Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Med Phys ; 51(4): 2398-2412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477717

RESUMO

BACKGROUND: Cone-beam CT (CBCT) has been extensively employed in industrial and medical applications, such as image-guided radiotherapy and diagnostic imaging, with a growing demand for quantitative imaging using CBCT. However, conventional CBCT can be easily compromised by scatter and beam hardening artifacts, and the entanglement of scatter and spectral effects introduces additional complexity. PURPOSE: The intertwined scatter and spectral effects within CBCT pose significant challenges to the quantitative performance of spectral imaging. In this work, we present the first attempt to develop a stationary spectral modulator with flying focal spot (SMFFS) technology as a promising, low-cost approach to accurately solving the x-ray scattering problem and physically enabling spectral imaging in a unified framework, and with no significant misalignment in data sampling of spectral projections. METHODS: To deal with the intertwined scatter-spectral challenge, we propose a novel scatter-decoupled material decomposition (SDMD) method for SMFFS, which consists of four steps in total, including (1) spatial resolution-preserved and noise-suppressed multi-energy "residual" projection generation free from scatter, based on a hypothesis of scatter similarity; (2) first-pass material decomposition from the generated multi-energy residual projections in non-penumbra regions, with a structure similarity constraint to overcome the increased noise and penumbra effect; (3) scatter estimation for complete data; and (4) second-pass material decomposition for complete data by using a multi-material spectral correction method. Monte Carlo simulations of a pure-water cylinder phantom with different focal spot deflections are conducted to validate the scatter similarity hypothesis. Both numerical simulations using a clinical abdominal CT dataset, and physics experiments on a tabletop CBCT system using a Gammex multi-energy CT phantom and an anthropomorphic chest phantom, are carried out to demonstrate the feasibility of CBCT spectral imaging with SMFFS and our proposed SDMD method. RESULTS: Monte Carlo simulations show that focal spot deflections within a range of 2 mm share quite similar scatter distributions overall. Numerical simulations demonstrate that SMFFS with SDMD method can achieve better material decomposition and CT number accuracy with fewer artifacts. In physics experiments, for the Gammex phantom, the average error of the mean values ( E RMSE ROI $E^{\text{ROI}}_{\text{RMSE}}$ ) in selected regions of interest (ROIs) of virtual monochromatic image (VMI) at 70 keV is 8 HU in SMFFS cone-beam (CB) scan, and 19 and 210 HU in sequential 80/120 kVp (dual kVp, DKV) CB scan with and without scatter correction, respectively. For the chest phantom, the E RMSE ROI $E^{\text{ROI}}_{\text{RMSE}}$ in selected ROIs of VMIs is 12 HU for SMFFS CB scan, and 15 and 438 HU for sequential 80/140 kVp CB scan with and without scatter correction, respectively. Also, the non-uniformity among selected regions of the chest phantom is 14 HU for SMFFS CB scan, and 59 and 184 HU for the DKV CB scan with and without a traditional scatter correction method, respectively. CONCLUSIONS: We propose a SDMD method for CBCT with SMFFS. Our preliminary results show that SMFFS can enable spectral imaging with simultaneous scatter correction for CBCT and effectively improve its quantitative imaging performance.


Assuntos
Tomografia Computadorizada de Feixe Cônico Espiral , Processamento de Imagem Assistida por Computador/métodos , Espalhamento de Radiação , Fenômenos Físicos , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico/métodos , Artefatos , Algoritmos
2.
Med Phys ; 49(5): 3523-3528, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35067940

RESUMO

PURPOSE: Organ autosegmentation efforts to date have largely been focused on adult populations, due to limited availability of pediatric training data. Pediatric patients may present additional challenges for organ segmentation. This paper describes a dataset of 359 pediatric chest-abdomen-pelvis and abdomen-pelvis Computed Tomography (CT) images with expert contours of up to 29 anatomical organ structures to aid in the evaluation and development of autosegmentation algorithms for pediatric CT imaging. ACQUISITION AND VALIDATION METHODS: The dataset collection consists of axial CT images in Digital Imaging and Communications in Medicine (DICOM) format of 180 male and 179 female pediatric chest-abdomen-pelvis or abdomen-pelvis exams acquired from one of three CT scanners at Children's Wisconsin. The datasets represent random pediatric cases based upon routine clinical indications. Subjects ranged in age from 5 days to 16 years, with a mean age of 7 years. The CT acquisition, contrast, and reconstruction protocols varied across the scanner models and patients, with specifications available in the DICOM headers. Expert contours were manually labeled for up to 29 organ structures per subject. Not all contours are available for all subjects, due to limited field of view or unreliable contouring due to high noise. DATA FORMAT AND USAGE NOTES: The data are available on The Cancer Imaging Archive (TCIA_ (https://www.cancerimagingarchive.net/) under the collection Pediatric-CT-SEG. The axial CT image slices for each subject are available in DICOM format. The expert contours are stored in a single DICOM RTSTRUCT file for each subject. The contour names are listed in Table 2. POTENTIAL APPLICATIONS: This dataset will enable the evaluation and development of organ autosegmentation algorithms for pediatric populations, which exhibit variations in organ shape and size across age. Automated organ segmentation from CT images has numerous applications including radiation therapy, diagnostic tasks, surgical planning, and patient-specific organ dose estimation.


Assuntos
Abdome , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Adulto , Algoritmos , Criança , Feminino , Humanos , Masculino , Pelve/diagnóstico por imagem , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos
3.
Med Phys ; 48(10): 6482-6496, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34374461

RESUMO

PURPOSE: Metal artifact remains a challenge in cone-beam CT images. Many image domain-based segmentation methods have been proposed for metal artifact reduction (MAR), which require two-pass reconstruction. Such methods first segment metal from a first-pass reconstruction and then forward-project the metal mask to identify them in projections. These methods work well in general but are limited when the metal is outside the scan field-of-view (FOV) or when the metal is moving during the scan. In the former, even reconstructing with a larger FOV does not guarantee a good estimate of metal location in the projections; and in the latter, the metal location in each projection is difficult to identify due to motion. Single-pass methods that detect metal in single-energy projections have also been developed, but often have imperfect metal detection that leads to residual artifacts. In this work, we develop a MAR method using a dual-layer (DL) flat panel detector, which improves performance for single-pass reconstruction. METHODS: In this work, we directly detect metal objects in projections using dual-energy (DE) imaging that generates material-specific images (e.g., soft tissue and bone), where the metal stands out in bone images when nonuniform soft tissue background is removed. Metal is detected via simple thresholding, and entropy filtration is further applied to remove false-positive detections. A DL detector provides DE images with superior temporal and spatial registration and was used to perform the task. Scatter correction was first performed on DE raw projections to improve the accuracy of material decomposition. One phantom mimicking a liver biopsy setup and a cadaver head were used to evaluate the metal reduction performance of the proposed method and compared with that of a standard two-pass reconstruction, a previously published sinogram-based method using a Markov random field (MRF) model, and a single-pass projection-domain method using single-energy imaging. The phantom has a liver steering setup placed in a hollow chest phantom, with embedded metal and a biopsy needle crossing the phantom boundary. The cadaver head has dental fillings and a metal tag attached to its surface. The identified metal regions in each projection were corrected by interpolation using surrounding pixels, and the images were reconstructed using filtered backprojection. RESULTS: Our current approach removes metal from the projections, which is robust to FOV truncation during imaging acquisition. In case of FOV truncation, the method outperformed the two-pass reconstruction method. The proposed method using DE renders better accuracy in metal segmentation than the MRF method and single-energy method, which were prone to false-positive errors that cause additional streaks. For the liver steering phantom, the average spatial nonuniformity was reduced from 0.127 in uncorrected images to 0.086 using a standard two-pass reconstruction and to 0.077 using the proposed method. For the cadaver head, the average standard deviation within selected soft tissue regions ( σ s ) was reduced from 209.1 HU in uncorrected images to 69.1 HU using a standard two-pass reconstruction and to 46.8 HU using our proposed method. The proposed method reduced the processing time by 31% as compared with the two-pass method. CONCLUSIONS: We proposed a MAR method that directly detects metal in the projection domain using DE imaging, which is robust to truncation and superior to that of single-energy imaging. The method requires only a single-pass reconstruction that substantially reduces processing time compared with the standard two-pass metal reduction method.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Algoritmos , Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Radiografia
4.
Med Phys ; 48(10): 5837-5850, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34387362

RESUMO

PURPOSE: Image guidance for minimally invasive interventions is usually performed by acquiring fluoroscopic images using a monoplanar or a biplanar C-arm system. However, the projective data provide only limited information about the spatial structure and position of interventional tools and devices such as stents, guide wires, or coils. In this work, we propose a deep learning-based pipeline for real-time tomographic (four-dimensional [4D]) interventional guidance at conventional dose levels. METHODS: Our pipeline is comprised of two steps. In the first one, interventional tools are extracted from four cone-beam CT projections using a deep convolutional neural network. These projections are then Feldkamp reconstructed and fed into a second network, which is trained to segment the interventional tools and devices in this highly undersampled reconstruction. Both networks are trained using simulated CT data and evaluated on both simulated data and C-arm cone-beam CT measurements of stents, coils, and guide wires. RESULTS: The pipeline is capable of reconstructing interventional tools from only four X-ray projections without the need for a patient prior. At an isotropic voxel size of 100 µ m , our methods achieve a precision/recall within a 100 µ m environment of the ground truth of 93%/98%, 90%/71%, and 93%/76% for guide wires, stents, and coils, respectively. CONCLUSIONS: A deep learning-based approach for 4D interventional guidance is able to overcome the drawbacks of today's interventional guidance by providing full spatiotemporal (4D) information about the interventional tools at dose levels comparable to conventional fluoroscopy.


Assuntos
Aprendizado Profundo , Tomografia Computadorizada de Feixe Cônico , Fluoroscopia , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada por Raios X , Raios X
5.
Med Phys ; 47(8): 3332-3343, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32347561

RESUMO

PURPOSE: Dual-energy (DE) x-ray imaging has many clinical applications in radiography, fluoroscopy, and CT. This work characterizes a prototype dual-layer (DL) flat-panel detector (FPD) and investigates its DE imaging capabilities for applications in two-dimensional (2D) radiography/fluoroscopy and quantitative three-dimensional (3D) cone-beam CT. Unlike other DE methods like kV switching, a DL FPD obtains DE images from a single exposure, making it robust against patient and system motion. METHODS: The DL FPD consists of a top layer with a 200 µm-thick CsI scintillator coupled to an amorphous silicon (aSi) FPD of 150 µm pixel size and a bottom layer with a 550 µm thick CsI scintillator coupled to an identical aSi FPD. The two layers are separated by a 1-mm Cu filter to increase spectral separation. Images (43 × 43 cm2 active area) can be readout in 2 × 2 binning mode (300 µm pixels) at up to 15 frames per second. Detector performance was first characterized by measuring the MTF, NPS, and DQE for the top and bottom layers. For 2D applications, a qualitative study was conducted using an anthropomorphic thorax phantom containing a porcine heart with barium-filled coronary arteries (similar to iodine). Additionally, fluoroscopic lung tumor tracking was investigated by superimposing a moving tumor phantom on the thorax phantom. Tracking accuracies of single-energy (SE) and DE fluoroscopy were compared against the ground truth motion of the tumor. For 3D quantitative imaging, a phantom containing water, iodine, and calcium inserts was used to evaluate overall DE material decomposition capabilities. Virtual monoenergetic (VM) images ranging from 40 to 100 keV were generated, and the optimal VM image energy which achieved the highest image uniformity and maximum contrast-to-noise ratio (CNR) was determined. RESULTS: The spatial resolution of the top layer was substantially higher than that of the bottom layer (top layer 50% MTF = 2.2 mm-1 , bottom layer = 1.2 mm-1 ). A substantial increase in NNPS and reduction in DQE were observed for the bottom layer mainly due to photon loss within the top layer and Cu filter. For 2D radiographic and fluoroscopic applications, the DL FPD was capable of generating high-quality material-specific images separating soft tissue from bone and barium. For lung tumor tracking, DE fluoroscopy yielded more accurate results than SE fluoroscopy, with an average reduction in the root mean square error (RMSE) of over 10×. For the DE-CBCT studies, accurate basis material decompositions were obtained. The estimated material densities were 294.68  ±  17.41 and 92.14  ±  15.61 mg/ml for the 300 and 100 mg/ml calcium inserts, respectively, and 8.93  ±  1.45, 4.72  ±  1.44, and 2.11  ±  1.32 mg/ml for the 10, 5, and 2 mg/ml iodine inserts, respectively, with an average error of less than 5%. The optimal VM image energy was found to be 60 keV. CONCLUSIONS: We characterized a prototype DL FPD and demonstrated its ability to perform accurate single-exposure DE radiography/fluoroscopy and DE-CBCT. The merits of the DL detector approach include superior spatial and temporal registration between its constituent images, and less complicated acquisition sequences.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Imageamento Tridimensional , Animais , Fluoroscopia , Humanos , Imagens de Fantasmas , Radiografia , Suínos
6.
Med Phys ; 42(5): 2699-708, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25979068

RESUMO

PURPOSE: To accelerate model-based iterative reconstruction (IR) methods for C-arm cone-beam CT (CBCT), thereby combining the benefits of improved image quality and/or reduced radiation dose with reconstruction times on the order of minutes rather than hours. METHODS: The ordered-subsets, separable quadratic surrogates (OS-SQS) algorithm for solving the penalized-likelihood (PL) objective was modified to include Nesterov's method, which utilizes "momentum" from image updates of previous iterations to better inform the current iteration and provide significantly faster convergence. Reconstruction performance of an anthropomorphic head phantom was assessed on a benchtop CBCT system, followed by CBCT on a mobile C-arm, which provided typical levels of incomplete data, including lateral truncation. Additionally, a cadaveric torso that presented realistic soft-tissue and bony anatomy was imaged on the C-arm, and different projectors were assessed for reconstruction speed. RESULTS: Nesterov's method provided equivalent image quality to OS-SQS while reducing the reconstruction time by an order of magnitude (10.0 ×) by reducing the number of iterations required for convergence. The faster projectors were shown to produce similar levels of convergence as more accurate projectors and reduced the reconstruction time by another 5.3 ×. Despite the slower convergence of IR with truncated C-arm CBCT, comparison of PL reconstruction methods implemented on graphics processing units showed that reconstruction time was reduced from 106 min for the conventional OS-SQS method to as little as 2.0 min with Nesterov's method for a volumetric reconstruction of the head. In body imaging, reconstruction of the larger cadaveric torso was reduced from 159 min down to 3.3 min with Nesterov's method. CONCLUSIONS: The acceleration achieved through Nesterov's method combined with ordered subsets reduced IR times down to a few minutes. This improved compatibility with clinical workflow better enables broader adoption of IR in CBCT-guided procedures, with corresponding benefits in overcoming conventional limits of image quality at lower dose.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Algoritmos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Cabeça/diagnóstico por imagem , Humanos , Modelos Biológicos , Imagens de Fantasmas , Doses de Radiação , Radiografia Abdominal/instrumentação , Radiografia Abdominal/métodos , Estatística como Assunto , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Fatores de Tempo
7.
Spine (Phila Pa 1976) ; 40(8): E476-83, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25646750

RESUMO

STUDY DESIGN: A 3-dimensional-2-dimensional (3D-2D) image registration algorithm, "LevelCheck," was used to automatically label vertebrae in intraoperative mobile radiographs obtained during spine surgery. Accuracy, computation time, and potential failure modes were evaluated in a retrospective study of 20 patients. OBJECTIVE: To measure the performance of the LevelCheck algorithm using clinical images acquired during spine surgery. SUMMARY OF BACKGROUND DATA: In spine surgery, the potential for wrong level surgery is significant due to the difficulty of localizing target vertebrae based solely on visual impression, palpation, and fluoroscopy. To remedy this difficulty and reduce the risk of wrong-level surgery, our team introduced a program (dubbed LevelCheck) to automatically localize target vertebrae in mobile radiographs using robust 3D-2D image registration to preoperative computed tomographic (CT) scan. METHODS: Twenty consecutive patients undergoing thoracolumbar spine surgery, for whom both a preoperative CT scan and an intraoperative mobile radiograph were available, were retrospectively analyzed. A board-certified neuroradiologist determined the "true" vertebra levels in each radiograph. Registration of the preoperative CT scan to the intraoperative radiograph was calculated via LevelCheck, and projection distance errors were analyzed. Five hundred random initializations were performed for each patient, and algorithm settings (viz, the number of robust multistarts, ranging 50-200) were varied to evaluate the trade-off between registration error and computation time. Failure mode analysis was performed by individually analyzing unsuccessful registrations (>5 mm distance error) observed with 50 multistarts. RESULTS: At 200 robust multistarts (computation time of ∼26 s), the registration accuracy was 100% across all 10,000 trials. As the number of multistarts (and computation time) decreased, the registration remained fairly robust, down to 99.3% registration accuracy at 50 multistarts (computation time ∼7 s). CONCLUSION: The LevelCheck algorithm correctly identified target vertebrae in intraoperative mobile radiographs of the thoracolumbar spine, demonstrating acceptable computation time, compatibility with routinely obtained preoperative CT scans, and warranting investigation in prospective studies. LEVEL OF EVIDENCE: N/A.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador/métodos , Adulto , Idoso , Automação , Feminino , Humanos , Cuidados Intraoperatórios , Vértebras Lombares , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Vértebras Torácicas , Tomografia Computadorizada por Raios X
8.
Med Phys ; 41(7): 071915, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24989393

RESUMO

PURPOSE: A method is presented for generating simulated low-dose cone-beam CT (CBCT) preview images from which patient- and task-specific minimum-dose protocols can be confidently selected prospectively in clinical scenarios involving repeat scans. METHODS: In clinical scenarios involving a series of CBCT images, the low-dose preview (LDP) method operates upon the first scan to create a projection dataset that accurately simulates the effects of dose reduction in subsequent scans by injecting noise of proper magnitude and correlation, including both quantum and electronic readout noise as important components of image noise in flat-panel detector CBCT. Experiments were conducted to validate the LDP method in both a head phantom and a cadaveric torso by performing CBCT acquisitions spanning a wide dose range (head: 0.8-13.2 mGy, body: 0.8-12.4 mGy) with a prototype mobile C-arm system. After injecting correlated noise to simulate dose reduction, the projections were reconstructed using both conventional filtered backprojection (FBP) and an iterative, model-based image reconstruction method (MBIR). The LDP images were then compared to real CBCT images in terms of noise magnitude, noise-power spectrum (NPS), spatial resolution, contrast, and artifacts. RESULTS: For both FBP and MBIR, the LDP images exhibited accurate levels of spatial resolution and contrast that were unaffected by the correlated noise injection, as expected. Furthermore, the LDP image noise magnitude and NPS were in strong agreement with real CBCT images acquired at the corresponding, reduced dose level across the entire dose range considered. The noise magnitude agreed within 7% for both the head phantom and cadaveric torso, and the NPS showed a similar level of agreement up to the Nyquist frequency. Therefore, the LDP images were highly representative of real image quality across a broad range of dose and reconstruction methods. On the other hand, naïve injection ofuncorrelated noise resulted in strong underestimation of the true noise, which would lead to overly optimistic predictions of dose reduction. CONCLUSIONS: Correlated noise injection is essential to accurate simulation of CBCT image quality at reduced dose. With the proposed LDP method, the user can prospectively select patient-specific, minimum-dose protocols (viz., acquisition technique and reconstruction method) suitable to a particular imaging task and to the user's own observer preferences for CBCT scans following the first acquisition. The method could provide dose reduction in common clinical scenarios involving multiple CBCT scans, such as image-guided surgery and radiotherapy.


Assuntos
Simulação por Computador , Tomografia Computadorizada de Feixe Cônico/métodos , Doses de Radiação , Algoritmos , Artefatos , Calibragem , Tomografia Computadorizada de Feixe Cônico/instrumentação , Cabeça/diagnóstico por imagem , Humanos , Modelos Biológicos , Imagens de Fantasmas , Tronco/diagnóstico por imagem
9.
Phys Med Biol ; 58(23): 8535-53, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24246386

RESUMO

We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with 'success' defined as PDE <5 mm) using 1,718 664 ± 96 582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial run) the same registration could be solved with 99.993% success in 6.3 s. The ability to register CT to fluoroscopy in a manner robust to patient deformation could be valuable in applications such as radiation therapy, interventional radiology, and an assistant to target localization (e.g., vertebral labeling) in image-guided spine surgery.


Assuntos
Fluoroscopia/métodos , Imageamento Tridimensional/métodos , Coluna Vertebral/anormalidades , Coluna Vertebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Humanos , Coluna Vertebral/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA