Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Med Phys ; 51(4): 2398-2412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477717

RESUMO

BACKGROUND: Cone-beam CT (CBCT) has been extensively employed in industrial and medical applications, such as image-guided radiotherapy and diagnostic imaging, with a growing demand for quantitative imaging using CBCT. However, conventional CBCT can be easily compromised by scatter and beam hardening artifacts, and the entanglement of scatter and spectral effects introduces additional complexity. PURPOSE: The intertwined scatter and spectral effects within CBCT pose significant challenges to the quantitative performance of spectral imaging. In this work, we present the first attempt to develop a stationary spectral modulator with flying focal spot (SMFFS) technology as a promising, low-cost approach to accurately solving the x-ray scattering problem and physically enabling spectral imaging in a unified framework, and with no significant misalignment in data sampling of spectral projections. METHODS: To deal with the intertwined scatter-spectral challenge, we propose a novel scatter-decoupled material decomposition (SDMD) method for SMFFS, which consists of four steps in total, including (1) spatial resolution-preserved and noise-suppressed multi-energy "residual" projection generation free from scatter, based on a hypothesis of scatter similarity; (2) first-pass material decomposition from the generated multi-energy residual projections in non-penumbra regions, with a structure similarity constraint to overcome the increased noise and penumbra effect; (3) scatter estimation for complete data; and (4) second-pass material decomposition for complete data by using a multi-material spectral correction method. Monte Carlo simulations of a pure-water cylinder phantom with different focal spot deflections are conducted to validate the scatter similarity hypothesis. Both numerical simulations using a clinical abdominal CT dataset, and physics experiments on a tabletop CBCT system using a Gammex multi-energy CT phantom and an anthropomorphic chest phantom, are carried out to demonstrate the feasibility of CBCT spectral imaging with SMFFS and our proposed SDMD method. RESULTS: Monte Carlo simulations show that focal spot deflections within a range of 2 mm share quite similar scatter distributions overall. Numerical simulations demonstrate that SMFFS with SDMD method can achieve better material decomposition and CT number accuracy with fewer artifacts. In physics experiments, for the Gammex phantom, the average error of the mean values ( E RMSE ROI $E^{\text{ROI}}_{\text{RMSE}}$ ) in selected regions of interest (ROIs) of virtual monochromatic image (VMI) at 70 keV is 8 HU in SMFFS cone-beam (CB) scan, and 19 and 210 HU in sequential 80/120 kVp (dual kVp, DKV) CB scan with and without scatter correction, respectively. For the chest phantom, the E RMSE ROI $E^{\text{ROI}}_{\text{RMSE}}$ in selected ROIs of VMIs is 12 HU for SMFFS CB scan, and 15 and 438 HU for sequential 80/140 kVp CB scan with and without scatter correction, respectively. Also, the non-uniformity among selected regions of the chest phantom is 14 HU for SMFFS CB scan, and 59 and 184 HU for the DKV CB scan with and without a traditional scatter correction method, respectively. CONCLUSIONS: We propose a SDMD method for CBCT with SMFFS. Our preliminary results show that SMFFS can enable spectral imaging with simultaneous scatter correction for CBCT and effectively improve its quantitative imaging performance.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Processamento de Imagem Assistida por Computador/métodos , Espalhamento de Radiação , Fenômenos Físicos , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico/métodos , Artefatos , Algoritmos
2.
STAR Protoc ; 4(2): 102281, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149859

RESUMO

Lower-grade gliomas exhibit a high prevalence of isocitrate dehydrogenase 1 (IDH1) mutations, but faithful models for studying these tumors are lacking. Here, we present a protocol to establish a genetically engineered mouse (GEM) model of grade 3 astrocytoma driven by the Idh1R132H oncogene. We describe steps for breeding compound transgenic mice and intracranially delivering adeno-associated virus particles, followed by post-surgical surveillance via magnetic resonance imaging. This protocol enables the generation and use of a GEM to study lower-grade IDH-mutant gliomas. For complete details on the use and execution of this protocol, please refer to Shi et al. (2022).1.

3.
Med Phys ; 50(7): 4459-4465, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060293

RESUMO

BACKGROUND: High precision radiotherapy with small irradiator size has potential in many treatment applications involving small shallow targets, with small animal radio-neuromodulation as an intriguing example. A focused kV technique based on novel usage of polycapillary x-ray lenses can focus x-ray beams to <0.2 mm in diameter, which is ideal for such uses. PURPOSE: Such an application also requires high resolution CT images for treatment planning and setup. In this work, we demonstrate the feasibility of using a virtual focal spot generated with an x-ray lens to perform high-resolution CBCT acquisition. METHOD: The experiment with x-ray lens was set up on an x-ray tabletop system to generate a virtual focal spot. The flood field images with and without the x-ray lens were first compared. A pinhole image was acquired for the virtual focal spot and compared with the one acquired with the conventional focal spot without the lens. The planar imaging resolution with and without the lens were evaluated using a line pair resolution phantom. The spatial resolution of the two settings were estimated by reconstructing a 0.15-mm wire phantom and comparing its full width half maximum (FWHM). A CBCT scan of a rodent head was also acquired to further demonstrate the improved resolution using the x-ray lens. RESULT: The proposed imaging setup with x-ray lens had a limited exposure area of 5 cm by 5 cm on the detector, which was suitable for guiding radio-neuromodulation to a small target in rodent brain. Compared to conventional imaging acquisition with a measured x-ray focal spot of 0.395 mm FWHM, the virtual focal spot size was measured at 0.175 mm. The reduction in focal spot size with lens leads to an almost doubled planar imaging resolution and a 26% enhancement in 3D spatial resolution. A realistic CBCT acquisition of a rodent head mimicked the imaging acquisition step for radio-neuromodulation and further showed the improved visualization for fine structures. CONCLUSION: This work demonstrated that the focused kV x-ray technique was capable of generating small focal spot size of <0.2 mm, which substantially improved x-ray imaging resolution for small animal imaging.


Assuntos
Cabeça , Animais , Raios X , Radiografia , Imagens de Fantasmas , Cabeça/diagnóstico por imagem
4.
Cancer Cell ; 40(9): 939-956.e16, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985343

RESUMO

Mutations affecting isocitrate dehydrogenase (IDH) enzymes are prevalent in glioma, leukemia, and other cancers. Although mutant IDH inhibitors are effective against leukemia, they seem to be less active in aggressive glioma, underscoring the need for alternative treatment strategies. Through a chemical synthetic lethality screen, we discovered that IDH1-mutant glioma cells are hypersensitive to drugs targeting enzymes in the de novo pyrimidine nucleotide synthesis pathway, including dihydroorotate dehydrogenase (DHODH). We developed a genetically engineered mouse model of mutant IDH1-driven astrocytoma and used it and multiple patient-derived models to show that the brain-penetrant DHODH inhibitor BAY 2402234 displays monotherapy efficacy against IDH-mutant gliomas. Mechanistically, this reflects an obligate dependence of glioma cells on the de novo pyrimidine synthesis pathway and mutant IDH's ability to sensitize to DNA damage upon nucleotide pool imbalance. Our work outlines a tumor-selective, biomarker-guided therapeutic strategy that is poised for clinical translation.


Assuntos
Neoplasias Encefálicas , Glioma , Leucemia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Inibidores Enzimáticos/uso terapêutico , Glioma/tratamento farmacológico , Glioma/genética , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos , Mutação , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Salicilanilidas , Triazóis
5.
J Med Imaging (Bellingham) ; 9(Suppl 1): 012205, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35309720

RESUMO

Purpose: For 50 years now, SPIE Medical Imaging (MI) conferences have been the premier forum for disseminating and sharing new ideas, technologies, and concepts on the physics of MI. Approach: Our overarching objective is to demonstrate and highlight the major trajectories of imaging physics and how they are informed by the community and science present and presented at SPIE MI conferences from its inception to now. Results: These contributions range from the development of image science, image quality metrology, and image reconstruction to digital x-ray detectors that have revolutionized MI modalities including radiography, mammography, fluoroscopy, tomosynthesis, and computed tomography (CT). Recent advances in detector technology such as photon-counting detectors continue to enable new capabilities in MI. Conclusion: As we celebrate the past 50 years, we are also excited about what the next 50 years of SPIE MI will bring to the physics of MI.

6.
Med Phys ; 49(5): 3523-3528, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35067940

RESUMO

PURPOSE: Organ autosegmentation efforts to date have largely been focused on adult populations, due to limited availability of pediatric training data. Pediatric patients may present additional challenges for organ segmentation. This paper describes a dataset of 359 pediatric chest-abdomen-pelvis and abdomen-pelvis Computed Tomography (CT) images with expert contours of up to 29 anatomical organ structures to aid in the evaluation and development of autosegmentation algorithms for pediatric CT imaging. ACQUISITION AND VALIDATION METHODS: The dataset collection consists of axial CT images in Digital Imaging and Communications in Medicine (DICOM) format of 180 male and 179 female pediatric chest-abdomen-pelvis or abdomen-pelvis exams acquired from one of three CT scanners at Children's Wisconsin. The datasets represent random pediatric cases based upon routine clinical indications. Subjects ranged in age from 5 days to 16 years, with a mean age of 7 years. The CT acquisition, contrast, and reconstruction protocols varied across the scanner models and patients, with specifications available in the DICOM headers. Expert contours were manually labeled for up to 29 organ structures per subject. Not all contours are available for all subjects, due to limited field of view or unreliable contouring due to high noise. DATA FORMAT AND USAGE NOTES: The data are available on The Cancer Imaging Archive (TCIA_ (https://www.cancerimagingarchive.net/) under the collection Pediatric-CT-SEG. The axial CT image slices for each subject are available in DICOM format. The expert contours are stored in a single DICOM RTSTRUCT file for each subject. The contour names are listed in Table 2. POTENTIAL APPLICATIONS: This dataset will enable the evaluation and development of organ autosegmentation algorithms for pediatric populations, which exhibit variations in organ shape and size across age. Automated organ segmentation from CT images has numerous applications including radiation therapy, diagnostic tasks, surgical planning, and patient-specific organ dose estimation.


Assuntos
Abdome , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Adulto , Algoritmos , Criança , Feminino , Humanos , Masculino , Pelve/diagnóstico por imagem , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos
7.
Med Phys ; 48(12): 8075-8088, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34669975

RESUMO

PURPOSE: The risk of inducing cancer to patients undergoing CT examinations has motivated efforts for CT dose estimation, monitoring, and reduction, especially among pediatric population. The method investigated in this study is Acuros CTD (Varian Medical Systems, Palo Alto, CA), a deterministic linear Boltzmann transport equation (LBTE) solver aimed at generating rapid and reliable dose maps of CT exams. By applying organ contours, organ doses can also be obtained, thus patient-specific organ dose estimates can be provided. This study experimentally validated Acuros against measurements performed on a clinical CT system using a range of physical pediatric anthropomorphic phantoms and acquisition protocols. METHODS: The study consisted of (1) the acquisition of dose measurements on a clinical CT scanner through thermoluminescent dosimeters (TLDs), and (2) the modeling in the Acuros platform of the measurement set up, which includes the modeling of the CT scanner and of the anthropomorphic phantoms. For the measurements, 1-year-old, 5-year-old, and 10-year-old anthropomorphic phantoms of the CIRS ATOM family were used. TLDs were placed in selected organ locations such as stomach, liver, lungs, and heart. The pediatric phantoms were scanned helically with the GE Discovery 750 HD clinical scanner for several examination protocols. For the simulations in Acuros, scanner-specific input, such as bowtie filters, overrange collimation, and tube current modulation schemes, were modeled. These scanner complexities were implemented by defining discretized X-ray beams whose spectral distribution, defined in Acuros by only six energy bins, varied across fan angle, cone angle, and slice position. The images generated during the CT acquisitions were used to create the geometrical models, by applying thresholding algorithms and assigning materials to the HU values. The TLDs were contoured in the phantom models as sensitive cylindrical volumes at the locations selected for dosimeters placement, to provide dose estimates, in terms of dose per unit photon. To compare measured doses with dose estimates, a calibration factor was derived from the CTDIvol displayed by the scanner, to account for the number of photons emitted by the X-ray tube during the procedure. RESULTS: The differences of the measured and estimated doses, in terms of absolute % errors, were within 13% for 153 TLD locations, with an error of 17% at the stomach for one study with the 10-year-old phantom. Root-mean-squared-errors (RMSE) across all TLD locations for all configurations were in the range of 3%-8%, with Acuros providing dose estimates in a time range of a few seconds up to 2 min. CONCLUSIONS: An overall good agreement between measurements and simulations was achieved, with average RMSE of 6% across all cases. The results demonstrate that Acuros can model a specific clinical scanner despite the required discretization in spatial and energy domains. The proposed deterministic tool has the potential to be part of a near real-time individualized dosimetry monitoring system for CT applications, providing patient-specific organ dose estimates.


Assuntos
Radiometria , Tomografia Computadorizada por Raios X , Criança , Pré-Escolar , Humanos , Lactente , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Doses de Radiação
8.
Med Phys ; 48(10): 6482-6496, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34374461

RESUMO

PURPOSE: Metal artifact remains a challenge in cone-beam CT images. Many image domain-based segmentation methods have been proposed for metal artifact reduction (MAR), which require two-pass reconstruction. Such methods first segment metal from a first-pass reconstruction and then forward-project the metal mask to identify them in projections. These methods work well in general but are limited when the metal is outside the scan field-of-view (FOV) or when the metal is moving during the scan. In the former, even reconstructing with a larger FOV does not guarantee a good estimate of metal location in the projections; and in the latter, the metal location in each projection is difficult to identify due to motion. Single-pass methods that detect metal in single-energy projections have also been developed, but often have imperfect metal detection that leads to residual artifacts. In this work, we develop a MAR method using a dual-layer (DL) flat panel detector, which improves performance for single-pass reconstruction. METHODS: In this work, we directly detect metal objects in projections using dual-energy (DE) imaging that generates material-specific images (e.g., soft tissue and bone), where the metal stands out in bone images when nonuniform soft tissue background is removed. Metal is detected via simple thresholding, and entropy filtration is further applied to remove false-positive detections. A DL detector provides DE images with superior temporal and spatial registration and was used to perform the task. Scatter correction was first performed on DE raw projections to improve the accuracy of material decomposition. One phantom mimicking a liver biopsy setup and a cadaver head were used to evaluate the metal reduction performance of the proposed method and compared with that of a standard two-pass reconstruction, a previously published sinogram-based method using a Markov random field (MRF) model, and a single-pass projection-domain method using single-energy imaging. The phantom has a liver steering setup placed in a hollow chest phantom, with embedded metal and a biopsy needle crossing the phantom boundary. The cadaver head has dental fillings and a metal tag attached to its surface. The identified metal regions in each projection were corrected by interpolation using surrounding pixels, and the images were reconstructed using filtered backprojection. RESULTS: Our current approach removes metal from the projections, which is robust to FOV truncation during imaging acquisition. In case of FOV truncation, the method outperformed the two-pass reconstruction method. The proposed method using DE renders better accuracy in metal segmentation than the MRF method and single-energy method, which were prone to false-positive errors that cause additional streaks. For the liver steering phantom, the average spatial nonuniformity was reduced from 0.127 in uncorrected images to 0.086 using a standard two-pass reconstruction and to 0.077 using the proposed method. For the cadaver head, the average standard deviation within selected soft tissue regions ( σ s ) was reduced from 209.1 HU in uncorrected images to 69.1 HU using a standard two-pass reconstruction and to 46.8 HU using our proposed method. The proposed method reduced the processing time by 31% as compared with the two-pass method. CONCLUSIONS: We proposed a MAR method that directly detects metal in the projection domain using DE imaging, which is robust to truncation and superior to that of single-energy imaging. The method requires only a single-pass reconstruction that substantially reduces processing time compared with the standard two-pass metal reduction method.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Algoritmos , Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Radiografia
9.
Med Phys ; 48(10): 5837-5850, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34387362

RESUMO

PURPOSE: Image guidance for minimally invasive interventions is usually performed by acquiring fluoroscopic images using a monoplanar or a biplanar C-arm system. However, the projective data provide only limited information about the spatial structure and position of interventional tools and devices such as stents, guide wires, or coils. In this work, we propose a deep learning-based pipeline for real-time tomographic (four-dimensional [4D]) interventional guidance at conventional dose levels. METHODS: Our pipeline is comprised of two steps. In the first one, interventional tools are extracted from four cone-beam CT projections using a deep convolutional neural network. These projections are then Feldkamp reconstructed and fed into a second network, which is trained to segment the interventional tools and devices in this highly undersampled reconstruction. Both networks are trained using simulated CT data and evaluated on both simulated data and C-arm cone-beam CT measurements of stents, coils, and guide wires. RESULTS: The pipeline is capable of reconstructing interventional tools from only four X-ray projections without the need for a patient prior. At an isotropic voxel size of 100 µ m , our methods achieve a precision/recall within a 100 µ m environment of the ground truth of 93%/98%, 90%/71%, and 93%/76% for guide wires, stents, and coils, respectively. CONCLUSIONS: A deep learning-based approach for 4D interventional guidance is able to overcome the drawbacks of today's interventional guidance by providing full spatiotemporal (4D) information about the interventional tools at dose levels comparable to conventional fluoroscopy.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada de Feixe Cônico , Fluoroscopia , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Raios X
10.
IEEE Trans Biomed Circuits Syst ; 15(2): 221-234, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33760741

RESUMO

The paper presents a 256-pixel CMOS sensor array with in-pixel dual electrochemical and impedance detection modalities for rapid, multi-dimensional characterization of exoelectrogens. The CMOS IC has 16 parallel readout channels, allowing it to perform multiple measurements with a high throughput and enable the chip to handle different samples simultaneously. The chip contains a total of 2 × 256 working electrodes of size 44 µm × 52 µm, along with 16 reference electrodes of dimensions 56 µm × 399 µm and 32 counter electrodes of dimensions 399 µm × 106 µm, which together facilitate the high resolution screening of the test samples. The chip was fabricated in a standard 130nm BiCMOS process. The on-chip electrodes are subjected to additional fabrication processes, including a critical Al-etch step that ensures the excellent biocompatibility and long-term reliability of the CMOS sensor array in bio-environment. The electrochemical sensing modality is verified by detecting the electroactive analyte NaFeEDTA and the exoelectrogenic Shewanella oneidensis MR-1 bacteria, illustrating the chip's ability to quantify the generated electrochemical current and distinguish between different analyte concentrations. The impedance measurements with the HEK-293 cancer cells cultured on-chip successfully capture the cell-to-surface adhesion information between the electrodes and the cancer cells. The reported CMOS sensor array outperforms the conventional discrete setups for exoelectrogen characterization in terms of spatial resolution and speed, which demonstrates the chip's potential to radically accelerate synthetic biology engineering.


Assuntos
Shewanella , Impedância Elétrica , Células HEK293 , Humanos , Reprodutibilidade dos Testes
11.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33547076

RESUMO

Most intracellular proteins lack hydrophobic pockets suitable for altering their function with drug-like small molecules. Recent studies indicate that some undruggable proteins can be targeted by compounds that can degrade them. For example, thalidomide-like drugs (IMiDs) degrade the critical multiple myeloma transcription factors IKZF1 and IKZF3 by recruiting them to the cereblon E3 ubiquitin ligase. Current loss of signal ("down") assays for identifying degraders often exhibit poor signal-to-noise ratios, narrow dynamic ranges, and false positives from compounds that nonspecifically suppress transcription or translation. Here, we describe a gain of signal ("up") assay for degraders. In arrayed chemical screens, we identified novel IMiD-like IKZF1 degraders and Spautin-1, which, unlike the IMiDs, degrades IKZF1 in a cereblon-independent manner. In a pooled CRISPR-Cas9-based screen, we found that CDK2 regulates the abundance of the ASCL1 oncogenic transcription factor. This methodology should facilitate the identification of drugs that directly or indirectly degrade undruggable proteins.


Assuntos
Proteínas Oncogênicas , Proteólise , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzilaminas , Sistemas CRISPR-Cas , Humanos , Fator de Transcrição Ikaros/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Proteólise/efeitos dos fármacos , Quinazolinas , Talidomida/análise , Talidomida/farmacologia , Fatores de Transcrição
12.
Phys Med Biol ; 66(13)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33472189

RESUMO

Simultaneous acquisition of cone beam CT (CBCT) projections using both the kV and MV imagers of an image guided radiotherapy system reduces set-up scan times-a benefit to lung cancer radiation oncology patients-but increases noise in the 3D reconstruction. In this article, we present a kV-MV scan time reduction technique that uses two noise-reducing measures to achieve superior performance. The first is a high-DQE multi-layer MV imager prototype. The second is a beam hardening correction algorithm which combines poly-energetic modeling with edge-preserving, regularized smoothing of the projections. Performance was tested in real acquisitions of the Catphan 604 and a thorax phantom. Percent noise was quantified from voxel values in a soft tissue volume of interest (VOI) while edge blur was quantified from a VOI straddling a boundary between air and soft material. Comparisons in noise/resolution performance trade-off were made between our proposed approach, a dose-equivalent kV-only scan, and a kV-MV reconstruction technique previously published by Yinet al(2005Med. Phys.329). The proposed technique demonstrated lower noise as a function of spatial resolution than the baseline kV-MV method, notably a 50% noise reduction at typical edge blur levels. Our proposed method also exhibited fainter non-uniformity artifacts and in some cases superior contrast. Overall, we find that the combination of a multi-layer MV imager, acquiring at a LINAC source energy of 2.5 MV, and a denoised beam hardening correction algorithm enables noise, resolution, and dose performance comparable to standard kV-imager only set-up CBCT, but with nearly half the gantry rotation time.


Assuntos
Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico , Humanos , Aceleradores de Partículas , Imagens de Fantasmas
13.
Adv Radiat Oncol ; 5(5): 1006-1013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33089019

RESUMO

PURPOSE: To describe and characterize fast-kV switching, dual-energy (DE) imaging implemented within the on-board imager of a commercial linear accelerator for markerless tumor tracking (MTT). METHODS AND MATERIALS: Fast-kV switching, DE imaging provides for rapid switching between programmed tube voltages (ie, 60 and 120 kVp) from one image frame to the next. To characterize this system, the weighting factor used for logarithmic subtraction and signal difference-to-noise ratio were analyzed as a function of time and frame rate. MTT was evaluated using a thorax motion phantom and fast kV, DE imaging was compared versus single energy (SE) imaging over 360 degrees of rotation. A template-based matching algorithm was used to track target motion on both DE and SE sequences. Receiver operating characteristics were used to compare tracking results for both modalities. RESULTS: The weighting factor was inversely related to frame rate and stable over time. After applying the frame rate-dependent weighting factor, the signal difference-to-noise ratio was consistent across all frame rates considered for simulated tumors ranging from 5 to 25 mm in diameter. An analysis of receiver operating characteristics curves showed improved tracking with DE versus SE imaging. The area under the curve for the 10-mm target ranged from 0.821 to 0.858 for SE imaging versus 0.968 to 0.974 for DE imaging. Moreover, the residual tracking errors for the same target size ranged from 2.02 to 2.18 mm versus 0.79 to 1.07 mm for SE and DE imaging, respectively. CONCLUSIONS: Fast-kV switching, DE imaging was implemented on the on-board imager of a commercial linear accelerator. DE imaging resulted in improved MTT accuracy over SE imaging. Such an approach may have application for MTT of patients with lung cancer receiving stereotactic body radiation therapy, particularly for small tumors where MTT with SE imaging may fail.

14.
Med Phys ; 47(12): 6470-6483, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32981038

RESUMO

PURPOSE: Epidemiological evidence suggests an increased risk of cancer related to computed tomography (CT) scans, with children exposed to greater risk. The purpose of this work is to test the reliability of a linear Boltzmann transport equation (LBTE) solver for rapid and patient-specific CT dose estimation. This includes building a flexible LBTE framework for modeling modern clinical CT scanners and to validate the resulting dose maps across a range of realistic scanner configurations and patient models. METHODS: In this study, computational tools were developed for modeling CT scanners, including a bowtie filter, overrange collimation, and tube current modulation. The LBTE solver requires discretization in the spatial, angular, and spectral dimensions, which may affect the accuracy of scanner modeling. To investigate these effects, this study evaluated the LBTE dose accuracy for different discretization parameters, scanner configurations, and patient models (male, female, adults, pediatric). The method used to validate the LBTE dose maps was the Monte Carlo code Geant4, which provided ground truth dose maps. LBTE simulations were implemented on a GeForce GTX 1080 graphic unit, while Geant4 was implemented on a distributed cluster of CPUs. RESULTS: The agreement between Geant4 and the LBTE solver quantifies the accuracy of the LBTE, which was similar across the different protocols and phantoms. The results suggest that 18 views per rotation provides sufficient accuracy, as no significant improvement in the accuracy was observed by increasing the number of projection views. Considering this discretization, the LBTE solver average simulation time was approximately 30 s. However, in the LBTE solver the phantom model was implemented with a lower voxel resolution with respect to Geant4, as it is limited by the memory of the GPU. Despite this discretization, the results showed a good agreement between the LBTE and Geant4, with root mean square error of the dose in organs of approximately 3.5% for most of the studied configurations. CONCLUSIONS: The LBTE solver is proposed as an alternative to Monte Carlo for patient-specific organ dose estimation. This study demonstrated accurate organ dose estimates for the rapid LBTE solver when considering realistic aspects of CT scanners and a range of phantom models. Future plans will combine the LBTE framework with deep learning autosegmentation algorithms to provide near real-time patient-specific organ dose estimation.


Assuntos
Benchmarking , Tomografia Computadorizada por Raios X , Adulto , Criança , Feminino , Humanos , Masculino , Método de Monte Carlo , Imagens de Fantasmas , Doses de Radiação , Reprodutibilidade dos Testes
15.
Med Phys ; 47(8): 3332-3343, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32347561

RESUMO

PURPOSE: Dual-energy (DE) x-ray imaging has many clinical applications in radiography, fluoroscopy, and CT. This work characterizes a prototype dual-layer (DL) flat-panel detector (FPD) and investigates its DE imaging capabilities for applications in two-dimensional (2D) radiography/fluoroscopy and quantitative three-dimensional (3D) cone-beam CT. Unlike other DE methods like kV switching, a DL FPD obtains DE images from a single exposure, making it robust against patient and system motion. METHODS: The DL FPD consists of a top layer with a 200 µm-thick CsI scintillator coupled to an amorphous silicon (aSi) FPD of 150 µm pixel size and a bottom layer with a 550 µm thick CsI scintillator coupled to an identical aSi FPD. The two layers are separated by a 1-mm Cu filter to increase spectral separation. Images (43 × 43 cm2 active area) can be readout in 2 × 2 binning mode (300 µm pixels) at up to 15 frames per second. Detector performance was first characterized by measuring the MTF, NPS, and DQE for the top and bottom layers. For 2D applications, a qualitative study was conducted using an anthropomorphic thorax phantom containing a porcine heart with barium-filled coronary arteries (similar to iodine). Additionally, fluoroscopic lung tumor tracking was investigated by superimposing a moving tumor phantom on the thorax phantom. Tracking accuracies of single-energy (SE) and DE fluoroscopy were compared against the ground truth motion of the tumor. For 3D quantitative imaging, a phantom containing water, iodine, and calcium inserts was used to evaluate overall DE material decomposition capabilities. Virtual monoenergetic (VM) images ranging from 40 to 100 keV were generated, and the optimal VM image energy which achieved the highest image uniformity and maximum contrast-to-noise ratio (CNR) was determined. RESULTS: The spatial resolution of the top layer was substantially higher than that of the bottom layer (top layer 50% MTF = 2.2 mm-1 , bottom layer = 1.2 mm-1 ). A substantial increase in NNPS and reduction in DQE were observed for the bottom layer mainly due to photon loss within the top layer and Cu filter. For 2D radiographic and fluoroscopic applications, the DL FPD was capable of generating high-quality material-specific images separating soft tissue from bone and barium. For lung tumor tracking, DE fluoroscopy yielded more accurate results than SE fluoroscopy, with an average reduction in the root mean square error (RMSE) of over 10×. For the DE-CBCT studies, accurate basis material decompositions were obtained. The estimated material densities were 294.68  ±  17.41 and 92.14  ±  15.61 mg/ml for the 300 and 100 mg/ml calcium inserts, respectively, and 8.93  ±  1.45, 4.72  ±  1.44, and 2.11  ±  1.32 mg/ml for the 10, 5, and 2 mg/ml iodine inserts, respectively, with an average error of less than 5%. The optimal VM image energy was found to be 60 keV. CONCLUSIONS: We characterized a prototype DL FPD and demonstrated its ability to perform accurate single-exposure DE radiography/fluoroscopy and DE-CBCT. The merits of the DL detector approach include superior spatial and temporal registration between its constituent images, and less complicated acquisition sequences.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Imageamento Tridimensional , Animais , Fluoroscopia , Humanos , Imagens de Fantasmas , Radiografia , Suínos
16.
Phys Med Biol ; 65(1): 015013, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31775131

RESUMO

To evaluate fast-kV switching (FS) dual energy (DE) cone beam computed tomography (CBCT) using the on-board imager (OBI) of a commercial linear accelerator to produce virtual monoenergetic (VM) and relative electron density (RED) images. Using an polynomial attenuation mapping model, CBCT phantom projections obtained at 80 and 140 kVp with FS imaging, were decomposed into equivalent thicknesses of aluminum (Al) and polymethyl methacrylate (PMMA). All projections were obtained with the titanium foil and bowtie filter in place. Basis material projections were then recombined to create VM images by using the linear attenuation coefficients at the specified energy for each material. Similarly, RED images were produced by replacing the linear attenuation values of Al and PMMA by their respective RED values in the projection space. VM and RED images were reconstructed using Feldkamp-Davis-Kress (FDK) and an iterative algorithm (iCBCT, Varian Medical Systems). Hounsfield units (HU), contrast-to-noise ratio (CNR) and RED values were compared against known values. The results after VM-CBCT production showed good material decomposition and consistent HUVM values, with measured root mean square errors (RMSE) from theoretical values, after FDK reconstruction, of 20.5, 5.7, 12.8 and 21.7 HU for 50, 80, 100 and 150 keV, respectively. The largest CNR improvements, when compared to polychromatic images, were observed for the 50 keV VM images. Image noise was reduced up to 28% in the VM-CBCT images after iterative image reconstruction. RED values measured for our method resulted in a mean percentage error of 0.0% ± 1.8%. This study describes a method to generate VM-CBCT and RED images using FS-DE scans obtained using the OBI of a linac, including the effects of the bowtie filter. The creation of VM and RED images increases the dynamic range of CBCT images, and provides additional data that may be used for adaptive radiotherapy, and on table verification for radiotherapy treatments.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Aceleradores de Partículas/instrumentação , Imagens de Fantasmas , Humanos
17.
Med Phys ; 46(7): 3235-3244, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31059124

RESUMO

PURPOSE: To evaluate markerless tumor tracking (MTT) using fast-kV switching dual-energy (DE) fluoroscopy on a bench top system. METHODS: Fast-kV switching DE fluoroscopy was implemented on a bench top which includes a turntable stand, flat panel detector, and x-ray tube. The customized generator firmware enables consecutive x-ray pulses that alternate between programmed high and low energies (e.g., 60 and 120 kVp) with a maximum frame rate of 15 Hz. In-house software was implemented to perform weighted DE subtraction of consecutive images to create an image sequence that removes bone and enhances soft tissues. The weighting factor was optimized based on gantry angle. To characterize this system, a phantom was used that simulates the chest anatomy and tumor motion in the lung. Five clinically relevant tumor sizes (5-25 mm diameter) were considered. The targets were programmed to move in the inferior-superior direction of the phantom, perpendicular to the x-ray beam, using a cos4 waveform to mimic respiratory motion. Target inserts were then tracked with MTT software using a template matching method. The optimal computed tomography (CT) slice thickness for template generation was also evaluated. Tracking success rate and accuracy were calculated in regions of the phantom where the target overlapped ribs vs spine, to compare the performance of single energy (SE) and DE imaging methods. RESULTS: For the 5 mm target, a CT slice thickness of 0.75 mm resulted in the lowest tracking error. For the larger targets (≥10 mm) a CT slice thickness ≤2 mm resulted in comparable tracking errors for SE and DE images. Overall DE imaging improved MTT accuracy, relative to SE imaging, for all tumor targets in a rotational acquisition. Compared to SE, DE imaging increased tracking success rate of small target inserts (5 and 10 mm). For fast motion tracking, success rates improved from 23% to 64% and 74% to 90% for 5 and 10 mm targets inserts overlapping ribs, respectively. For slow moving targets success rates improved from 19% to 59% and 59% to 91% in 5 and 10 mm targets overlapping the ribs, respectively. Similar results were observed when the targets overlapped the spine. For larger targets (≥15 mm) tracking success rates were comparable using SE and DE imaging. CONCLUSION: This work presents the first results of MTT using fast-kV switching DE fluoroscopy. Using DE imaging has improved the tracking accuracy of MTT, especially for small targets. The results of this study will guide the future implementation of fast-kV switching DE imaging using the on-board imager of a linear accelerator.


Assuntos
Fluoroscopia/instrumentação , Neoplasias Pulmonares/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/fisiopatologia , Movimento , Imagens de Fantasmas , Rotação , Software , Fatores de Tempo
18.
Phys Med Biol ; 64(6): 065015, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30721886

RESUMO

The quantitative use of cone beam computed tomography (CBCT) in radiation therapy is limited by severe shading artifacts, even with system embedded correction. We recently proposed effective shading correction methods, using planning CT (pCT) as prior information to estimate low-frequency errors in either the projection domain or image domain. In this work, we further improve the clinical practicality of our previous methods by removing the requirement of prior pCT images. Clinical CBCT images are typically composed of a limited number of tissues. By utilizing the low frequency characteristic of shading distribution, we first generate a 'shading-free' template image by enforcing uniformity on CBCT voxels of the same tissue type via a technique named partitioned tissue classification. Only a small subset of voxels in the template image are used in the correction process to generate sparse samples of shading artifacts. Local filtration, a Fourier transform based algorithm, is employed to efficiently process the sparse errors to compute a full-field distribution of shading artifacts for CBCT correction. We evaluate the method's performance using an anthropomorphic pelvis phantom and 6 pelvis patients. The proposed method improves the image quality of CBCT for both phantom and patients to a level matching that of pCT. On the pelvis phantom, the signal non-uniformity (SNU) is reduced from 12.11% to 3.11% and 8.40% to 2.21% on fat and muscle, respectively. The maximum CT number error is reduced from 70 to 10 HU and 73 to 11 HU on fat and muscle, respectively. On patients, the average SNU is reduced from 9.22% to 1.06% and 11.41% to 1.67% on fat and muscle, respectively. The maximum CT number error is reduced from 95 to 9 HU and 88 to 8 HU on fat and muscle, respectively. The typical processing time for one CBCT dataset is about 45 s on a standard PC.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Pelve/diagnóstico por imagem , Imagens de Fantasmas , Humanos , Masculino , Músculos/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem
19.
Proc Natl Acad Sci U S A ; 116(7): 2539-2544, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30683719

RESUMO

Current systems for modulating the abundance of proteins of interest in living cells are powerful tools for studying protein function but differ in terms of their complexity and ease of use. Moreover, no one system is ideal for all applications, and the best system for a given protein of interest must often be determined empirically. The thalidomide-like molecules (collectively called the IMiDs) bind to the ubiquitously expressed cereblon ubiquitin ligase complex and alter its substrate specificity such that it targets the IKZF1 and IKZF3 lymphocyte transcription factors for destruction. Here, we mapped the minimal IMiD-responsive IKZF3 degron and show that this peptidic degron can be used to target heterologous proteins for destruction with IMiDs in a time- and dose-dependent manner in cultured cells grown ex vivo or in vivo.


Assuntos
Peptídeos/metabolismo , Proteínas/metabolismo , Talidomida/análogos & derivados , Animais , Barreira Hematoencefálica , Fator de Transcrição Ikaros/metabolismo , Camundongos , Proteólise , Talidomida/farmacocinética , Talidomida/farmacologia , Transativadores/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitinação
20.
Phys Med Biol ; 64(3): 03NT01, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30566913

RESUMO

Dual-energy (DE) imaging using planar imaging with an on-board imager (OBI) is being considered in radiotherapy. We describe here a custom phantom designed to optimize DE imaging parameters using the OBI of a commercial linear accelerator. The phantom was constructed of lung-, tissue- and bone-equivalent material slabs. Five simulated tumors located at two different depths were encased in the lung-equivalent materials. Two slabs with bone-equivalent material inserts were constructed to simulate ribs, which overlap the simulated tumors. DE bone suppression was performed using a weighted logarithmic subtraction based on an iterative method that minimized the contrast between simulated bone- and lung-equivalent materials. The phantom was subsequently used to evaluate different combinations of high-low kV x-ray pairs of images based on the signal-difference-to-noise ratio (SDNR) metric. The results show a strong correlation between tumor visibility and selected energy pairs, where higher energy separation leads to larger SDNR values. To evaluate the effect of image post-processing methods on tumor visibility, an anti-correlated noise reduction (ACNR) technique and adaptive kernel scatter correction method were applied to subsequent DE images. Application of the ACNR technique approximately doubled the SDNR values, hence increasing tumor visibility, while scatter correction had little effect on SDNR values. This phantom allows for quick image acquisition and optimization of imaging parameters and weighting factors. Optimized DE imaging increases soft tissue visibility and may allow for markerless motion tracking of lung tumors.


Assuntos
Imagens de Fantasmas , Radiografia/instrumentação , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Movimento , Aceleradores de Partículas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA