Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Dermatol ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38880994

RESUMO

BACKGROUND: Both xanthogranuloma and xanthoma clinically manifest as yellowish skin lesions. Historically, the gold standard for diagnosis was skin histopathological examination. Currently, the advent of reflectance confocal microscopy (RCM) offers additional diagnostic support for these diseases by revealing their microscopic features, thereby enhancing the theoretical foundation for diagnosis. OBJECTIVE: This study aimed to elucidate the distinctive characteristics of RCM images in xanthogranuloma and xanthoma, assess their diagnostic value, and investigate the relationship between RCM and histopathological features, ultimately boosting diagnostic accuracy. METHODS: RCM and histopathological examinations were conducted on 13 patients with xanthogranuloma and 12 with xanthoma, recruited from our Dermatology Clinic between August 2022 and November 2023. The study involved analyzing RCM image features and correlating them with histopathological findings. RESULTS: The RCM images of 13 xanthogranuloma and 12 xanthoma cases showed similar features. Xanthogranuloma predominantly exhibited epidermal atrophy and thinning in 6 cases (46.15%). Additionally, in 69.23% of cases, scattered small mononuclear inflammatory cells were infiltrated in the superficial and middle dermis layers. Medium to high refractive cells, predominantly vacuolated and resembling foam, were observed in 61.54% of cases. All cases demonstrated high refractive cells with distinct target-shaped, disc-shaped, horseshoe-like, and flower-ring structures. Concordance rates with histopathological examinations were 69.23, 92.31, 92.31, and 100%, respectively. Regarding xanthoma, epidermal atrophy and thinning occurred in two cases (16.67%), and mononuclear inflammatory cell infiltration was observed in 25% of cases. High refractive cells with the previously mentioned shapes were present in 100% of cases, though only 16.67% displayed these characteristics exclusively. The concordance rates were 66.67, 91.67, 100, and 91.67%, respectively. CONCLUSION: RCM imaging of xanthogranuloma and xanthoma presents distinctive, highly consistent features with their histopathology, offering valuable insights for clinicians in diagnosing and differentiating these conditions.

2.
Nat Struct Mol Biol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769389

RESUMO

NADH/NAD+ redox balance is pivotal for cellular metabolism. Systematic identification of NAD(H) redox regulators, although currently lacking, would help uncover unknown effectors critically implicated in the coordination of growth metabolism. In this study, we performed a genome-scale RNA interference (RNAi) screen to globally survey the genes involved in redox modulation and identified the HES family bHLH transcription factor HES4 as a negative regulator of NADH/NAD+ ratio. Functionally, HES4 is shown to be crucial for maintaining mitochondrial electron transport chain (ETC) activity and pyrimidine synthesis. More specifically, HES4 directly represses transcription of SLC44A2 and SDS, thereby inhibiting mitochondrial choline oxidation and cytosolic serine deamination, respectively, which, in turn, ensures coenzyme Q reduction capacity for DHODH-mediated UMP synthesis and serine-derived dTMP production. Accordingly, inhibition of choline oxidation preserves mitochondrial serine catabolism and ETC-coupled redox balance. Furthermore, HES4 protein stability is enhanced under EGFR activation, and increased HES4 levels facilitate EGFR-driven tumor growth and predict poor prognosis of lung adenocarcinoma. These findings illustrate an unidentified mechanism, underlying pyrimidine biosynthesis in the intersection between serine and choline catabolism, and underscore the physiological importance of HES4 in tumor metabolism.

3.
Cancer Commun (Lond) ; 44(6): 637-653, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741380

RESUMO

BACKGROUND: Tyrosine phosphorylation of intracellular proteins is a post-translational modification that plays a regulatory role in signal transduction during cellular events. Dephosphorylation of signal transduction proteins caused by protein tyrosine phosphatases (PTPs) contributed their role as a convergent node to mediate cross-talk between signaling pathways. In the context of cancer, PTP-mediated pathways have been identified as signaling hubs that enabled cancer cells to mitigate stress induced by clinical therapy. This is achieved by the promotion of constitutive activation of growth-stimulatory signaling pathways or modulation of the immune-suppressive tumor microenvironment. Preclinical evidences suggested that anticancer drugs will release their greatest therapeutic potency when combined with PTP inhibitors, reversing drug resistance that was responsible for clinical failures during cancer therapy. AREAS COVERED: This review aimed to elaborate recent insights that supported the involvement of PTP-mediated pathways in the development of resistance to targeted therapy and immune-checkpoint therapy. EXPERT OPINION: This review proposed the notion of PTP inhibition in anticancer combination therapy as a potential strategy in clinic to achieve long-term tumor regression. Ongoing clinical trials are currently underway to assess the safety and efficacy of combination therapy in advanced-stage tumors.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Proteínas Tirosina Fosfatases , Humanos , Neoplasias/tratamento farmacológico , Proteínas Tirosina Fosfatases/antagonistas & inibidores , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais
4.
BMJ Open ; 14(3): e074854, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471679

RESUMO

OBJECTIVE: To evaluate the quality and analyse the content of clinical practice guidelines regarding central venous catheter-related thrombosis (CRT) to provide evidence for formulating an evidence-based practice protocol and a risk assessment scale to prevent it. DESIGN: Scoring and analysis of the guidelines using the AGREE II and AGREE REX scales. DATA SOURCES: Pubmed, Embase, Cochrane Library, Web of Science, CNKI, Wanfang, VIP, and the Chinese Biomedical Literature, and the relevant websites of the guideline, were searched from 1 January 2017 to 26 March 2022. ELIGIBILITY CRITERIA: Guidelines covering CRT treatment, prevention, or management were included from 1 January 2017 to 26 March 2022. DATA EXTRACTION AND SYNTHESIS: Three independent reviewers systematically trained in using the AGREE II and AGREE REX scales were selected to evaluate these guidelines. RESULTS: Nine guidelines were included, and the quality grade results showed that three were at A-level and six were at B-level. The included guidelines mainly recommended the prevention measure of central venous CRT from three aspects: risk screening, prevention strategies, and knowledge training, with a total of 22 suggestions being recommended. CONCLUSION: The overall quality of the guidelines is high, but there are few preventive measures for central venous CRT involved in the guidelines. All preventive measures have yet to be systematically integrated and evaluated, and no risk assessment scale dedicated to this field has been recommended. Therefore, developing an evidence-based practice protocol and a risk assessment scale to prevent it is urgent.


Assuntos
Cateteres Venosos Centrais , Trombose , Humanos , Prática Clínica Baseada em Evidências , Guias de Prática Clínica como Assunto
5.
J Med Chem ; 67(4): 2777-2801, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323982

RESUMO

Activation of the alternative pathways and abnormal signaling transduction are frequently observed in third-generation EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors)-resistant patients. Wherein, hyperphosphorylation of ACK1 contributes to EGFR-TKIs acquired resistance. Dual inhibition of EGFRL858R/T790M and ACK1 might improve therapeutic efficacy and overcome resistance in lung cancers treatment. Here, we identified a EGFRL858R/T790M/ACK1 dual-targeting compound 21a with aminoquinazoline scaffold, which showed excellent inhibitory activities against EGFRL858R/T790M (IC50 = 23 nM) and ACK1 (IC50 = 263 nM). The cocrystal and docking analysis showed that 21a occupied the ATP binding pockets of EGFRL858R/T790M and ACK1. Moreover, 21a showed potent antiproliferative activities against the H1975 cells, MCF-7 cells and osimertinib-resistant cells AZDR. Further, 21a showed significant antitumor effects and good safety in ADZR xenograft-bearing mice. Taken together, 21a was a potent dual inhibitor of EGFRL858R/T790M/ACK1, which is deserved as a potential lead for overcoming acquired resistance to osimertinib during the EGFR-targeted therapy.


Assuntos
Acrilamidas , Compostos de Anilina , Carcinoma Pulmonar de Células não Pequenas , Indóis , Neoplasias Pulmonares , Pirimidinas , Humanos , Animais , Camundongos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química , Linhagem Celular Tumoral
6.
Nat Protoc ; 19(5): 1311-1347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38307980

RESUMO

As a key glycolytic metabolite, lactate has a central role in diverse physiological and pathological processes. However, comprehensive multiscale analysis of lactate metabolic dynamics in vitro and in vivo has remained an unsolved problem until now owing to the lack of a high-performance tool. We recently developed a series of genetically encoded fluorescent sensors for lactate, named FiLa, which illuminate lactate metabolism in cells, subcellular organelles, animals, and human serum and urine. In this protocol, we first describe the FiLa sensor-based strategies for real-time subcellular bioenergetic flux analysis by profiling the lactate metabolic response to different nutritional and pharmacological conditions, which provides a systematic-level view of cellular metabolic function at the subcellular scale for the first time. We also report detailed procedures for imaging lactate dynamics in live mice through a cell microcapsule system or recombinant adeno-associated virus and for the rapid and simple assay of lactate in human body fluids. This comprehensive multiscale metabolic analysis strategy may also be applied to other metabolite biosensors using various analytic platforms, further expanding its usability. The protocol is suited for users with expertise in biochemistry, molecular biology and cell biology. Typically, the preparation of FiLa-expressing cells or mice takes 2 days to 4 weeks, and live-cell and in vivo imaging can be performed within 1-2 hours. For the FiLa-based assay of body fluids, the whole measuring procedure generally takes ~1 min for one sample in a manual assay or ~3 min for 96 samples in an automatic microplate assay.


Assuntos
Técnicas Biossensoriais , Ácido Láctico , Técnicas Biossensoriais/métodos , Animais , Humanos , Ácido Láctico/metabolismo , Ácido Láctico/análise , Camundongos
7.
Hortic Res ; 11(2): uhad277, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38344649

RESUMO

Solanum habrochaites (SH), a wild species closely related to 'Ailsa Craig' (AC), is an important germplasm resource for modern tomato breeding. Trichomes, developed from epidermal cells, have a role in defense against insect attack, and their secretions are of non-negligible value. Here, we found that the glandular heads of type VI trichomes were clearly distinguishable between AC and SH under cryo-scanning electron microscopy, the difference indicating that SH could secrete more anti-insect metabolites than AC. Pest preference experiments showed that aphids and mites preferred to feed near AC compared with SH. Integration analysis of transcriptomics and metabolomics data revealed that the phenylpropanoid biosynthesis pathway was an important secondary metabolic pathway in plants, and SH secreted larger amounts of phenylpropanoids and flavonoids than AC by upregulating the expression of relevant genes in this pathway, and this may contribute to the greater resistance of SH to phytophagous insects. Notably, virus-induced silencing of Sl4CLL6 not only decreased the expression of genes downstream of the phenylpropanoid biosynthesis pathway (SlHCT, SlCAD, and SlCHI), but also reduced resistance to mites in tomato. These findings provided new genetic resources for the synthesis of phenylpropanoid compounds and anti-insect breeding in S. habrochaites and a new theoretical basis for the improvement of important traits in cultivated tomato.

8.
Immunol Rev ; 321(1): 300-334, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688394

RESUMO

Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Morte Celular Regulada , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Imunoterapia , Apoptose
9.
Chin J Integr Med ; 30(3): 213-221, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37688744

RESUMO

OBJECTIVE: To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration. METHODS: HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR. RESULTS: HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05). CONCLUSION: HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.


Assuntos
Chalcona/análogos & derivados , Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Quinonas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB/genética , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , RNA Mensageiro/genética , Movimento Celular , Linhagem Celular Tumoral
10.
Eur J Med Chem ; 265: 116040, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38142509

RESUMO

Colorectal cancer (CRC), a tumor of the digestive system, is characterized by high malignancy and poor prognosis. Currently, targeted therapy of CRC is far away from satisfying. The molecular mechanisms of regulated cell death (RCD) have been clearly elucidated, which can be intervened by drug or genetic modification. Numerous studies have provided substantial evidence linking these mechanisms to the progression and treatment of CRC. The RCD includes apoptosis, autophagy-dependent cell death (ADCD), ferroptosis, necroptosis, and pyroptosis, and immunogenic cell death, etc, which provide potential targets for anti-cancer treatment. For the last several years, small-molecule compounds targeting RCD have been a well concerned therapeutic strategy for CRC. This present review aims to describe the function of small-molecule compounds in the targeted therapy of CRC via targeting apoptosis, ADCD, ferroptosis, necroptosis, immunogenic dell death and pyroptosis, and their mechanisms. In addition, we prospect the application of newly discovered cuproptosis and disulfidptosis in CRC. Our review may provide references for the targeted therapy of CRC using small-molecule compounds targeting RCD, including the potential targets and candidate compounds.


Assuntos
Morte Celular Autofágica , Neoplasias Colorretais , Ferroptose , Morte Celular Regulada , Humanos , Necroptose , Apoptose , Neoplasias Colorretais/tratamento farmacológico
11.
Environ Sci Technol ; 57(44): 16764-16778, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37890152

RESUMO

Tebuconazole is a widely used fungicide for various crops that targets sterol 14-α-demethylase (CYP51) in fungi. However, attention has shifted to aromatase (CYP19) due to limited research indicating its reproductive impact on aquatic organisms. Herein, zebrafish were exposed to 0.5 mg/L tebuconazole at different developmental stages. The proportion of males increased significantly after long-term exposure during the sex differentiation phase (0-60, 5-60, and 19-60 days postfertilization (dpf)). Testosterone levels increased and 17ß-estradiol and cyp19a1a expression levels decreased during the 5-60 dpf exposure, while the sex ratio was equally distributed on coexposure with 50 ng/L 17ß-estradiol. Chemically activated luciferase gene expression bioassays determined that the male-biased sex differentiation was not caused by tebuconazole directly binding to sex hormone receptors. Protein expression and phosphorylation levels were specifically altered in the vascular endothelial growth factor signaling pathway despite excluding the possibility of tebuconazole directly interacting with kinases. Aromatase was selected for potential target analysis. Molecular docking and aromatase activity assays demonstrated the interactions between tebuconazole and aromatase, highlighting that tebuconazole poses a threat to fish populations by inducing a gender imbalance.


Assuntos
Diferenciação Sexual , Peixe-Zebra , Masculino , Animais , Diferenciação Sexual/genética , Aromatase/genética , Aromatase/metabolismo , Larva/metabolismo , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Estradiol/metabolismo
12.
Biomaterials ; 301: 122217, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37423183

RESUMO

Tomato (Solanum lycopersicum L.) is a popular vegetable crop which is widely cultivated around the world. However, the production of tomatoes is threatened by several phytopathogenic agents, including gray mold (Botrytis cinerea Pers.). Biological control using fungal agents such as Clonostachys rosea plays a pivotal role in managing gray mold. However, these biological agents can negatively be influenced by environmental factors. However, immobilization is a promising approach to tackle this issue. In this research, we used a nontoxic chemical material, sodium alginate as a carrier to immobilize C. rosea. For this, sodium alginate microspheres were prepared using sodium alginate prior to embedding C. rosea. The results showed that C. rosea was successfully embedded in sodium alginate microspheres, and immobilization enhanced the stability of the fungi. The embedded C. rosea was able to suppress the growth of gray mold efficiently. In addition, the activity of stress related enzymes, peroxidase superoxidase dismutase and polyphenol oxidation was promoted in tomatoes treated with the embedded C. rosea. By measuring photosynthetic efficiency, it was noted that the embedded C. rosea has positive impacts on tomato plants. Taken together, these results indicate that immobilization of C. rosea improved its stability without detrimentally affecting its efficiency on gray mold suppression and tomato growth. The results of this research can be used as a basis for research and development of new immobilized biocontrol agents.


Assuntos
Solanum lycopersicum , Plântula , Microesferas
13.
Transgenic Res ; 32(4): 279-291, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37266895

RESUMO

Interleukin-37 is a newly discovered cytokine that plays a pivotal role in suppressing innate inflammation and acquired immunity. We have recently expressed both the mature(mat-) and pro-forms of human IL-37b in plants and demonstrated that while both forms of the plant-made hIL-37b are functional, pmat-hIL37b exhibited significantly greater activity than ppro-IL-37b. Compared to ppro-hIL-37b, on the other hand, the expression level of pmat-hIL-37b was substantially lower (100.5 µg versus 1.05 µg/g fresh leaf mass or 1% versus 0.01% TSP). Since the difference between ppro-hIL-37b and pmat-hIL-37b is that ppro-hIL-37b contains a signal sequence not cleavable by plant cells, we reasoned that this signal sequence would play a key role in stabilizing the ppro-hIL-37b protein. Here, we describe a novel approach to enhancing pmat-hIL-37b production in plants based on incorporation of a gene sequence encoding tobacco etch virus (TEV) protease between the signal peptide and the mature hIL-37b, including a TEV cleavage site at the C-termini of TEV protease. The rationale is that when expressed as a sp-TEV-matIL-37b fusion protein, the stabilizing properties of the signal peptide of pro-hIL-37b will be awarded to its fusion partners, resulting in increased yield of target proteins. The fusion protein is then expected to cleave itself in vivo to yield a mature pmat-hIL-37b. Indeed, when a sp-TEV-matIL-37b fusion gene was expressed in stable-transformed plants, a prominent band corresponding to dimeric pmat-hIL-37b was detected, with expression yields reaching 42.5 µg/g fresh leaf mass in the best expression lines. Bioassays demonstrated that plant-made mature pmat-hIL-37b is functional.


Assuntos
Inflamação , Sinais Direcionadores de Proteínas , Humanos , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão
14.
Sci Adv ; 9(22): eadg4993, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37267363

RESUMO

Autophagy and glycolysis are highly conserved biological processes involved in both physiological and pathological cellular programs, but the interplay between these processes is poorly understood. Here, we show that the glycolytic enzyme lactate dehydrogenase A (LDHA) is activated upon UNC-51-like kinase 1 (ULK1) activation under nutrient deprivation. Specifically, ULK1 directly interacts with LDHA, phosphorylates serine-196 when nutrients are scarce and promotes lactate production. Lactate connects autophagy and glycolysis through Vps34 lactylation (at lysine-356 and lysine-781), which is mediated by the acyltransferase KAT5/TIP60. Vps34 lactylation enhances the association of Vps34 with Beclin1, Atg14L, and UVRAG, and then increases Vps34 lipid kinase activity. Vps34 lactylation promotes autophagic flux and endolysosomal trafficking. Vps34 lactylation in skeletal muscle during intense exercise maintains muscle cell homeostasis and correlates with cancer progress by inducing cell autophagy. Together, our findings describe autophagy regulation mechanism and then integrate cell autophagy and glycolysis.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases , Lisina , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Lipídeos
15.
J Med Chem ; 66(8): 5719-5752, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042119

RESUMO

Epidermal growth factor receptor (EGFR) is one of the most studied drug targets for the treatment of non-small-cell lung cancer (NSCLC). Here, we report the identification, structure optimization, and structure-activity relationship studies of quinazoline derivatives as novel selective EGFR L858R/T790M inhibitors. The most promising compound, 28f, exhibited strong inhibitory activity against EGFR L858R/T790M (IC50 = 3.5 nM) and greater than 368-fold selectivity over EGFR WT (IC50 = 1290 nM), a 6.7-fold improvement over osimertinib. Furthermore, 28f effectively inhibited downstream signaling pathways and induced apoptosis in mutant cells. In the H1975 xenograft in vivo model, 28f exhibited a good tumor suppressive effect. Furthermore, the combination of 28f with the ACK1 inhibitor dasatinib produced synergistic antiproliferative efficacy with 28f in 28f-resistant cells and in vivo. In conclusion,28f could become a candidate drug for the treatment of NSCLC, and the combination of 28f and dasatinib is expected to overcome EGFR resistance.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células , Dasatinibe/farmacologia , Linhagem Celular Tumoral , Mutação , Inibidores de Proteínas Quinases/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia
17.
Acta Pharm Sin B ; 12(5): 2171-2192, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646548

RESUMO

The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway is widely activated by a variety of extracellular stimuli, and its dysregulation is associated with the proliferation, invasion, and migration of cancer cells. ERK1/2 is located at the distal end of this pathway and rarely undergoes mutations, making it an attractive target for anticancer drug development. Currently, an increasing number of ERK1/2 inhibitors have been designed and synthesized for antitumor therapy, among which representative compounds have entered clinical trials. When ERK1/2 signal transduction is eliminated, ERK5 may provide a bypass route to rescue proliferation, and weaken the potency of ERK1/2 inhibitors. Therefore, drug research targeting ERK5 or based on the compensatory mechanism of ERK5 for ERK1/2 opens up a new way for oncotherapy. This review provides an overview of the physiological and biological functions of ERKs, focuses on the structure-activity relationships of small molecule inhibitors targeting ERKs, with a view to providing guidance for future drug design and optimization, and discusses the potential therapeutic strategies to overcome drug resistance.

18.
J Med Chem ; 65(5): 3758-3775, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200035

RESUMO

c-Jun N-terminal kinases (JNKs), members of the mitogen-activated protein kinase (MAPK) family, are encoded by three genes: jnk1, jnk2, and jnk3. JNKs are involved in the pathogenesis and development of many diseases, such as neurodegenerative diseases, inflammation, and cancers. Therefore, JNKs have become important therapeutic targets. Many JNK inhibitors have been discovered, and some have been introduced into clinical trials. However, the study of isoform-selective JNK inhibitors is still a challenging task. To further develop novel JNK inhibitors with clinical value, a comprehensive understanding of JNKs and their corresponding inhibitors is required. In this Perspective, we introduced the JNK signaling pathways and reviewed different chemical types of JNK inhibitors, focusing on their structure-activity relationships and biological activities. The challenges and strategies for the development of JNK inhibitors are also discussed. It is hoped that this Perspective will provide valuable references for the development of novel selective JNK inhibitors.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno , Neoplasias , Humanos , Sistema de Sinalização das MAP Quinases , Neoplasias/tratamento farmacológico , Fosforilação , Isoformas de Proteínas/metabolismo
19.
J Med Chem ; 64(22): 16328-16348, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34735773

RESUMO

Activated Cdc42-associated kinase 1 (ACK1/TNK2) is a nonreceptor tyrosine kinase with a unique structure. It not only can act as an activated transmembrane effector of receptor tyrosine kinases (RTKs) to transmit various RTK signals but also can play a corresponding role in epigenetic regulation. A number of studies have shown that ACK1 is a carcinogenic factor. Blockage of ACK1 has been proven to be able to inhibit cancer cell survival, proliferation, migration, and radiation resistance. Thus, ACK1 is a promising potential antitumor target. To date, despite many efforts to develop ACK1 inhibitors, no specific small molecule inhibitors have entered clinical trials. This Perspective provides an overview of the structural features, biological functions, and association with diseases of ACK1 and in vitro and in vivo activities, selectivity, and therapeutic potential of small molecule ACK1 inhibitors with different chemotypes.


Assuntos
Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Humanos , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais
20.
Chem Commun (Camb) ; 57(97): 13194-13197, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34816823

RESUMO

Autophagy-based protein degradation is emerging as a promising technology for anti-diseases and innovative drug discovery. Here, we demonstrate a novel type of autophagy-targeting chimera (AUTAC) to degrade protein by targeting autophagy key protein LC3. The best compound 10f powerfully degraded BRD4 protein through the autophagy pathway and exhibited good anti-proliferative activity in multiple tumor cells, providing a powerful toolbox for medicinal chemists to study disease-related targets with autophagy-based degradation.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA