptosis of a wide variety of differentiated and stem cells. Hippo/YAP signaling contributes to normal development of the nervous system, as it participates in self-renewal of neural stem cells, proliferation of neural progenitor cells and differentiation, activation and myelination of glial cells. Not surprisingly, alterations in this pathway underlie the development of severe neurological diseases. In glioblastomas, YAP and TAZ levels directly correlate with the amount of the actin-binding molecule WIP (WASP interacting protein), which regulates stemness and invasiveness. In neurons, WIP modulates cytoskeleton dynamics through actin polymerization/depolymerization and acts as a negative regulator of neuritogenesis, dendrite branching and dendritic spine formation. Our working hypothesis is that WIP regulates the YAP/TAZ pools using a Hippo-independent pathway. Thus, in this review we will present some of the data that links WIP, YAP and TAZ, with a focus on their function in cells from the central and peripheral nervous systems. It is hoped that a better understanding of the mechanisms involved in brain and nervous development and the pathologies that arise due to their alteration will reveal novel therapeutic targets for neurologic diseases.
RESUMO
The physiological AKT-MTORC1 and AMPK signaling pathways are considered key nodes in the regulation of anabolism-catabolism, and particularly of macroautophagy/autophagy. Indeed, it is reported that these are altered processes in neurodegenerative proteinopathies such as Alzheimer disease (AD), mainly characterized by deposits of ß-amyloid (Aß) and hyperphosphorylated MAPT. These accumulations disrupt the optimal neuronal proteostasis, and hence, the recovery/enhancement of autophagy has been proposed as a therapeutic approach against these proteinopathies. The purpose of the present study was to characterize the modulation of autophagy by MTORC1 and AMPK signaling pathways in the highly specialized neurons, as well as their repercussions on Aß production. Using a double transgenic mice model of AD, we demonstrated that MTORC1 inhibition, either in vivo or ex vivo (primary neuronal cultures), was able to reduce amyloid secretion through moderate autophagy induction in neurons. The pharmacological prevention of autophagy in neurons augmented the Aß secretion and reversed the effect of rapamycin, confirming the anti-amyloidogenic effects of autophagy in neurons. Inhibition of AMPK with compound C generated the expected decrease in autophagy induction, though surprisingly did not increase the Aß secretion. In contrast, increased activity of AMPK with metformin, AICAR, 2DG, or by gene overexpression did not enhance autophagy but had different effects on Aß secretion: whereas metformin and 2DG diminished the secreted Aß levels, AICAR and PRKAA1/AMPK gene overexpression increased them. We conclude that AMPK has a significantly different role in primary neurons than in other reported cells, lacking a direct effect on autophagy-dependent amyloidosis.Abbreviations: 2DG: 2-deoxy-D-glucose; Aß: ß-amyloid; ACACA: acetyl-CoA carboxylase alpha; ACTB: actin beta; AD: Alzheimer disease; AICAR: 5-aminoimidazole-4-carboxamide-1-ß-riboside; AKT: AKT kinases group (AKT1 [AKT serine/threonine kinase 1], AKT2 and AKT3); AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; APP: amyloid beta precursor protein; APP/PSEN1: B6.Cg-Tg (APPSwe, PSEN1dE9) 85Dbo/J; ATG: autophagy related; ATP: adenosine triphosphate; BafA1: bafilomycin A1; CA: constitutively active; CGN: cerebellar granule neuron; CoC/compound C: dorsommorphin dihydrochloride; ELISA: enzyme-linked immunosorbent assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; Gmax: GlutaMAX™; IN1: PIK3C3/VPS34-IN1; KI: kinase-inactive; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3; MAPT/TAU: microtubule associated protein tau; Metf: metformin; MRT: MRT68921; MTORC1: mechanistic target of rapamycin kinase complex 1; NBR1: NBR1 autophagy cargo receptor; PRKAA: 5'-AMP-activated protein kinase catalytic subunit alpha; PtdIns3K: phosphatidylinositol 3-kinase; Rapa: rapamycin; RPS6KB1/S6K: ribosomal protein S6 (RPS6) kinase polypeptide 1; SCR: scramble; SQSTM1/p62: sequestosome 1; ULK1/2: unc-51 like autophagy activating kinase 1/2; WT: wild type.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeos beta-Amiloides/metabolismo , Autofagia/fisiologia , Neurônios/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Autofagia/genética , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/metabolismoRESUMO
Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet. We show that WIP depletion increases the levels of reactive oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor, the E3 ligase adapter KEAP1, because the overexpression of a NRF2ΔETGE mutant that is resistant to targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin. Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may have therapeutic implications.
RESUMO
Through actin-binding proteins such as the neural Wiskott-Aldrich syndrome protein (N-WASP) and WASP-interacting protein (WIP), the Rho family GTPases RhoA, Rac1 and Cdc42 are major modulators of the cytoskeleton. (N-)WASP and WIP control Rho GTPase activity in various cell types, either by direct WIP/(N-)WASP/Cdc42 or potential WIP/RhoA binding, or through secondary links that regulate GTPase distribution and/or transcription levels. WIP helps to regulate filopodium generation and participates in the Rac1-mediated ruffle formation that determines cell motility. In neurons, lack of WIP increases dendritic spine size and filamentous actin content in a RhoA-dependent manner. In contrast, WIP deficiency in an adenocarcinoma cell line significantly reduces RhoA levels. These data support a role for WIP in the GTPase-mediated regulation of numerous actin-related cell functions; we discuss the possibility that this WIP effect is linked to cell proliferative status.
Assuntos
Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Humanos , Proteína da Síndrome de Wiskott-Aldrich/deficiênciaRESUMO
The formation of senile plaques through amyloid-ß peptide (Aß) aggregation is a hallmark of Alzheimer's disease (AD). Irrespective of its actual role in the synaptic alterations and cognitive impairment associated with AD, different therapeutic approaches have been proposed to reduce plaque formation. In rodents, daily intake of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) is required for neural development, and there is experimental and epidemiological evidence that their inclusion in the diet has positive effects on several neurodegenerative diseases. Similarly, estradiol appears to reduce senile plaque formation in primary mouse cell cultures, human cortical neurons and mouse AD models, and it prevents Aß toxicity in neural cell lines. We previously showed that differences in dietary n-6/n-3 LC-PUFAs ratios modify the lipid composition in the cerebral cortex of female mice and the levels of amyloid precursor protein (APP) in the brain. These effects depended in part on the presence of circulating estradiol. Here we explored whether this potentially synergistic action between diet and ovarian hormones may influence the progression of amyloidosis in an AD mouse model. Our results show that a diet with high n-3 LC-PUFA content, especially DHA (22:6n-3), reduces the hippocampal accumulation of Aß1 - 4 0, but not amyloid Aß1 - 42 in female APPswe/PS1 E9A mice, an effect that was counteracted by the loss of the ovaries and that depended on circulating estradiol. In addition, this interaction between dietary lipids and ovarian function also affects the composition of the brain lipidome as well as the expression of certain neuronal signaling and synaptic proteins. These findings provide new insights into how ovarian hormones and dietary composition affect the brain lipidome and amyloid burden. Furthermore, they strongly suggest that when designing dietary or pharmacological strategies to combat human neurodegenerative diseases, hormonal and metabolic status should be specifically taken into consideration as it may affect the therapeutic response.
RESUMO
Wild-type p53 (wtp53) is described as a tumour suppressor gene, and mutations in p53 occur in many human cancers. Indeed, in high-grade malignant glioma, numerous molecular genetics studies have established central roles of RTK-PI3K-PTEN and ARF-MDM2-p53 INK4a-RB pathways in promoting oncogenic capacity. Deregulation of these signalling pathways, among others, drives changes in the glial/stem cell state and environment that permit autonomous growth. The initially transformed cell may undergo subsequent modifications, acquiring a more complete tumour-initiating phenotype responsible for disease advancement to stages that are more aggressive. We recently established that the oncogenic activity of mutant p53 (mtp53) is driven by the actin cytoskeleton-associated protein WIP (WASP-interacting protein), correlated with tumour growth, and more importantly that both proteins are responsible for the tumour-initiating cell phenotype. We reported that WIP knockdown in mtp53-expressing glioblastoma greatly reduced proliferation and growth capacity of cancer stem cell (CSC)-like cells and decreased CSC-like markers, such as hyaluronic acid receptor (CD44), prominin-1 (CD133), yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). We thus propose a new CSC signalling pathway downstream of mtp53 in which Akt regulates WIP and controls YAP/TAZ stability. WIP drives a mechanism that stimulates growth signals, promoting YAP/TAZ and β-catenin stability in a Hippo-independent fashion, which allows cells to coordinate processes such as proliferation, stemness and invasiveness, which are key factors in cancer progression. Based on this multistep tumourigenic model, it is tantalizing to propose that WIP inhibitors may be applied as an effective anti-cancer therapy.
RESUMO
Among sex steroid hormones, progesterone and estradiol have a wide diversity of physiological activities that target the nervous system. Not only are they carried by the blood stream, but also they are locally synthesized in the brain and for this reason, estradiol and progesterone are considered 'neurosteroids'. The physiological actions of both hormones range from brain development and neurotransmission to aging, illustrating the importance of a deep understanding of their mechanisms of action. In this review, we summarize key roles that estradiol and progesterone play in the brain. As numerous reports have confirmed a substantial neuroprotective role for estradiol in models of neurodegenerative disease, we focus this review on traumatic brain injury and stroke models. We describe updated data from receptor and signaling events triggered by both hormones, with an emphasis on the mechanisms that have been reported as 'rapid' or 'cytoplasmic actions'. Data showing the therapeutic effects of the hormones, used alone or in combination, are also summarized, with a focus on rodent models of middle cerebral artery occlusion (MCAO). Finally, we draw attention to evidence that neuroprotection by both hormones might be due to a combination of 'cytoplasmic' and 'nuclear' signaling.
Assuntos
Isquemia Encefálica , Encéfalo/efeitos dos fármacos , Hormônios Esteroides Gonadais/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/prevenção & controle , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Estradiol/farmacologia , Humanos , Modelos Teóricos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/prevenção & controle , Neuroproteção/efeitos dos fármacos , Progesterona/farmacologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/prevenção & controleRESUMO
The cancer stem cell (CSC) hypothesis suggests that tumours are maintained by a subpopulation of cells with stem cell properties. Although the existence of CSCs was initially described in human leukaemia, less evidence exists for CSCs in solid tumours. Recently, a CD133+ cell subpopulation was isolated from human brain tumoursexhibiting stem cell properties in vitro as well as the capacity to initiate tumours in vivo. In the present work, we try to summarize the data showing that some elements of the Phosphoinositide 3-kinase Class I (PI3K)/ Thymoma viral oncogene protein kinase (Akt) pathway, such the activity of PI3K Class I or Akt2, are necessary to maintain the CSC-like phenotype as well as survival of CSCs (also denoted as tumour-initiating cells (TICs)). Our data and other laboratory data permit a working hypothesis in which each Akt isoform plays an important and specific role in CSC/TIC growth, self-renewal, maintaining survival, and epithelial-mesenchymal transition (EMT) phenotype, not only in breast cancer, but also in glioma. We suggest that a more complete understanding is needed of the possible roles of isoforms in human tumours (iso-signalling determination). Thus, a comprehensive analysis of how hierarchical signalling is assembled during oncogenesis, how cancer landmarks are interconnected to favour CSC and tumour growth, and how some protein isoforms play a specific role in CSCs to ensure that survival and proliferation must be done in order to propose/generate new therapeutic approaches (alone or in combination with existing ones) to use against cancer.
RESUMO
PURPOSE: The induction of autophagy has recently been explored as a promising therapeutic strategy to combat Alzheimer's disease. Among many other factors, there is evidence that ceramides/dihydroceramides act as mediators of autophagy, although the exact mechanisms underlying such effects are poorly understood. Here, we describe how two dihydroceramide desaturase inhibitors (XM461 and XM462) trigger autophagy and reduce amyloid secretion by neurons. METHODS: Neurons isolated from wild-type and APP/PS1 transgenic mice were exposed to the two dihydroceramide desaturase inhibitors to assess their effect on these cell's protein and lipid profiles. RESULTS: Both dihydroceramide desaturase inhibitors increased the autophagic vesicles in wild-type neurons, reflected as an increase in LC3-II, and this was correlated with the accumulation of dihydroceramides and dihydrosphingomyelins. Exposing APP/PS1 transgenic neurons to these inhibitors also produced a 50% reduction in amyloid secretion and/or production. The lipidomic defects triggered by these dihydroceramide desaturase inhibitors were correlated with a loss of S6K activity, witnessed by the changes in S6 phosphorylation, which strongly suggested a reduction of mTORC1 activity. CONCLUSIONS: The data obtained strongly suggest that dihydroceramide desaturase 1 activity may modulate autophagy and mTORC1 activity in neurons, inhibiting amyloid secretion and S6K activity. As such, it is tantalizing to propose that dihydroceramide desaturase 1 may be an important therapeutic target to combat amyloidosis.
Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Inibidores Enzimáticos/farmacologia , Neurônios/efeitos dos fármacos , Oxirredutases/antagonistas & inibidores , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Ceramidas/farmacologia , Ceramidas/uso terapêutico , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Oxirredutases/uso terapêutico , Presenilina-1/genética , Cultura Primária de Células , Proteínas Quinases S6 Ribossômicas/metabolismo , Sulfetos/farmacologia , Sulfetos/uso terapêuticoRESUMO
The accumulation of extracellular amyloid-beta (Aß) and intracellular neurofibrillary tangles (hyper-phosphorylated Tau) in the brain are two major neuropathological hallmarks of Alzheimer's disease (AD). Active and passive immunotherapy may limit cerebral Aß deposition and/or accelerate its clearance. With the aid of a newly characterized monoclonal anti-Aß antibody we constructed immunoPEGliposomes with high avidity for capturing Aß in the periphery. The functionality of these vesicles in modulating Aß uptake by both human brain capillary endothelial hCMEC/D3 cells (suppressing uptake) and THP-1 phagocytes (stimulating uptake) was confirmed in vitro. The multivalent immunoliposomes dramatically reduced circulating and brain levels of Aß1-40, and particularly Aß1-42, in "aged" (16 month-old), but not "adult" (10 month-old) APP/PS1 transgenic mice on repeated intraperitoneal administration. Furthermore, the immunoPEGliposome-mediated reduction in amyloidosis correlated with lower levels of glial fibrillary acidic protein (GFAP) and reactive glia (GFAP-positive cells). This treatment also lowered the ratio of phosphorylated Tau to total Tau. The therapeutic efficacy of immunoliposome treatment was superior to free monoclonal antibody administration (at an equivalent antibody dose). The potential mechanisms and significance of age-dependent immunoliposome therapy in AD is discussed.
Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais/administração & dosagem , Encéfalo/metabolismo , Lipossomos/química , Envelhecimento/patologia , Peptídeos beta-Amiloides/sangue , Animais , Encéfalo/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Polietilenoglicóis/química , Resultado do TratamentoRESUMO
In cancer, the deregulation of growth signaling pathways drives changes in the cell's architecture and its environment that allow autonomous growth of tumors. These cells then acquire a tumor-initiating "stemness" phenotype responsible for disease advancement to more aggressive stages. Here, we show that high levels of the actin cytoskeleton-associated protein WIP (WASP-interacting protein) correlates with tumor growth, both of which are linked to the tumor-initiating cell phenotype. We find that WIP controls tumor growth by boosting signals that stabilize the YAP/TAZ complex via a mechanism mediated by the endocytic/endosomal system. When WIP levels are high, the ß-catenin Adenomatous polyposis coli (APC)-axin-GSK3 destruction complex is sequestered to the multi-vesicular body compartment, where its capacity to degrade YAP/TAZ is inhibited. YAP/TAZ stability is dependent on Rac, p21-activated kinase (PAK) and mammalian diaphanous-related formin (mDia), and is Hippo independent. This close biochemical relationship indicates an oncogenic role for WIP in the physiology of cancer pathology by increasing YAP/TAZ stability.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Fosfoproteínas/metabolismo , Actinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Endocitose , Endossomos/metabolismo , Transição Epitelial-Mesenquimal , Humanos , Corpos Multivesiculares/metabolismo , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Fenótipo , Polimerização , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Proteólise , Transdução de Sinais , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , beta Catenina/metabolismoRESUMO
Genital herpes is a painful disease frequently caused by the neurotropic pathogen herpes simplex virus type 2 (HSV-2). We have recently shown that HSV-2-secreted glycoprotein G (SgG2) interacts with and modulates the activity of the neurotrophin nerve growth factor (NGF). This interaction modifies the response of the NGF receptor TrkA, increasing NGF-dependent axonal growth. NGF is not only an axonal growth modulator but also an important mediator of pain and inflammation regulating the amount, localization, and activation of the thermal pain receptor transient receptor potential vanilloid 1 (TRPV1). In this work, we addressed whether SgG2 could contribute to HSV-2-induced pain. Injection of SgG2 in the mouse hindpaw produced a rapid and transient increase in thermal pain sensitivity. At the molecular level, this acute increase in thermal pain induced by SgG2 injection was dependent on differential NGF-induced phosphorylation and in changes in the amount of TrkA and TRPV1 in the dermis. These results suggest that SgG2 alters thermal pain sensitivity by modulating TRPV1 receptor.
Assuntos
Fator de Crescimento Neural/toxicidade , Limiar da Dor/fisiologia , Dor/induzido quimicamente , Dor/metabolismo , Canais de Cátion TRPV/metabolismo , Proteínas do Envelope Viral/toxicidade , Animais , Animais Recém-Nascidos , Células Cultivadas , Temperatura Alta/efeitos adversos , Masculino , Camundongos , Limiar da Dor/efeitos dos fármacosRESUMO
Cerebellar pathology has been related to presenilin 1 mutations in certain pedigrees of familial Alzheimer's disease. However, cerebellum tissue has not been intensively analyzed in transgenic models of mutant presenilins. Furthermore, the effect of the sex of the mice was not systematically analyzed, despite the fact that important gender differences in the evolution of the disease in the human population have been described. We analyzed whether the progression of amyloidosis in a double transgenic mouse, AßPP/PS1, is susceptible to aging and differentially affects males and females. The accumulation of amyloid in the cerebellum differentially affects males and females of the AßPP/PS1 transgenic line, which was found to be ten-fold higher in 15-month-old females. Amyloid-ß accumulation was more evident in the molecular layer of the cerebellum, but glia reaction was only observed in the granular layer of the older mice. The sex divergence was also observed in other neuronal, survival, and autophagic markers. The cerebellum plays an important role in the evolution of the pathology in this transgenic mouse model. Sex differences could be crucial for a complete understanding of this disease. We propose that the human population could be studied in this way. Sex-specific treatment strategies in human populations could show a differential response to the therapeutic approach.
Assuntos
Envelhecimento/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide , Cerebelo/metabolismo , Fragmentos de Peptídeos/metabolismo , Presenilina-1 , Caracteres Sexuais , Envelhecimento/genética , Envelhecimento/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Cerebelo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/genética , Presenilina-1/genéticaRESUMO
PI3K proteins family have multiple and essential functions in most cellular events. This family is composed of class I, class II and class III PI3Ks, which upstream and downstream elements are not completely elucidated. Previous studies using the broad PI3K inhibitor, LY294002 allowed to propose that PI3 kinase>Akt pathway is a key element in the determination of axonal polarity in hippocampal neurons. Recently, new inhibitors with a higher selectivity for class I PI3K have been characterized. In the present study we have examined this widely accepted theory using a new class I PI3K inhibitor (GDC-0941), as well as Akt inhibitors, and PTEN phosphatase constructs to reduce PIP3 levels. Our present data show that both, class I PI3K inhibitor and Akt inhibitor did not alter axon specification in hippocampal neurons, but greatly reduced axon length. However, in the same experiments LY294002 effectively impeded axonal polarization, as previously reported. Our biochemical data show that both, class I PI3K and Akt inhibitors, effectively block downstream elements from Akt to S6K1 activity. Both inhibitors are stable in culture medium along the time period analysed, maintaining the inhibition better than LY294002. Besides, we found evidence that LY294002 directly inhibits mTORC1. However, further analysis using an mTORC1 inhibitor showed no change in neuron polarity. Same result was obtained using a general class III PI3K inhibitor. Interestingly, we found that either, wild-type PTEN, or a phosphatase-dead form of PTEN, disrupted axonal polarization, strongly suggesting that the role of PTEN in axonal polarity can be independent of PIP3.
Assuntos
Axônios/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Cromonas/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Hipocampo/efeitos dos fármacos , Indazóis/farmacologia , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Sulfonamidas/farmacologia , Animais , Axônios/enzimologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Relação Dose-Resposta a Droga , Idade Gestacional , Hipocampo/citologia , Hipocampo/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , TransfecçãoRESUMO
Intense efforts are being undertaken to understand the pathobiology of ischemia and to develop novel and effective treatments. Angiotensin II type 2 receptor (AT2R) is related with a beneficial role in neurodegenerative disorders, including ischemia. However, the underlying molecular mechanism remains elusive. In this study, we have established that AT2R stimulation by C21 compound, a specific AT2R agonist, caused a VEGF upregulation. Using mouse primary cortical neurons exposed to oxygen-glucose deprivation (OGD), we established that this effect was mediated by a mechanism dependent of mTORC1 signaling since mTOR inhibition abolished the C21-induced VEGF upregulation. Also, we have temporally characterized the changes on VEGF levels after ischemia induction in rats using two different approaches: transient and permanent middle cerebral artery occlusion (tMCAO and pMCAO). VEGF levels were permanently augmented after reperfusion (tMCAO) whereas lower levels of VEGF were found after pMCAO, remarkably at 21days. Therefore, C21 compound accelerated the recovery of the neurological status of pMCAO rats, reduced the ischemic damage area and abolished pMCAO-induced VEGF downregulation at 21days. This effect of C21 compound was mainly observed in neurons of the peri-infarct area. Our results suggest that a C21-induced VEGF upregulation may be crucial after an ischemic neuronal insult in both of our experimental approaches. This upregulation was mediated by a mechanism dependent of Akt/mTOR signaling pathway, since mTOR inhibition abolished the VEGF upregulation induced by C21. Considering that VEGF is involved in regenerative processes, we propose that AT2R activation could be used as a potential pharmacological strategy after ischemic stroke.
Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Receptor Tipo 2 de Angiotensina/agonistas , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Células Cultivadas , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Ratos Wistar , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
The process of tumorigenesis induces alterations in numerous cellular pathways including the main eukaryotic metabolic routes. It has been recently demonstrated that autophagy is part of the oncogene-induced senescence phenotype although its role in tumor establishment has not been completely clarified. In the present study, we showed that nontransformed cells are sensitized to mitochondrial stress and autophagy induction when they are transformed by oncogenes such as c-Myc or Ras. We observed that overexpression of c-Myc or Ras increased AMP-activated protein kinase (AMPK) phosphorylation and the expression of p62, a known partner for degradation by autophagy. The activation of AMPK was found to favor the activation of FoxO3 which was prevented by the inhibition of AMPK. The transcriptional activation mediated by FoxO3 upregulated genes such as BNIP3 and LC3. Finally, the transformation by oncogenes such as c-Myc and Ras predisposes tumor cells to autophagy induction as a consequence of mitochondrial stress and impairs tumor growth in vitro and in vivo, which may have therapeutic implications.
Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/fisiologia , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Linhagem Celular Tumoral , Ativação Enzimática , Proteína Forkhead Box O3/metabolismo , Humanos , Células MCF-7 , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Mitocôndrias/patologia , Fosforilação , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas de Ligação a RNA/metabolismo , Ativação TranscricionalRESUMO
Inflammatory response in the nervous system, called neuroinflammation, is a common process of several neurodegenerative diseases and brain disorders. To understand the underlying mechanism of this brain response to damage would be interesting to identify new common therapy targets to neurodegenerative processes. Ischemic stroke has an important socioeconomic impact being the second cause of mortality and the first cause of long-term disability in the world. Until now, there is not any pharmacological treatment to reduce the brain damage induced. In this review, we will expose recent evidences about neuroinflammation after stroke in animal models and in human. We summarize the most relevant information about the inflammatory-cellular component: microglia/ astrocytes response and peripheral blood cells infiltration to the brain describing the key adhesion molecules implicated in this process. Also, we review the inflammatory-molecular response including the beneficial/detrimental role of chemokines and cytokines after ischemia. Currently, female sexual hormones (estradiol and progesterone) are considered as neuroprotective agents. We and others laboratories demonstrated anti-inflammatory actions of these hormones after stroke, modulating not only the cellular response (reducing the reactive gliosis), but also the immune response. Here, we will present the current data about the neuroprotective role of estradiol and progesterone after ischemic injury focused in their anti-inflammatory action. Additionally, we will review the recent information about the mechanism of action of both hormones, including different receptors and signaling pathways. Finally, we will discuss the synergistic or antagonic therapeutic effects when they are administered together.
Assuntos
Anti-Inflamatórios/farmacologia , Hormônios Esteroides Gonadais/farmacologia , Inflamação/complicações , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Feminino , Humanos , Masculino , Doenças Neurodegenerativas/etiologia , Acidente Vascular Cerebral/etiologiaRESUMO
Dyshomeostasis of amyloid-ß peptide (Aß) is responsible for synaptic malfunctions leading to cognitive deficits ranging from mild impairment to full-blown dementia in Alzheimer's disease. Aß appears to skew synaptic plasticity events toward depression. We found that inhibition of PTEN, a lipid phosphatase that is essential to long-term depression, rescued normal synaptic function and cognition in cellular and animal models of Alzheimer's disease. Conversely, transgenic mice that overexpressed PTEN displayed synaptic depression that mimicked and occluded Aß-induced depression. Mechanistically, Aß triggers a PDZ-dependent recruitment of PTEN into the postsynaptic compartment. Using a PTEN knock-in mouse lacking the PDZ motif, and a cell-permeable interfering peptide, we found that this mechanism is crucial for Aß-induced synaptic toxicity and cognitive dysfunction. Our results provide fundamental information on the molecular mechanisms of Aß-induced synaptic malfunction and may offer new mechanism-based therapeutic targets to counteract downstream Aß signaling.