Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1333566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328443

RESUMO

Pulsed electromagnetic field (PEMF) stimulation is a prospective non-invasive and safe physical therapy strategy for accelerating bone repair. PEMFs can activate signalling pathways, modulate ion channels, and regulate the expression of bone-related genes to enhance osteoblast activity and promote the regeneration of neural and vascular tissues, thereby accelerating bone formation during bone repair. Although their mechanisms of action remain unclear, recent studies provide ample evidence of the effects of PEMF on bone repair. In this review, we present the progress of research exploring the effects of PEMF on bone repair and systematically elucidate the mechanisms involved in PEMF-induced bone repair. Additionally, the potential clinical significance of PEMF therapy in fracture healing is underscored. Thus, this review seeks to provide a sufficient theoretical basis for the application of PEMFs in bone repair.

2.
Front Pharmacol ; 13: 1010079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618918

RESUMO

Background: Acute myocardial infarction (AMI) is a common and life-threatening cardiovascular disease. However, there is a lack of pathology and drug studies on AMI within 20 min. Xueshuantong injection (XST) is mainly composed of Panax notoginseng saponins, which can dilate blood vessels and improve blood circulation, and is clinically used in the treatment of cardiovascular and cerebrovascular diseases. Purpose: The study aimed to investigate the protective mechanism of Xueshuantong injection against acute myocardial infarction within 20 min in rats by proteomic methods and molecular docking. Method: The male Sprague-Dawley rat acute myocardial infarction model was established by LAD ligation, and Xueshuantong injection (38 mg/kg) was injected into the caudal vein 15 min before surgery. Cardiac function evaluation, morphological observation, label-free quantitative proteomics, Western blotting analysis, molecular docking, and affinity measurement were applied in this study. Results: In a span of 20 min after acute myocardial infarction, the model group showed significant cardiac function impairment. Xueshuantong injection can significantly improve cardiac function and prevent pathological injury of myocardial tissue. A total of 117 vital differentially expressed proteins were identified by proteomic analysis, including 80 differentially expressed proteins (DEPs) in the sham group compared with model rats (Sham: model) and 43 DEPs in model rats compared with the Xueshuantong injection group (Model: XST). The treatment of Xueshuantong injection mainly involves "poly(A) RNA binding" and "cadherin binding involved in cell-cell adhesion." The differentially expressed levels of the pathways related to proteins Echdc2, Gcdh, Dlst, and Nampt, as well as 14-3-3 family proteins Ywhaz and Ywhab, could be quantitatively confirmed by WB. Molecular docking analysis and SPR analysis revealed that Ywhaz has a generally stable binding with five Xueshuantong injection components. Conclusion: Xueshuantong injection (XST) could protect rat myocardial function injury against AMI in 20 min. Echdc2, Ywhaz, Gcdh, Ywhab, Nampt, and Dlst play an essential role in this protective effect. In particular, Ywhaz might be the core target of Xueshuantong injection when treating acute myocardial infarction in the early stage. This study promoted the understanding of the protective mechanism of Xueshuantong injection in 20 min injury of acute myocardial infarction and contributed to the identification of possible targets of Xueshuantong injection.

3.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5576-5584, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34951209

RESUMO

Ischemic cardiovascular and cerebrovascular diseases threatening human health and survival have high morbidity and mortality. The common cause of them is reduced blood supply caused by vascular stenosis, atherosclerosis, and infarction. However,the pathological processes of ischemic cardiovascular and cerebrovascular diseases are complex, involving oxidative stress, calcium overload, inflammation, apoptosis, autophagy and other mechanisms. Protein drugs such as recombinant tissue plasminogen activator(rt-PA) and urokinase have been proved with excellent therapeutic effects and huge economic and social benefits in the clinical treatment and interventional therapy. Among them, peptide drugs have shown unique advantages and potential prospects owing to their strong biological activity, high target specificity, biochemical diversity, and low toxicity. Chinese medicinal materials, characterized by multi-component and multi-target therapy, have also shown excellent clinical efficacy against ischemic cardiovascular and cerebrovascular diseases. However, the research and development of related peptides in Chinese medicinal materials is at the initial stage. Therefore, this paper reviewed the targets and action mechanisms of a variety of Chinese medicinal material-derived polypeptides with activities against ischemic cardiovascular and cerebrovascular diseases, aiming to provide support for the in-depth research as well as the clinical development and application of these polypeptides.


Assuntos
Transtornos Cerebrovasculares , Medicamentos de Ervas Chinesas , Transtornos Cerebrovasculares/tratamento farmacológico , China , Humanos , Medicina Tradicional Chinesa , Peptídeos , Ativador de Plasminogênio Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA