Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Asian J Surg ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39191586
2.
Biomol Biomed ; 2024 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-39036926

RESUMO

Immune checkpoint inhibitors (ICIs) enhance the tumor-killing ability of T-cells in non-small cell lung cancer (NSCLC), improving overall survival (OS) and revolutionizing treatment for advanced stages. However, challenges remain, such as low response rates and the lack of effective markers for selecting candidates. This study evaluated the impact of hemoglobin, albumin, and platelet (HALP), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) on the efficacy of immunotherapy and survival outcomes in advanced NSCLC. Additionally, it aimed to develop a nomogram based on these parameters. Clinical and hematological data from NSCLC patients who received immunotherapy were analyzed. Efficacy was assessed using the immune Response Evaluation Criteria in Solid Tumors (iRECIST), and progression-free survival (PFS) and OS were evaluated. Prediction models incorporated baseline and post-treatment HALP, NLR, and PLR values. The 203 patients had a median follow-up of 16 months, a median PFS (mPFS) of seven months (6.0­8.0), while the median OS (mOS) was not reached (24.0­not available). Pretreatment PLR (PLR0) was associated with a higher disease control rate (DCR) (odds ratio [OR] = 0.258), while initial immunotherapy and NLR after four treatment cycles (NLR4C) significantly improved the objective response rate (ORR). Cox regression analysis showed that pretreatment HALP (HALP0), HALP after four cycles of treatment (HALP4C), and pretreatment NLR (NLR0) significantly impacted PFS. Additionally, HALP0, NLR0, and PLR after four treatment cycles (PLR4C) were associated with OS. The C-indices for PFS and OS were 0.823 and 0.878, respectively, indicating good predictive accuracy. HALP, NLR, and PLR at various time points effectively predicted immunotherapy response in advanced NSCLC patients, with low HALP combined with high NLR and PLR indicating a poor prognosis. These findings could serve as the basis for stratified randomized controlled trials (RCTs) in the future.

3.
ACS Nano ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072481

RESUMO

It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.

4.
Sci Rep ; 14(1): 8911, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632387

RESUMO

Lymphatic invasion (LI) is extremely aggressive and induces worse prognosis among patients with colorectal cancer (CRC). Thus, it is critical to characterize the cellular and molecular mechanisms underlying LI in order to establish novel and efficacious therapeutic targets that enhance the prognosis of CRC patients. RNA-seq data, clinical and survival information of colon adenocarcinoma (COAD) patients were obtained from the TCGA database. In addition, three scRNA-seq datasets of CRC patients were acquired from the GEO database. Data analyses were conducted with the R packages. We assessed the tumor microenvironment (TME) differences between LI+ and LI- based scRNA-seq data, LI+ cells exhibited augmented abundance of immunosuppression and invasive subset. Marked extracellular matrix network activation was also observed in LI+ cells within SPP1+ macrophages. We revealed that an immunosuppressive and pro-angiogenic TME strongly enhanced LI, as was evidenced by the CD4+ Tregs, CD8+ GZMK+, SPP1+ macrophages, e-myCAFs, and w-myCAFs subcluster infiltrations. Furthermore, we identified potential LI targets that influenced tumor development, metastasis, and immunotherapeutic response. Finally, a novel LIRS model was established based on the expression of 14 LI-related signatures, and in the two testing cohorts, LIRS was also proved to have accurate prognostic predictive ability. In this report, we provided a valuable resource and extensive insights into the LI of CRC. Our conclusions can potentially benefit the establishment of highly efficacious therapeutic targets as well as diagnostic biomarkers that improve patient outcomes.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral , Prognóstico
5.
Analyst ; 149(10): 2956-2965, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38597984

RESUMO

Glioblastoma is the most fatal and insidious malignancy, due to the existence of the blood-brain barrier (BBB) and the high invasiveness of tumor cells. Abnormal mitochondrial viscosity has been identified as a key feature of malignancies. Therefore, this study reports on a novel fluorescent probe for mitochondrial viscosity, called ZVGQ, which is based on the twisted intramolecular charge transfer (TICT) effect. The probe uses 3-dicyanomethyl-1,5,5-trimethylcyclohexene as an electron donor moiety and molecular rotor, and triphenylphosphine (TPP) cation as an electron acceptor and mitochondrial targeting group. ZVGQ is highly selective, pH and time stable, and exhibits rapid viscosity responsiveness. In vitro experiments showed that ZVGQ could rapidly recognize to detect the changes in mitochondrial viscosity induced by nystatin and rotenone in U87MG cells and enable long-term imaging for up to 12 h in live U87MG cells. Additionally, in vitro 3D tumor spheres and in vivo orthotopic tumor-bearing models demonstrated that the probe ZVGQ exhibited exceptional tissue penetration depth and the ability to penetrate the BBB. The probe ZVGQ not only successfully visualizes abnormal mitochondrial viscosity changes, but also provides a practical and feasible tool for real-time imaging and clinical diagnosis of glioblastoma.


Assuntos
Corantes Fluorescentes , Glioblastoma , Mitocôndrias , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Mitocôndrias/metabolismo , Viscosidade , Linhagem Celular Tumoral , Animais , Camundongos , Camundongos Nus , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Imagem Óptica
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123763, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198994

RESUMO

In this work, we reported a fluorescent probe Fur-SH, a derivative of benzofuranone, which was used to detect H2S in living cells and zebrafish. Based on the three structural characteristics of the probe, the effects of different structural modifications on the optical properties of the fluorophore were compared. Then, the fluorophore Fur-OH was synthesized by modifying diethylamino group with benzofuranone as the main skeleton. With 2,4-dinitrofluorobenzene as the recognition group and diethylamino as the electron donor, the push-pull electron effect occurred with nitro group, which led to fluorescence quenching, and an openable fluorescent probe Fur-SH was formed. The probe Fur-SH (λex = 510 nm; λem = 570 nm) had the advantages of smaller full width at half maxima, rapid response (5 min) and wide pH window. The quantitative properties of the probe were excellent, reaching saturation at 50 equivalents of substrate. The probe Fur-SH showed high sensitivity to H2S, with LOD of 48.9 nM and LOQ of 50 nM. At present, the probe Fur-SH had been applied to fluorescence imaging of MCF-7 cells and zebrafish. By comparing the effects of different structures on the optical properties of fluorophores, this work was expected to be helpful to the development of fluorescent probes in the future.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Humanos , Animais , Corantes Fluorescentes/química , Peixe-Zebra , Sulfeto de Hidrogênio/análise , Mitocôndrias/química , Imagem Óptica , Células HeLa
8.
Sci Total Environ ; 882: 163632, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080320

RESUMO

We investigated the priming effect of nanoscale zero-valent iron (nZVI) on carbon sink and iron uptake, and the possible mediation by AMF (arbuscular mycorrhizal fungi, Funneliformis mosseae) in semiarid agricultural soils. Maize seed dressings comprised of three nZVI concentrations of 0, 1, 2 g·kg-1 and was tested with and without AMF inoculation under high and low soil moistures, respectively. The ICP-OES observations indicated that both low dose of nZVI (1 g·kg-1) and high dose of nZVI (2 g·kg-1) significantly increased the iron concentrations in roots (L: 54.5-109.8 %; H: 119.1-245.4 %) and shoots (L: 40.8-78.9 %; H: 81.1-99.4 %). Importantly, the absorption and translocation rate of iron were substantially improved by AMF inoculation under the low-dose nZVI. Yet, the excess nanoparticles as a stress were efficiently relieved by rhizosphere hyphae, and the iron concentration in leaves and stems can maintain as high as about 300 mg·kg-1 while the iron translocation efficiency was reduced. Moreover, next-generation sequencing confirmed that appropriate amount of nZVI clearly improved the rhizosphere colonization of Funneliformis mosseae (p < 0.001) and the development of soil fungal community. Soil observations further showed that the hyphae development and GRSP (glomalin-related soil protein) secretion were significantly promoted (p < 0.05), with the increased R0.25 (< 0.25 mm) by 35.97-41.16 %. As a return, AMF and host plant turned to input more organic matter into soils for microbial growth and Fe uptake, and such interactions became more pronounced under drought stress. In contrast, high dose of nZVI (2 g·kg-1) tended to agglomerate on the surface of hyphae and spores, causing severe deformation and inactivation of AMF symbionts. Therefore, the priming effects of nZVI on carbon sequestration and Fe uptake in agricultural soils were positively mediated by AMF via the feedback loop of the plant-soil-microbe system for enhanced adaptation to global climate change.


Assuntos
Ferro , Micorrizas , Ferro/metabolismo , Solo , Sequestro de Carbono , Micorrizas/fisiologia , Raízes de Plantas
9.
Plant Cell Environ ; 46(1): 251-267, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319468

RESUMO

Rhizosphere effect of nanoscale zero-valent iron (nZVI) is crucial but little reported. Maize seeds were dressed with four nZVI concentrations (0, 1.0, 1.5, 2 g kg-1 ) and inoculated with arbuscular mycorrhizal fungus (AMF) (Funneliformis mosseae). The SEM images illuminated that excessive nZVI particles (2 g kg-1 ) were agglomerated on the surface of hyphae and spore, causing severe deformation and inactivation of AMF symbionts and thereafter inhibiting water uptake in maize seedlings. This restrained the scavenging effects of enzymatic (superoxide dismutase, peroxidase) and non-enzymatic compounds (proline & malondialdehyde) on ROS, and leaf photoreduction activity and gas exchange ability (p < 0.05). Interestingly, the inoculation with AMF effectively alleviated above negative effects. In contrast, appropriate dose of nZVI, that is, ≤1.5 g kg-1 , can be evenly distributed on the hyphae surface and form the ordered symbionts with AMF. This help massively to enhance hyphae growth and water and nutrient uptake. The enhanced mycorrhizal infection turned to promote rhizosphere symbiont activity and leaf Rubisco and Rubisco activase activity. Light compensation point was massively lowered, which increased photosynthetic carbon supply for AMF symbionts. Particularly, such priming effects were evidently enhanced by drought stress. Our findings provided a novel insight into functional role of nZVI in agriculture and AMF-led green production.


Assuntos
Micorrizas , Zea mays , Ferro , Água
10.
ACS Infect Dis ; 8(12): 2389-2395, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36346898

RESUMO

An improved method for the generation of peptide vaccines using di-tyrosine cross-linking is described. The conserved ion channel peptide, M2e, of influenza A virus was modified with the addition of small tyrosine-rich regions (GYGY-) at both the N- and C-termini and extensively cross-linked via tyrosine-tyrosine linkages to form peptide nanoclusters. The cross-linking was catalyzed using exogenous nickel(II) ions complexed to an exogenous glycine-glycine-histidine peptide in the presence of an oxidizer. Mice that were intranasally or intramuscularly immunized with the M2e-vaccine nanoclusters induced comparable levels of M2e-specific serum antibodies. Vaccination via the intranasal or intramuscular route protected mice from subsequent lethal challenge with an influenza A virus. In comparison to our previous approach, where a histidine-rich tag was added into the peptide structure, the use of exogenous histidine reduced irrelevant off-target immune response. Additionally, the purity of the resulting nanoclusters is an attractive feature, making this approach appealing for vaccine development.


Assuntos
Histidina , Vacinas , Animais , Camundongos , Tirosina , Níquel , Peptídeos , Glicina
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 283: 121635, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36007345

RESUMO

Cysteine (Cys), one of the biological thiols, which plays critical roles in biological system regulating the balance of redox homeostasis. In order to monitor the level of Cys in the living cells and organisms, a chromogenic fluorescence probe Rhocl-Cys based on Rhodamine chloride exhibiting the preferable performance of fluorescence turn-on response reacting with Cys was presented. Rhocl-Cys responded rapidly to Cys within 20 min, and had stable fluorescence intensity within pH 6.0-10.0, high selectivity towards Cys and the anti-inference capability with a low detection limit of 0.80 µM. In particular, Rhocl-Cys could qualitatively and quantitatively monitor the level of endogenous and exogenous Cys in living cells and successfully apply to zebrafish detecting Cys. Therefore, these results might further provide the basis exploring the role of Cys in biological system and facilitate as clinical diagnostic molecular tools.


Assuntos
Cisteína , Peixe-Zebra , Animais , Cloretos , Cisteína/química , Corantes Fluorescentes/química , Glutationa/química , Células HeLa , Humanos , Rodaminas
12.
Anal Biochem ; 654: 114800, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792183

RESUMO

Sulfite (SO32-) is considered as a monitor of a wide range of physiological processes. However, cells and tissues are adversely affected when the body ingests high level of sulfite. Here, we designed and synthesized a "turn on" fluorescent probe ImiSft-1 with 2-cyano-N-methylacetamide as the specific recognition site of SO32-. This probe predominantly achieved high response intensity to SO32- and desirable properties such as large Stokes shift (∼180 nm), fast response time (within 15 s), and high sensitivity (LOD = 0.12 µM). Importantly, the probe was highly selective for sulfite from other bio-species including biological thiols. Other functional properties included broad pH adaptability (5.0-10.0) and low cytotoxicity. Given these advantages and the fluorescence imaging in living MCF-7 cells, it was demonstrated that probe ImiSft-1 could monitor the changes of sulfite concentration in living cells.


Assuntos
Corantes Fluorescentes , Sulfitos , Corantes Fluorescentes/química , Humanos , Células MCF-7 , Imagem Óptica , Compostos de Sulfidrila
13.
Talanta ; 237: 122960, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34736685

RESUMO

H2S has been reported to play essential roles in a variety of physiological and pathological procedures. In this work, a novel fluorescent probe, Rho-HS, for detecting H2S was developed by introducing the ortho-halogen to activate the least reactive recognition group 2,4-dinitrophenyl moiety. In combination of the structures from both Rhodamine B and fluorescein, Rho-HS could generate both the colorimetric and fluorescent responses. This feature was not frequently achieved and could lead to the quantitative and convenient for the end-user. In comparison with recent probes for H2S, the major advantages of Rho-HS included suiting wide pH range (6.0-10.0), relatively rapid response (within 15 min) and the high selectivity among the competing species including the biothiols. With low cytoxicity, Rho-HS was further applied in the biological imaging in living MCF-7 cells and Caenorhabditis elegans. We hope that the designing strategy in this work might provide useful information for more preferable implements in this field.


Assuntos
Sulfeto de Hidrogênio , Xantonas , Fluoresceína , Corantes Fluorescentes , Imagem Óptica
14.
Talanta ; 235: 122796, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34517654

RESUMO

Bone metastasis of malignant solid tumors has become one of the most serious complications, especially in breast cancer, which was particularly challenging for early detection and treatment in clinical practice. In this work, we reported a new fluorescently labeled bisphosphonate for bone metastasis detection of breast cancer. The designed probes were based on Rhodamine B and bisphosphonate as recognition group, which can specifically target hydroxyapatite (HA) existed in bone tissue. After the osteoclasts were adsorbed on the bone surface, the surrounding microenvironment was acidified, causing the HA to locally dissolve. The probe bound to the HA was then released, and realized the fluorescence turn on under acidic conditions. In vitro experiments showed that G0 was more excellent than G2 owing to shorter connecting arm. Subsequently, we proved that G0 could combine with HA rapidly and exhibit excellent response in solid state. More importantly, we established a model of bone metastasis with MDA-MB-231 cells which was similar to the clinical cases and evaluated the theranostics value of G0 prospectively, which provide the potential application prospect in clinical.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Neoplasias Ósseas/tratamento farmacológico , Osso e Ossos , Neoplasias da Mama/tratamento farmacológico , Difosfonatos , Feminino , Humanos , Osteoclastos , Medicina de Precisão , Microambiente Tumoral
15.
Clin Transplant ; 35(9): e14419, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34236114

RESUMO

BACKGROUND: Blood removed from organs during deceased donor organ procurement is routinely discarded but is a potential resource for donor-specific transfusion (DST) in subsequent liver transplantation (LT). This study retrospectively analyses the impact of DST on intraoperative bank blood product usage, long-term graft, and patient survival, as well as frequency of rejection post-LT. METHODS: A total of 992 adult LT performed from 1993 to 2018 in a single quaternary center were included. Intraoperative blood product usage, patient, and graft survival, as well as acute and chronic rejection were assessed in patients who received blood retrieved from the organ donor, the "donor blood" (DB) group (n = 437) and patients who did not, the "no donor blood" (NDB) group (n = 555). RESULTS: Processing of DB ensured safe levels of potassium, magnesium, and insulin. There were fewer units of bank red blood cells transfusion required in the DB group compared to NDB group (2 vs. 4 units, P = .01). Graft survival was significantly superior in the DB group (10-year survival 75% vs. 69%, respectively, P = .04) but DST was not an independent predictor of graft survival. There was no significant difference in patient survival or rejection between the groups. There was no difference in treated, biopsy-proven rejection between the two groups. CONCLUSIONS: This is the first large-cohort study assessing long-term outcomes of intraoperative DST in LT. The collection of organ donor blood and subsequent use in LT recipients appeared feasible with appropriate quality checks ensuring safety. DST resulted in a reduction in the use of packed red blood cells. There was no difference in the rate of rejection or graft or patient survival.


Assuntos
Transplante de Fígado , Estudos de Coortes , Rejeição de Enxerto/etiologia , Sobrevivência de Enxerto , Humanos , Estudos Retrospectivos , Doadores de Tecidos
16.
Anal Chim Acta ; 1152: 338243, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648638

RESUMO

Cysteine (Cys) is an indispensable small organic molecule containing sulfhydryl groups, which has essential regulatory effects on the physiological process of human body. In this work, a red emission fluorescent probe TCFQ-Cys was designed and exploited based on 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene) malononitrile-derivatives. The probe could effectively monitor Cys through the typical acrylate cleavage. The detecting system showed a red emission at 633 nm and the fluorescence was stable within the pH range of 6-9. The detection could be completed in 30 min. TCFQ-Cys presented high sensitivity with a detection limit of 0.133 µM and high selectivity towards Cys from other biological mercaptans. The most important feature was that the system had a wide linear range of 0-300 µM, which covered the physiological requirements of Cys detection. Subsequently, we conducted the biological imaging of Cys in MCF-7 cells and Caenorhabditis elegans (C. elegans). Therefore, TCFQ-Cys had a practical application prospect for further investigating the physiological function of Cys.


Assuntos
Cisteína , Corantes Fluorescentes , Animais , Caenorhabditis elegans , Células HeLa , Humanos , Compostos de Sulfidrila
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 244: 118830, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-32858451

RESUMO

Hypochlorite, as one of reactive oxygen species, has drawn much attention due to its essential roles in special biological events and disorders. The exogenous hypochlorite remains a risk for human, animals and plants. In this work, a novel water soluble quinolin-containing nitrone derivative T has been developed for fluorometric sensing hypochlorite. The response mechanism of T towards ClO- was reported for the first time. In comparison with the reported sensors for ClO-, the sensor T in this work exhibited advantages including high selectivity (80 fold over other analytes), rapid response (within 5 s) and lipid-water distribution transformation (LogP from 2.979 to 6.131). Further biological applications suggested that T was capable of monitoring both exogenous and endogenous ClO- in living cells. The imaging in Arabidopsis thaliana indicated that the absorption and transmission of ClO- in plant could be monitored by this sensor through the chlorine-related mechanism. This work might raise referable information for further investigations in the physiological and pathological events in both tumor and plants.


Assuntos
Arabidopsis , Ácido Hipocloroso , Animais , Corantes Fluorescentes , Humanos
18.
Life Sci ; 253: 117680, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32305524

RESUMO

AIMS: To investigate the effect of lncRNA LCTS5 in the non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: LncRNA profiling was used to identify the novel lncRNA LCTS5. Viability and migration assays were implemented to evaluate the in vitro effect of LCTS5. Transplantation study was designed to investigate the in vivo role. Short hairpin RNA (shRNA) and lentiviral vector were used to alter LCTS5 expression. KEY FINDINGS: We identified a novel lncRNA named LCTS5 whose abundance is dramatically decreased in NSCLC. Overexpressing LCTS5 effectively inhibits viability and migration. Meanwhile, LCTS5 overexpression retards xenograft tumor growth and proliferation. LCTS5 interacts with INO80 to reduce INO80 occupancy at enhancer regions of multiple lung cancer related genes without affecting INO80 decay. SIGNIFICANCE: The newly identified lncRNA LCTS5 impairs NSCLC progression and provides a compelling target for therapeutic intervention during NSCLC treatments.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Progressão da Doença , Humanos , Neoplasias Pulmonares/genética , Camundongos , RNA Interferente Pequeno/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 227: 117707, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31699591

RESUMO

In this work, a primary method was constructed for detecting hydrazine in plant, thus accomplished the closed-loop monitoring of hydrazine circulation within manufacture, environment, plants, animals and human. From a series of sensors, QYL-1 was selected to present the hydrazine sensing properties. As a preliminary tool, QYL-1 suggested the ultra-wide linear range (0-20.0 equivalent) and high selectivity, which were extremely essential for linking the monitoring in various scale and field. For the first time, concentration-dependent tracking of hydrazine was successfully performed in Arabidopsis Thaliana root tips. Afterwards applications in water samples and living MCF-7 cells then fulfilled the demonstration of closing the loop by linking both the upstream and downstream nodes. More than raising a practical method, this work offered initial information for the closed-loop monitoring of hydrazine circulation, which might be significant for the ideal systematic managing in future.


Assuntos
Arabidopsis/metabolismo , Corantes Fluorescentes/química , Hidrazinas/análise , Corantes Fluorescentes/síntese química , Humanos , Células MCF-7 , Raízes de Plantas/metabolismo , Espectrometria de Fluorescência
20.
Curr Med Chem ; 27(40): 6787-6814, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31580244

RESUMO

Due to the three domains of the colchicine-site which is conducive to the combination with small molecule compounds, colchicine-site on the tubulin has become a common target for antitumor drug development, and accordingly, a large number of tubulin inhibitors binding to the colchicine-site have been reported and evaluated over the past years. In this study, tubulin inhibitors targeting the colchicine-site and their application as antitumor agents were reviewed based on the literature from 2015 to 2019. Tubulin inhibitors were classified into ten categories according to the structural features, including colchicine derivatives, CA-4 analogs, chalcone analogs, coumarin analogs, indole hybrids, quinoline and quinazoline analogs, lignan and podophyllotoxin derivatives, phenothiazine analogs, N-heterocycle hybrids and others. Most of them displayed potent antitumor activity, including antiproliferative effects against Multi-Drug-Resistant (MDR) cell lines and antivascular properties, both in vitro and in vivo. In this review, the design, synthesis and the analysis of the structure-activity relationship of tubulin inhibitors targeting the colchicine-site were described in detail. In addition, multi-target inhibitors, anti-MDR compounds, and inhibitors bearing antitumor activity in vivo are further listed in tables to present a clear picture of potent tubulin inhibitors, which could be beneficial for medicinal chemistry researchers.


Assuntos
Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Colchicina , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA