Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Sci Rep ; 14(1): 12455, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816643

RESUMO

Chronic endometritis is associated with the imbalance of female reproductive tract microbiota and pathogenic microbial infection. This study aimed to identify the specific changes in the endometrial microbiome in patients with endometritis and to explore how Clostridium tyrobutyricum (C.t) influences the progression of endometritis in mice for further elucidating endometritis pathogenesis. For this purpose, endometrial tissues from 100 participants were collected and divided into positive, weakly positive, and negative groups based on CD138 levels, while endometrial microbiome differences were detected and analyzed using 16S rRNA gene sequencing. Staphylococcus aureus (S. aureus)-induced endometritis mouse model was established, followed by treatment with C.t, and inflammatory response, epithelial barrier, and TLR4/NF-κB pathway were evaluated. Results showed that α- and ß-diversity was significantly lower in the positive group compared with the weakly positive or negative groups, where the negative group had more unique operational taxonomic units. The abundance of Proteobacteria was found to be increased, while that of Actinobacteria, Firmicutes, and Bacteroidetes was found to be reduced in the positive group, while the area under the curve value was found to be 0.664. Furthermore, C.t treatment resulted in the alleviation of S. aureus-induced inflammatory response, epithelial barrier damage, and activation of the TLR4/NF-κB pathway in mice. Clinical samples analysis revealed that the diversity and abundance of microbiota were altered in patients with endometritis having positive CD138 levels, while mechanistic investigations revealed C.t alleviated S. aureus-induced endometritis by inactivating TLR4/NF-κB pathway. The findings of this study are envisaged to provide a diagnostic and therapeutic potential of microbiota in endometritis.


Assuntos
Disbiose , Endometrite , Animais , Endometrite/microbiologia , Endometrite/patologia , Feminino , Disbiose/microbiologia , Humanos , Camundongos , Microbiota , Adulto , Staphylococcus aureus , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , RNA Ribossômico 16S/genética , Doença Crônica , Modelos Animais de Doenças , NF-kappa B/metabolismo , Endométrio/microbiologia , Endométrio/patologia , Pessoa de Meia-Idade
2.
Proc Natl Acad Sci U S A ; 121(21): e2401748121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739789

RESUMO

Potyviridae, the largest family of plant RNA viruses, includes many important pathogens that significantly reduce the yields of many crops worldwide. In this study, we report that the 6-kilodalton peptide 1 (6K1), one of the least characterized potyviral proteins, is an endoplasmic reticulum-localized protein. AI-assisted structure modeling and biochemical assays suggest that 6K1 forms pentamers with a central hydrophobic tunnel, can increase the cell membrane permeability of Escherichia coli and Nicotiana benthamiana, and can conduct potassium in Saccharomyces cerevisiae. An infectivity assay showed that viral proliferation is inhibited by mutations that affect 6K1 multimerization. Moreover, the 6K1 or its homologous 7K proteins from other viruses of the Potyviridae family also have the ability to increase cell membrane permeability and transmembrane potassium conductance. Taken together, these data reveal that 6K1 and its homologous 7K proteins function as viroporins in viral infected cells.


Assuntos
Nicotiana , Nicotiana/virologia , Nicotiana/metabolismo , Potyviridae/genética , Potyviridae/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Permeabilidade da Membrana Celular , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Viroporinas/metabolismo , Proteínas Viroporinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Vírus de Plantas/genética , Vírus de Plantas/fisiologia , Doenças das Plantas/virologia , Potássio/metabolismo
3.
BMC Womens Health ; 24(1): 25, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184561

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is a disorder characterized by hyperandrogenism, ovulatory dysfunction, and polycystic ovarian morphologic features, and PCOS is associated with infertility. PH domain Leucine-rich repeat Protein Phosphatase 1 (PHLPP1) has been shown to regulate AKT. The aim of present study is to investigate the role of PHLPP1 in PCOS. METHODS: The expression levels of PHLPP1 in dihydrotestosterone (DHT)-treated human ovarian granular KGN cells were determined by qRT-PCR and Western blot. PHLPP1 was silenced or overexpressed using lentivirus. Cell proliferation was detected by CCK-8. Apoptosis and ROS generation were analyzed by flow cytometry. Glycolysis was analyzed by measuring extracellular acidification rate (ECAR). RESULTS: DHT treatment suppressed proliferation, promoted apoptosis, enhanced ROS, and inhibited glycolysis in KGN cells. PHLPP1 silencing alleviated the DHT-induced suppression of proliferation and glycolysis, and promotion of apoptosis and ROS in KGN cells. PHLPP1 regulated cell proliferation and glycolysis in human KGN cells via the AKT signaling pathway. CONCLUSIONS: Our results showed that PHLPP1 mediates the proliferation and aerobic glycolysis activity of human ovarian granular cells through regulating AKT signaling.


Assuntos
Síndrome do Ovário Policístico , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt , Espécies Reativas de Oxigênio , Glicólise , Proteínas Nucleares , Fosfoproteínas Fosfatases/genética
4.
Methods Mol Biol ; 2724: 127-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37987903

RESUMO

Infection by positive-strand RNA viruses induces extensive remodeling of the host endomembrane system in favor of viral replication and movement. The integral membrane protein 6K2 of potyviruses induces the formation of membranous virus replication vesicles at the endoplasmic reticulum exit site (ERES). The intracellular trafficking of 6K2-induced vesicles along with microfilaments requires the vesicular transport pathway, actomyosin motility system, and possibly post-Golgi compartments such as endosomes as well. Recent studies have shown that endocytosis is essential for the intracellular movement of potyviruses from the site of viral genome replication/assembly site to plasmodesmata (PD) to enter neighboring cells. In this chapter, we describe a detailed protocol of how to use endomembrane trafficking pathway-specific chemical inhibitors and organelle-selective fluorescence dye to study the trafficking of potyviral proteins and potyvirus-induced vesicles and to unravel the role of endocytosis and the endocytic pathway in potyvirus infection in Nicotiana benthamiana plants.


Assuntos
Potyvirus , Viroses , Fluorescência , Retículo Endoplasmático , Complexo de Golgi , Nicotiana , Corantes Fluorescentes
5.
J Obstet Gynaecol Can ; 45(10): 102168, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331696

RESUMO

OBJECTIVES: To prospectively assess the diagnostic accuracy of MRI and transvaginal ultrasound (TVS) as well as the prognostic value of MRI for intrauterine adhesions (IUAs), using hysteroscopy as the reference standard. DESIGN: Prospective observational study. SETTING: Tertiary medical centre. PATIENT(S): Ninety-two women with amenorrhea, hypomenorrhea, subfertility, or recurrent pregnancy loss who underwent MRI and in whom Asherman's syndrome was suspected upon TVS. INTERVENTION(S): MRI and TVS were conducted approximately 1 week before hysteroscopy. METHODS: Ninety-two patients suspected of having Asherman's syndrome were examined by MRI and TVS within 7 days of an upcoming hysteroscopy. All hysteroscopy procedures were performed during the early proliferative phase of the menstrual cycle. All hysteroscopic diagnoses were performed by an experienced expert. All MRIs were read by 2 experienced, blinded radiologists. RESULTS: MRI was highly accurate (94.57%), sensitive (98.8%), and specific (42.9%) for diagnosing IUAs with a positive predictive value of 95.5% and a negative predictive value of 75%. The diagnostic values of MRI and TVS were significantly different according to McNemar tests. Junctional zone signal and junctional zone alterations correlated with the stage of IUAs. CONCLUSION: MRI is markedly superior to TVS in terms of diagnostic accuracy for IUAs, with total agreement with hysteroscopic findings. However, the main advantage of MRI is that, unlike TVS and hysterosalpingography, it can be used to assess the risk of hysteroscopy and to predict postoperative recovery and future pregnancy based on the uterine junctional zone.


Assuntos
Ginatresia , Doenças Uterinas , Gravidez , Humanos , Feminino , Ginatresia/diagnóstico por imagem , Ginatresia/patologia , Ginatresia/cirurgia , Doenças Uterinas/diagnóstico por imagem , Útero/patologia , Histeroscopia/métodos , Aderências Teciduais/diagnóstico por imagem , Aderências Teciduais/cirurgia , Imageamento por Ressonância Magnética
6.
Viruses ; 15(5)2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37243295

RESUMO

Healthy agroecosystems are dependent on a complex web of factors and inter-species interactions. Flowers are hubs for pathogen transmission, including the horizontal or vertical transmission of plant-viruses and the horizontal transmission of bee-viruses. Pollination by the European honey bee (Apis mellifera) is critical for industrial fruit production, but bees can also vector viruses and other pathogens between individuals. Here, we utilized commercial honey bee pollination services in blueberry (Vaccinium corymbosum) farms for a metagenomics-based bee and plant virus monitoring system. Following RNA sequencing, viruses were identified by mapping reads to a reference sequence database through the bioinformatics portal Virtool. In total, 29 unique plant viral species were found at two blueberry farms in British Columbia (BC). Nine viruses were identified at one site in Ontario (ON), five of which were not identified in BC. Ilarviruses blueberry shock virus (BlShV) and prune dwarf virus (PDV) were the most frequently detected viruses in BC but absent in ON, while nepoviruses tomato ringspot virus and tobacco ringspot virus were common in ON but absent in BC. BlShV coat protein (CP) nucleotide sequences were nearly identical in all samples, while PDV CP sequences were more diverse, suggesting multiple strains of PDV circulating at this site. Ten bee-infecting viruses were identified, with black queen cell virus frequently detected in ON and BC. Area-wide bee-mediated pathogen monitoring can provide new insights into the diversity of viruses present in, and the health of, bee-pollination ecosystems. This approach can be limited by a short sampling season, biased towards pollen-transmitted viruses, and the plant material collected by bees can be very diverse. This can obscure the origin of some viruses, but bee-mediated virus monitoring can be an effective preliminary monitoring approach.


Assuntos
Mirtilos Azuis (Planta) , Animais , Abelhas , Polinização , Ecossistema , Plantas , Pólen
7.
Autophagy ; 19(2): 616-631, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35722949

RESUMO

Mitophagy that selectively eliminates damaged mitochondria is an essential mitochondrial quality control mechanism. Recently, mitophagy has been shown to be induced in host cells infected by a few animal viruses. Here, we report that southern rice black-streaked dwarf virus (SRBSDV), a plant nonenveloped double-stranded RNA virus, can also trigger mitophagy in its planthopper vector to prevent mitochondria-dependent apoptosis and promote persistent viral propagation. We find that the fibrillar structures constructed by the nonstructural protein P7-1 of SRBSDV directly target mitochondria via interaction with the mitophagy receptor BNIP3 (BCL2 interacting protein 3), and these mitochondria are then sequestered within autophagosomes to form mitophagosomes. Moreover, SRBSDV infection or P7-1 expression alone can promote BNIP3 dimerization on the mitochondria, and induce autophagy via the P7-1-ATG8 interaction. Furthermore, SRBSDV infection stimulates the phosphorylation of AMP-activated protein kinase (AMPK), resulting in BNIP3 phosphorylation via the AMPKα-BNIP3 interaction. Together, P7-1 induces BNIP3-mediated mitophagy by promoting the formation of phosphorylated BNIP3 dimers on the mitochondria. Silencing of ATG8, BNIP3, or AMPKα significantly reduces virus-induced mitophagy and viral propagation in insect vectors. These data suggest that in planthopper, SRBSDV-induced mitophagosomes are modified to accommodate virions and facilitate persistent viral propagation. In summary, our results demonstrate a previously unappreciated role of a viral protein in the induction of BNIP3-mediated mitophagy by bridging autophagosomes and mitochondria and reveal the functional importance of virus-induced mitophagy in maintaining persistent viral infection in insect vectors.Abbreviations: AMPK: AMP-activated protein kinase; ATG: autophagy related; BNIP3: BCL2 interacting protein 3; CASP3: caspase 3; dsRNA: double strand RNA; ER: endoplasmic reticulum; FITC: fluorescein isothiocyanate; FKBP8: FKBP prolyl isomerase 8; FUNDC1: FUN14 domain containing 1; GFP: green fluorescent protein; GST: glutathione S-transferase; padp: post-first access to diseased plants; Phos-tag: Phosphate-binding tag; PINK1: PTEN induced kinase 1; Sf9: Spodoptera frugiperda; SQSTM1: sequestosome 1; SRBSDV: southern rice black-streaked dwarf virus; STK11/LKB1: serine/threonine kinase 11; TOMM20: translocase of outer mitochondrial membrane 20; RBSDV: rice black-streaked dwarf virus; TUNEL: terminal deoxynucleotidyl dUTP nick end labeling; ULK1: unc-51 like autophagy activating kinase 1; VDAC1: voltage dependent anion channel 1.


Assuntos
Proteínas Quinases Ativadas por AMP , Mitofagia , Animais , Proteínas Quinases Ativadas por AMP/genética , Autofagia , Insetos Vetores , Mitofagia/genética , Infecção Persistente , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA de Cadeia Dupla , Proteínas de Membrana/metabolismo
8.
Mol Plant Pathol ; 23(9): 1381-1389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35611885

RESUMO

Previously we reported that the multifunctional cylindrical inclusion (CI) protein of turnip mosaic virus (TuMV) is targeted to endosomes through the interaction with the medium subunit of adaptor protein complex 2 (AP2ß), which is essential for viral infection. Although several functionally important regions in the CI have been identified, little is known about the determinant(s) for endosomal trafficking. The CI protein contains seven conserved acidic dileucine motifs [(D/E)XXXL(L/I)] typical of endocytic sorting signals recognized by AP2ß. Here, we selected five motifs for further study and identified that they all were located in the regions of CI interacting with AP2ß. Coimmunoprecipitation assays revealed that alanine substitutions in the each of these acidic dileucine motifs decreased binding with AP2ß. Moreover, these CI mutants also showed decreased accumulation of punctate bodies, which enter endocytic-tracking styryl-stained endosomes. The mutations were then introduced into a full-length infectious clone of TuMV, and each mutant had reduced viral replication and systemic infection. The data suggest that the acidic dileucine motifs in CI are indispensable for interacting with AP2ß for efficient viral replication. This study provides new insights into the role of endocytic sorting motifs in the intracellular movement of viral proteins for replication.


Assuntos
Potyvirus , Motivos de Aminoácidos , Endossomos/metabolismo , Potyvirus/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
9.
Mol Plant Pathol ; 23(9): 1262-1277, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35598295

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is an emerging and rapidly spreading RNA virus that infects tomato and pepper, with tomato as the primary host. The virus causes severe crop losses and threatens tomato production worldwide. ToBRFV was discovered in greenhouse tomato plants grown in Jordan in spring 2015 and its first outbreak was traced back to 2014 in Israel. To date, the virus has been reported in at least 35 countries across four continents in the world. ToBRFV is transmitted mainly via contaminated seeds and mechanical contact (such as through standard horticultural practices). Given the global nature of the seed production and distribution chain, and ToBRFV's seed transmissibility, the extent of its spread is probably more severe than has been disclosed. ToBRFV can break down genetic resistance to tobamoviruses conferred by R genes Tm-1, Tm-2, and Tm-22 in tomato and L1 and L2 alleles in pepper. Currently, no commercial ToBRFV-resistant tomato cultivars are available. Integrated pest management-based measures such as rotation, eradication of infected plants, disinfection of seeds, and chemical treatment of contaminated greenhouses have achieved very limited success. The generation and application of attenuated variants may be a fast and effective approach to protect greenhouse tomato against ToBRFV. Long-term sustainable control will rely on the development of novel genetic resistance and resistant cultivars, which represents the most effective and environment-friendly strategy for pathogen control. TAXONOMY: Tomato brown rugose fruit virus belongs to the genus Tobamovirus, in the family Virgaviridae. The genus also includes several economically important viruses such as Tobacco mosaic virus and Tomato mosaic virus. GENOME AND VIRION: The ToBRFV genome is a single-stranded, positive-sense RNA of approximately 6.4 kb, encoding four open reading frames. The viral genomic RNA is encapsidated into virions that are rod-shaped and about 300 nm long and 18 nm in diameter. Tobamovirus virions are considered extremely stable and can survive in plant debris or on seed surfaces for long periods of time. DISEASE SYMPTOMS: Leaves, particularly young leaves, of tomato plants infected by ToBRFV exhibit mild to severe mosaic symptoms with dark green bulges, narrowness, and deformation. The peduncles and calyces often become necrotic and fail to produce fruit. Yellow blotches, brown or black spots, and rugose wrinkles appear on tomato fruits. In pepper plants, ToBRFV infection results in puckering and yellow mottling on leaves with stunted growth of young seedlings and small yellow to brown rugose dots and necrotic blotches on fruits.


Assuntos
Vírus de Plantas , Solanum lycopersicum , Tobamovirus , Frutas , Solanum lycopersicum/genética , Vírus de Plantas/genética , RNA de Plantas , RNA Viral/genética , Tobamovirus/genética
10.
Methods Mol Biol ; 2400: 33-41, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905188

RESUMO

Posttranscriptional gene silencing (PTGS) also known as RNA silencing or RNA interference is an evolutionarily conserved innate immunity in eukaryotes that targets the complementary RNA sequences to slice/degrade the target RNA or repress the translation of mRNA. In the past two decades, RNA silencing as an important antiviral mechanism has been studied extensively in plants. Intriguingly, almost every virus encodes at least a viral suppressor of RNA silencing (VSR) to counterattack RNA silencing with many strategies to interfere with different steps of RNA silencing. Therefore, the molecular identification of VSRs and elucidation of their functional mechanisms contribute to a better understanding of host resistance and viral pathogenicity. Here, we describe a protocol for the transient expression-induced gene silencing in 16c GFP transgenic and wild type Nicotiana benthamiana plants, and the suppression of single-stranded GFP and double-stranded GFP induced RNA silencing with a VSR in N. benthamiana plants. This protocol is simple and can serve as a standard for the identification and functional analysis of a VSR.


Assuntos
Plantas , Doenças das Plantas , Plantas Geneticamente Modificadas/genética , RNA , Interferência de RNA , Nicotiana/genética
11.
Methods Mol Biol ; 2400: 43-53, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905189

RESUMO

Protoplasts are the naked plant cells lacking the rigid cell wall and have been broadly utilized as an excellent tool to study the molecular virus-plant interactions, particularly at the early stages of the infection process, such as virion disassembly, viral genome translation, intracellular trafficking, and virus replication. Compared to the use of whole plants, the protoplast system has several major advantages in plant virology research, including homogeneous cell populations, high percentage of infected cells, synchronous infection, effects free from other cells/tissues, and ease of extraction of the viral RNA. This chapter describes a simple, streamlined, and efficient protocol for isolation and purification of mesophyll protoplasts from the model plants Arabidopsis thaliana and Nicotiana benthamiana, and subsequent transfection of the isolated protoplasts with a potyvirus infectious clone.


Assuntos
Protoplastos , Arabidopsis/genética , Parede Celular , Vírus de Plantas , Nicotiana , Transfecção
12.
Methods Mol Biol ; 2400: 63-73, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905191

RESUMO

Viral cell-to-cell movement from the primary infected cells to neighboring cells is an essential step for viruses to establish systemic infection in plants. The classic experimental design for studying this process involves the application of a reporter protein such as ß-glucuronidase (GUS), green fluorescent protein (GFP), or monomeric red fluorescent protein (mRFP or mCherry). However, such experimental settings are unable to unambiguously distinguish primary and secondary infected cells. In recent years, we have developed several double-labeling potyvirus infectious clones. Upon introduction of such vectors into plant leaf tissues, primary infected cells emit dual fluorescence (green and red) whereas secondary infected cells emit only green fluorescence. In this chapter, we provide detailed protocols on (1) construction of a GFP and mCherry-tagged turnip mosaic virus infectious clone, (2) delivery of the recombinant viral clones into plant cells by agroinfiltration, (3) confocal imaging of viral cell-to-cell movement, and (4) analysis of viral systemic infection. Using this dual-color imaging system, we have revealed coat protein (CP) is essential for TuMV cell-to-cell movement. This system provides a valuable and robust tool to study plant virus cell-to-cell movement.


Assuntos
Plantas , Potyvirus , Vírus de DNA , Doenças das Plantas , Folhas de Planta , Nicotiana
13.
Methods Mol Biol ; 2400: 105-114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905195

RESUMO

Protein-protein interactions play a crucial role in diverse biological processes. As obligate intracellular parasites, plant viruses live and reproduce in living cells and recruit host proteins through protein-protein interactions to complete their infection process. Elucidation of the protein-protein interaction network between viruses and hosts can advance knowledge in the viral infection process at the molecule level and facilitate the development of novel antiviral technologies. One of the most classic and widely used methods to discover or confirm novel protein interactions in plant cells is the pull-down assay. For plant virology research, this method begins with the expression of a tagged viral protein (such as GST- or His-tagged) as "bait" in model plant species such as Nicotiana benthamiana. The expressed "bait" protein is purified by affinity agarose resin (e.g., glutathione or cobalt chelate) followed by a series of washes. Finally, the "bait"-"prey" protein complexes are subjected to mass spectrometry or immunoblotting analysis. In this chapter, we describe a practical protocol of the tag-based pull-down assay and discuss solutions to some common problems associated with this assay.


Assuntos
Nicotiana , Vírus de Plantas , Espectrometria de Massas , Vírus de Plantas/metabolismo , Mapas de Interação de Proteínas , Nicotiana/metabolismo , Proteínas Virais/metabolismo
14.
Methods Mol Biol ; 2400: 115-123, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905196

RESUMO

In plants, plasmodesmata (PD) are plasmamembrane-lined pores that traverse the cell wall to establish cytoplasmic and endomembrane continuity between neighboring cells. As intercellular channels, PD play pivotal roles in plant growth and development, defense responses, and are also co-opted by viruses to spread cell-to-cell to establish systemic infection. Proteomic analyses of PD-enriched fractions may provide critical insights on plasmodesmal biology and PD-mediated virus-host interactions. However, it is difficult to isolate PD from plant tissues as they are firmly embedded in the cell wall. Here, we describe a protocol for the purification of PD from Nicotiana benthamiana leaves for proteomic analysis.


Assuntos
Plasmodesmos , Proteômica , Parede Celular , Plantas , Nicotiana
15.
Viruses ; 13(10)2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34696454

RESUMO

Prune dwarf virus (PDV) is a member of ilarviruses that infects stone fruit species such as cherry, plum and peach, and ornamentally grown trees worldwide. The virus lacks an RNA silencing suppressor. Infection by PDV either alone, or its mixed infection with other viruses causes deteriorated fruit marketability and reduced fruit yields. Here, we report the molecular identification of PDV from sweet cherry in the prominent fruit growing region of Ontario, Canada known as the Niagara fruit belt using next generation sequencing of small interfering RNAs (siRNAs). We assessed its incidence in an experimental farm and determined the full genome sequence of this PDV isolate. We further constructed an infectious cDNA clone. Inoculation of the natural host cherry with this clone induced a dwarfing phenotype. We also examined its infectivity on several common experimental hosts. We found that it was infectious on cucurbits (cucumber and squash) with clear symptoms and Nicotiana benthamiana without causing noticeable symptoms, and it was unable to infect Arabidopsis thaliana. As generating infectious clones for woody plants is very challenging with limited success, the PDV infectious clone developed from this study will be a useful tool to facilitate molecular studies on PDV and related Prunus-infecting viruses.


Assuntos
Ilarvirus/genética , Ilarvirus/isolamento & purificação , Doenças das Plantas/virologia , Prunus avium/virologia , Sequência de Bases , DNA Complementar , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Ontário , Prunus , RNA Viral
16.
New Phytol ; 232(3): 1382-1398, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34327705

RESUMO

Exportin 1/XPO1 is an important nuclear export receptor that binds directly to cargo proteins and translocates the cargo proteins to the cytoplasm. To understand XPO1 protein functions during potyvirus infections, we investigated the nuclear export of the NIb protein encoding the RNA-dependent RNA polymerase (RdRp) of turnip mosaic virus (TuMV). Previously, we found that NIb is transported to the nucleus after translation and sumoylated by the sumoylation (small ubiquitin-like modifier) pathway to support viral infection. Here, we report that XPO1 interacts with NIb to facilitate translocation from the nucleus to the viral replication complexes (VRCs) that accumulate in the perinuclear regions of TuMV-infected cells. XPO1 contains two NIb-binding domains that recognize and interact with NIb in the nucleus and in the perinuclear regions, respectively, which facilitates TuMV replication. Moreover, XPO1 is involved in nuclear export of the sumoylated NIb and host factors tagged with SUMO3 that is essential for suppression of plant immunity in the nucleus. Deficiencies of XPO1 in Arabidopsis and Nicotiana benthamiana plants inhibit TuMV replication and infection. These data demonstrate that XPO1 functions as a host factor in TuMV infection by regulating NIb nucleocytoplasmic transport and plant immunity.


Assuntos
Potyvirus , Proteínas do Complexo da Replicase Viral , Carioferinas , Doenças das Plantas , Imunidade Vegetal , Receptores Citoplasmáticos e Nucleares , Nicotiana , Proteínas Virais , Proteína Exportina 1
17.
Exp Ther Med ; 21(5): 443, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33747179

RESUMO

Osteosarcoma is the most common primary bone malignancy in children and adolescents. Inhibition of SOX9/Wnt1-mediated signaling might suppress osteosarcoma metastasis, and oleanolic acid (OA) might decrease the activity of the SOX9/Wnt1 signaling pathway. The aim of the present study was to determine the role of OA in osteosarcoma cell proliferation and invasion. Osteosarcoma cell lines (KHOS and U2OS) and an osteoblastic cell line (hFOB1.19) were used for cell viability, proliferation and invasion analysis. The data suggested that OA significantly inhibited cell viability on days 3, 4 and 5 compared with the control (Ctrl) group in both U2OS and KHOS cells. Cell proliferation in the OA-treated group was significantly decreased compared with the Ctrl group in the osteosarcoma cell lines. Analysis of the cell cycle indicated that OA significantly reduced the percentage of U2OS and KHOS cells in the S phase compared with the Ctrl group. The wound healing assay results indicated that the OA group displayed significantly decreased cell re-colonization of the wound at 48 h compared with the Ctrl group. The Transwell chamber assay results also indicated that cell invasion was significantly inhibited by OA compared with the Ctrl group. Furthermore, OA significantly increased osteosarcoma cell apoptosis compared with the Ctrl group. Similarly, the protein expression levels of SOX9 and Wnt1 were significantly decreased in OA-treated U2OS and KHOS cells compared with Ctrl cells. OA-mediated downregulation of Wnt1 expression was reversed following SOX9 small interfering RNA transfection. Collectively, the results indicated that OA inhibited SOX9/Wnt1-associated osteosarcoma cell proliferation, migration and invasion.

18.
Cochrane Database Syst Rev ; 3: CD013348, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33661538

RESUMO

BACKGROUND: Cervical cancer ranks as the fourth leading cause of death from cancer in women. Historically, women with metastatic or recurrent cervical cancer have had limited treatment options. New anti-angiogenesis therapies, such as vascular endothelial growth factor (VEGF) targeting agents, offer an alternative strategy to conventional chemotherapy; they act by inhibiting the growth of new blood vessels, thereby restricting tumour growth by blocking the blood supply. OBJECTIVES: To assess the benefits and harms of VEGF targeting agents in the management of persistent, recurrent, or metastatic cervical cancer. SEARCH METHODS: We performed searches of the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, online registers of clinical trials, and abstracts of scientific meetings up until 27 May 2020. SELECTION CRITERIA: We examined randomised controlled trials (RCTs) that evaluated the use of VEGF targeting agents alone or in combination with conventional chemotherapy or other VEGF targeting agents. DATA COLLECTION AND ANALYSIS: Three review authors independently screened the results of search strategies, extracted data, assessed risk of bias, and analysed data according to the standard methods expected by Cochrane. The certainty of evidence was assessed via the GRADE approach. MAIN RESULTS: A total of 1634 records were identified. From these, we identified four studies with a total of 808 participants for inclusion. We also identified two studies that were awaiting classification and nine ongoing studies. Bevacizumab plus chemotherapy versus chemotherapy Treatment with bevacizumab plus chemotherapy may result in lower risk of death compared to chemotherapy alone (hazard ratio (HR) 0.77, 95% confidence interval (CI) 0.62 to 0.95; 1 study, 452 participants; low-certainty evidence). However, there are probably more specific adverse events when compared to chemotherapy alone, including gastrointestinal perforations or fistulae (risk ratio (RR) 18.00, 95% CI 2.42 to 133.67; 1 study, 440 participants; moderate-certainty evidence); serious thromboembolic events (RR 4.5, 95% CI 1.55 to 13.08; 1 study, 440 participants; moderate-certainty evidence); and hypertension (RR 13.75, 95% CI 5.07 to 37.29; 1 study, 440 participants; moderate-certainty evidence). There may also be a higher incidence of serious haemorrhage (RR 5.00, 95% CI 1.11 to 22.56; 1 study, 440 participants; low-certainty evidence). In addition, the incidence of serious adverse events is probably higher (RR 1.44, 95% CI 1.16 to 1.79; 1 study, 439 participants; moderate-certainty evidence). The incremental cost-effectiveness ratio was USD 295,164 per quality-adjusted life-year (1 study, 452 participants; low-certainty evidence). Cediranib plus chemotherapy versus chemotherapy Treatment with cediranib plus chemotherapy may or may not result in similar risk of death when compared to chemotherapy alone (HR 0.94, 95% CI 0.53 to 1.65; 1 study, 69 participants; low-certainty evidence). We found very uncertain results for the incidences of specific adverse events, including gastrointestinal perforations or fistulae (RR 3.27, 95% CI 0.14 to 77.57; 1 study, 67 participants; very low-certainty evidence); serious haemorrhage (RR 5.45, 95% CI 0.27 to 109.49; 1 study, 67 participants; very low-certainty evidence); serious thromboembolic events (RR 3.41, 95% CI 0.14 to 80.59; 1 study, 60 participants; very low-certainty evidence); and serious hypertension (RR 0.36, 95% CI 0.02 to 8.62; 1 study, 67 participants; very low-certainty evidence). In addition, there may or may not be a similar incidence of serious adverse events compared to chemotherapy alone (RR 1.15, 95% CI 0.75 to 1.78; 1 study, 67 participants; low-certainty evidence). Apatinib plus chemotherapy or chemotherapy/brachytherapy versus chemotherapy or chemotherapy/brachytherapy Treatment with apatinib plus chemotherapy or chemotherapy/brachytherapy may or may not result in similar risk of death compared to chemotherapy alone or chemotherapy/brachytherapy alone (HR 0.90, 95% CI 0.51 to 1.60; 1 study, 52 participants; low-certainty evidence). However, hypertension events may occur at a higher incidence as compared to chemotherapy alone or chemotherapy/brachytherapy alone (RR 5.14, 95% CI 1.28 to 20.73; 1 study, 52 participants; low-certainty evidence). Pazopanib plus lapatinib versus lapatinib Treatment with pazopanib plus lapatinib may result in higher risk of death compared to lapatinib alone (HR 2.71, 95% CI 1.16 to 6.31; 1 study, 117 participants; low-certainty evidence). We found very uncertain results for the incidences of specific adverse events, including gastrointestinal perforations or fistulae (RR 2.00, 95% CI 0.19 to 21.59; 1 study, 152 participants; very low-certainty evidence); haemorrhage (RR 2.00, 95% CI 0.72 to 5.58; 1 study, 152 participants; very low-certainty evidence); and thromboembolic events (RR 3.00, 95% CI 0.12 to 72.50; 1 study, 152 participants; very low-certainty evidence). In addition, the incidence of hypertension events is probably higher (RR 12.00, 95% CI 2.94 to 49.01; 1 study, 152 participants; moderate-certainty evidence). There may or may not be a similar incidence of serious adverse events as compared to lapatinib alone (RR 1.45, 95% CI 0.94 to 2.26; 1 study, 152 participants; low-certainty evidence). Pazopanib versus lapatinib Treatment with pazopanib may or may not result in similar risk of death as compared to lapatinib (HR 0.96, 95% CI 0.67 to 1.38; 1 study, 152 participants; low-certainty evidence). We found very uncertain results for the incidences of specific adverse events, including gastrointestinal perforations or fistulae (RR 1.03, 95% CI 0.07 to 16.12; 1 study, 150 participants; very low-certainty evidence); haemorrhage (RR 1.03, 95% CI 0.31 to 3.40; 1 study, 150 participants; very low-certainty evidence); and thromboembolic events (RR 3.08, 95% CI 0.13 to 74.42; 1 study, 150 participants; very low-certainty evidence). In addition, the incidence of hypertension events is probably higher (RR 11.81, 95% CI 2.89 to 48.33; 1 study, 150 participants; moderate-certainty evidence). The risk of serious adverse events may or may not be similar as compared to lapatinib (RR 1.31, 95% CI 0.83 to 2.07; 1 study, 150 participants; low-certainty evidence). AUTHORS' CONCLUSIONS: We found low-certainty evidence in favour of the use of bevacizumab plus chemotherapy. However, bevacizumab probably increases specific adverse events (gastrointestinal perforations or fistulae, thromboembolic events, hypertension) and serious adverse events. We found low-certainty evidence that does not support the use of cediranib plus chemotherapy, apatinib plus chemotherapy, apatinib plus chemotherapy/brachytherapy, or pazopanib monotherapy. We found low-certainty evidence suggesting that pazopanib plus lapatinib worsens outcomes. The VEGF inhibitors apatinib and pazopanib may increase the probability of hypertension events.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Antineoplásicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/efeitos adversos , Antineoplásicos/efeitos adversos , Bevacizumab/efeitos adversos , Bevacizumab/uso terapêutico , Viés , Braquiterapia/efeitos adversos , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Intervalos de Confiança , Feminino , Fístula Gástrica/induzido quimicamente , Hemorragia Gastrointestinal/induzido quimicamente , Humanos , Hipertensão/induzido quimicamente , Indazóis , Fístula Intestinal/induzido quimicamente , Perfuração Intestinal/induzido quimicamente , Lapatinib/efeitos adversos , Lapatinib/uso terapêutico , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/irrigação sanguínea , Recidiva Local de Neoplasia/mortalidade , Intervalo Livre de Progressão , Piridinas/efeitos adversos , Piridinas/uso terapêutico , Pirimidinas/efeitos adversos , Pirimidinas/uso terapêutico , Qualidade de Vida , Quinazolinas/efeitos adversos , Quinazolinas/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Sulfonamidas/efeitos adversos , Sulfonamidas/uso terapêutico , Tromboembolia/induzido quimicamente , Neoplasias do Colo do Útero/irrigação sanguínea , Neoplasias do Colo do Útero/mortalidade , Adulto Jovem
19.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33055249

RESUMO

Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.


Assuntos
Cisteína Proteases/metabolismo , Potyviridae/enzimologia , Interferência de RNA , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Cisteína Proteases/genética , Genes Supressores , Genoma Viral , Viabilidade Microbiana , Mutação , Filogenia , Doenças das Plantas/virologia , Poliproteínas , Potyviridae/genética , Domínios Proteicos , RNA Viral/genética , Proteínas Virais/genética
20.
PLoS Pathog ; 16(10): e1008965, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33031436

RESUMO

In this study, we demonstrate a novel pro-viral role for the Nicotiana benthamiana ARGONAUTE 1 (AGO1) in potyvirus infection. AGO1 strongly enhanced potato virus A (PVA) particle production and benefited the infection when supplied in excess. We subsequently identified the potyviral silencing suppressor, helper-component protease (HCPro), as the recruiter of host AGO1. After the identification of a conserved AGO1-binding GW/WG motif in potyviral HCPros, we used site-directed mutagenesis to introduce a tryptophan-to-alanine change into the HCPro (HCProAG) of PVA (PVAAG) and turnip mosaic virus (TuMVAG). AGO1 co-localization and co-immunoprecipitation with PVA HCPro was significantly reduced by the mutation suggesting the interaction was compromised. Although the mutation did not interfere with HCPro's complementation or silencing suppression capacity, it nevertheless impaired virus particle accumulation and the systemic spread of both PVA and TuMV. Furthermore, we found that the HCPro-AGO1 interaction was important for AGO1's association with the PVA coat protein. The coat protein was also more stable in wild type PVA infection than in PVAAG infection. Based on these findings we suggest that potyviral HCPro recruits host AGO1 through its WG motif and engages AGO1 in the production of stable virus particles, which are required for an efficient systemic infection.


Assuntos
Nicotiana/virologia , Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Potyvirus/fisiologia , Interferência de RNA , Proteínas Virais/metabolismo , Mutação , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA