Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Metab ; 4(5): 608-626, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551509

RESUMO

Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of type-2 diabetes. However, cellular signaling machineries that control GSIS remain incompletely understood. Here, we report that ß-klotho (KLB), a single-pass transmembrane protein known as a co-receptor for fibroblast growth factor 21 (FGF21), fine tunes GSIS via modulation of glycolysis in pancreatic ß-cells independent of the actions of FGF21. ß-cell-specific deletion of Klb but not Fgf21 deletion causes defective GSIS and glucose intolerance in mice and defective GSIS in islets of type-2 diabetic mice is mitigated by adenovirus-mediated restoration of KLB. Mechanistically, KLB interacts with and stabilizes the cytokine receptor subunit GP130 by blockage of ubiquitin-dependent lysosomal degradation, thereby facilitating interleukin-6-evoked STAT3-HIF1α signaling, which in turn transactivates a cluster of glycolytic genes for adenosine triphosphate production and GSIS. The defective glycolysis and GSIS in Klb-deficient islets are rescued by adenovirus-mediated replenishment of STAT3 or HIF1α. Thus, KLB functions as a key cell-surface regulator of GSIS by coupling the GP130 receptor signaling to glucose catabolism in ß-cells and represents a promising therapeutic target for diabetes.


Assuntos
Diabetes Mellitus Experimental , Glucose , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Glucose/metabolismo , Glicólise , Secreção de Insulina , Camundongos
2.
J Cell Mol Med ; 23(2): 1059-1071, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30461198

RESUMO

Fibroblast growth factor 21 (FGF21) is important in glucose, lipid homeostasis and insulin sensitivity. However, it remains unknown whether FGF21 is involved in insulin expression and secretion that are dysregulated in type 2 diabetes mellitus (T2DM). In this study, we found that FGF21 was down-regulated in pancreatic islets of db/db mice, a mouse model of T2DM, along with decreased insulin expression, suggesting the possible involvement of FGF21 in maintaining insulin homeostasis and islet ß-cell function. Importantly, FGF21 knockout exacerbated palmitate-induced islet ß-cell failure and suppression of glucose-stimulated insulin secretion (GSIS). Pancreatic FGF21 overexpression significantly increased insulin expression, enhanced GSIS, improved islet morphology and reduced ß-cell apoptosis in db/db mice. Mechanistically, FGF21 promoted expression of insulin gene transcription factors and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, the major regulators of insulin secretion, as well as activating phosphatidylinositol 3-kinase (PI3K)/Akt signaling in islets of db/db mice. In addition, pharmaceutical inhibition of PI3K/Akt signaling effectively suppressed FGF21-induced expression of insulin gene transcription factors and SNARE proteins, suggesting an essential role of PI3K/Akt signaling in FGF21-induced insulin expression and secretion. Taken together, our results demonstrate a protective role of pancreatic FGF21 in T2DM mice through inducing PI3K/Akt signaling-dependent insulin expression and secretion.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Apoptose/fisiologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo
3.
Int J Mol Sci ; 19(11)2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30423881

RESUMO

As a cellular energy sensor and regulator, adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a pivotal role in the regulation of energy homeostasis in both the central nervous system (CNS) and peripheral organs. Activation of hypothalamic AMPK maintains energy balance by inducing appetite to increase food intake and diminishing adaptive thermogenesis in adipose tissues to reduce energy expenditure in response to food deprivation. Numerous metabolic hormones, such as leptin, adiponectin, ghrelin and insulin, exert their energy regulatory effects through hypothalamic AMPK via integration with the neural circuits. Although activation of AMPK in peripheral tissues is able to promote fatty acid oxidation and insulin sensitivity, its chronic activation in the hypothalamus causes obesity by inducing hyperphagia in both humans and rodents. In this review, we discuss the role of hypothalamic AMPK in mediating hormonal regulation of feeding and adaptive thermogenesis, and summarize the diverse underlying mechanisms by which central AMPK maintains energy homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Hormônios/metabolismo , Hipotálamo/enzimologia , Animais , Ingestão de Alimentos , Humanos
4.
Diabetes ; 67(11): 2397-2409, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30131393

RESUMO

Profound loss and senescence of adipose tissues are hallmarks of advanced age, but the underlying cause and their metabolic consequences remain obscure. Proper function of the murine double minute 2 (MDM2)-p53 axis is known to prevent tumorigenesis and several metabolic diseases, yet its role in regulation of adipose tissue aging is still poorly understood. In this study, we show that the proximal p53 inhibitor MDM2 is markedly downregulated in subcutaneous white and brown adipose tissues of mice during aging. Genetic disruption of MDM2 in adipocytes triggers canonical p53-mediated apoptotic and senescent programs, leading to age-dependent lipodystrophy and its associated metabolic disorders, including type 2 diabetes, nonalcoholic fatty liver disease, hyperlipidemia, and energy imbalance. Surprisingly, this lipodystrophy mouse model also displays premature loss of physiological integrity, including impaired exercise capacity, multiple organ senescence, and shorter life span. Transplantation of subcutaneous fat rejuvenates the metabolic health of this aging-like lipodystrophy mouse model. Furthermore, senescence-associated secretory factors from MDM2-null adipocytes impede adipocyte progenitor differentiation via a non-cell-autonomous manner. Our findings suggest that tight regulation of the MDM2-p53 axis in adipocytes is required for adipose tissue dynamics and metabolic health during the aging process.


Assuntos
Adipócitos/metabolismo , Envelhecimento/metabolismo , Lipodistrofia/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Calorimetria Indireta , Regulação para Baixo , Metabolismo Energético/genética , Teste de Tolerância a Glucose , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética
5.
Clin Sci (Lond) ; 131(15): 1877-1893, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28559425

RESUMO

The aim of the present study is to explore the molecular mechanism of fibroblast growth factor 21 (FGF21) in protecting against diabetic cardiomyopathy (DCM). Streptozotocin/high-fat diet (STZ/HFD) was used to induced diabetes in FGF21-deficient mice and their wild-type littermates, followed by evaluation of the difference in DCM between the two genotypes. Primary cultured cardiomyocytes were also used to explore the potential molecular mechanism of FGF21 in the protection of high glucose (HG)-induced cardiomyocyte injury. STZ/HFD-induced cardiomyopathy was exacerbated in FGF21 knockout mice, which was accompanied by a significant reduction in cardiac AMP-activated protein kinase (AMPK) activity and paraoxonase 1 (PON1) expression. By contrast, adeno-associated virus (AAV)-mediated overexpression of FGF21 in STZ/HFD-induced diabetic mice significantly enhanced cardiac AMPK activity, PON1 expression and its biological activity, resulting in alleviated DCM. In cultured cardiomyocytes, treatment with recombinant mouse FGF21 (rmFGF21) counteracted HG-induced oxidative stress, mitochondrial dysfunction, and inflammatory responses, leading to increased AMPK activity and PON1 expression. However, these beneficial effects of FGF21 were markedly weakened by genetic blockage of AMPK or PON1. Furthermore, inactivation of AMPK also markedly blunted FGF21-induced PON1 expression but significantly increased HG-induced cytotoxicity in cardiomyocytes, the latter of which was largely reversed by adenovirus-mediated PON1 overexpression. These findings suggest that FGF21 ameliorates DCM in part by activation of the AMPK-PON1 axis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Arildialquilfosfatase/metabolismo , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/prevenção & controle , Fatores de Crescimento de Fibroblastos/fisiologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Cardiomiopatias Diabéticas/metabolismo , Progressão da Doença , Ativação Enzimática/fisiologia , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas Klotho , Masculino , Proteínas de Membrana/fisiologia , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transdução de Sinais/fisiologia
6.
Nat Commun ; 7: 11740, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27265727

RESUMO

Mitochondrial metabolism is pivotal for glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells. However, little is known about the molecular machinery that controls the homeostasis of intermediary metabolites in mitochondria. Here we show that the activation of p53 in ß-cells, by genetic deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates oxaloacetate and NADPH, and impaired oxygen consumption. The defective GSIS and mitochondrial metabolism in MDM2-null islets can be rescued by restoring PC expression. Under diabetogenic conditions, MDM2 and p53 are upregulated, whereas PC is reduced in mouse ß-cells. Pharmacological inhibition of p53 alleviates defective GSIS in diabetic islets by restoring PC expression. Thus, the MDM2-p53-PC signalling axis links mitochondrial metabolism to insulin secretion and glucose homeostasis, and could represent a therapeutic target in diabetes.


Assuntos
Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Piruvato Carboxilase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenoviridae/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Imidazóis/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Especificidade de Órgãos , Fenótipo , Piperazinas/farmacologia , Piruvato Carboxilase/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/genética
7.
J Agric Food Chem ; 63(29): 6577-87, 2015 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-26151481

RESUMO

Nematophagous fungi are globally distributed soil fungi and well-known natural predators of soil-dwelling nematodes. Pochonia chlamydosporia can be found in diverse nematode-suppressive soils as a parasite of nematode eggs and is one of the most studied potential biological control agents of nematodes. However, little is known about the functions of small molecules in the process of infection of nematodes by this parasitic fungus or about small-molecule-mediated interactions between the pathogenic fungus and its host. Our recent study demonstrated that a P. chlamydosporia strain isolated from root knots of tobacco infected by the root-knot nematode Meloidogyne incognita produced a class of yellow pigment metabolite aurovertins, which induced the death of the free-living nematode Panagrellus redivevus. Here we report that nematicidal P. chlamydosporia strains obtained from the nematode worms tended to yield a total yellow pigment aurovertin production exceeding the inhibitory concentration shown in nematicidal bioassays. Aurovertin D was abundant in the pigment metabolites of P. chlamydosporia strains. Aurovertin D showed strong toxicity toward the root-knot nematode M. incognita and exerted profound and detrimental effects on the viability of Caenorhabditis elegans even at a subinhibitory concentration. Evaluation of the nematode mutation in the ß subunit of F1-ATPase, together with the application of RNA interference in screening each subunit of F1FO-ATPase in the nematode worms, demonstrated that the ß subunit of F1-ATPase might not be the specific target for aurovertins in nematodes. The resistance of C. elegans daf-2(e1370) and the hypersensitivity of C. elegans daf-16(mu86) to aurovertin D indicated that DAF-16/FOXO transcription factor in nematodes was triggered in response to the aurovertin attack. These findings advance our understanding of the roles of aurovertin production in the interactions between nematodes and the pathogen fungus P. chlamydosporia.


Assuntos
Ascomicetos/fisiologia , Aurovertinas/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Nematoides/fisiologia , Animais , Antinematódeos , Aurovertinas/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Raízes de Plantas/parasitologia , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/genética , Interferência de RNA , Nicotiana/parasitologia , Tylenchoidea/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-24417941

RESUMO

Adiponectin is an insulin-sensitizing adipokine with protective effects against a cluster of obesity-related metabolic and cardiovascular disorders. The adipokine exerts its insulin-sensitizing effects by alleviation of obesity-induced ectopic lipid accumulation, lipotoxicity and chronic inflammation, as well as by direct cross-talk with insulin signaling cascades. Adiponectin and insulin signaling pathways converge at the adaptor protein APPL1. On the one hand, APPL1 interacts with adiponectin receptors and mediates both metabolic and vascular actions of adiponectin through activation of AMP-activated protein kinase and p38 MAP kinase. On the other hand, APPL1 potentiates both the actions and secretion of insulin by fine-tuning the Akt activity in multiple insulin target tissues. In obese animals, reduced APPL1 expression contributes to both insulin resistance and defective insulin secretion. This review summarizes recent advances on the molecular mechanisms by which adiponectin sensitizes insulin actions, and discusses the roles of APPL1 in regulating both adiponectin and insulin signaling cascades.


Assuntos
Adiponectina/fisiologia , Insulina/fisiologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina , Obesidade/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Adiponectina/fisiologia
9.
Biochem J ; 455(2): 207-16, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23909487

RESUMO

Insulin inhibits hepatic glucose production through activation of the protein kinase Akt, and any defect in this pathway causes fasting hyperglycaemia in Type 2 diabetes. APPL1 [adaptor protein, phosphotyrosine interaction, PH (pleckstrin homology) domain and leucine zipper containing 1] sensitizes hepatic insulin action on suppression of gluconeogenesis by binding to Akt. However, the mechanisms underlying the insulin-sensitizing actions of APPL1 remain elusive. In the present study we show that insulin induces Lys63-linked ubiquitination of APPL1 in primary hepatocytes and in the livers of C57 mice. Lys160 located within the BAR (Bin/amphiphysin/Rvs) domain of APPL1 is the major site for its ubiquitination. Replacement of Lys160 with arginine abolishes insulin-dependent ubiquitination and membrane localization of APPL1, and also diminishes membrane recruitment and activation of Akt, thereby abrogating the effects of APPL1 on alleviation of hepatic insulin resistance and glucose intolerance in obese mice. Further analysis identified TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) as an E3 ubiquitin ligase for APPL1 ubiquitination. Suppression of TRAF6 expression attenuates insulin-mediated ubiquitination and membrane targeting of APPL1, leading to an impairment of insulin-stimulated Akt activation and inhibition of gluconeogenesis in hepatocytes. Thus TRAF6-mediated ubiquitination of APPL1 is a vital step for the hepatic actions of insulin through modulation of membrane trafficking and activity of Akt.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Hepatócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Glucose/metabolismo , Humanos , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Fator 6 Associado a Receptor de TNF/genética , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA