Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Virus Genes ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172354

RESUMO

Messenger ribonucleic acid (mRNA) was discovered in 1961 as an intermediary for transferring genetic information from DNA to ribosomes for protein synthesis. The COVID-19 pandemic brought worldwide attention to mRNA vaccines. The emergency use authorization of two COVID-19 mRNA vaccines, BNT162b2 and mRNA-1273, were major achievements in the history of vaccine development. Lipid nanoparticles (LNPs), one of the most superior non-viral delivery vectors available, have made many exciting advances in clinical translation as part of the COVID-19 vaccine and therefore has the potential to accelerate the clinical translation of many gene drugs. In addition, due to these small size, biocompatibility and excellent biodegradability, LNPs can efficiently deliver nucleic acids into cells, which is particularly important for current mRNA therapeutic regimens. LNPs are composed cationic or pH-dependent ionizable lipid bilayer, polyethylene glycol (PEG), phospholipids, and cholesterol, represents an advanced system for the delivery of mRNA vaccines. Furthermore, optimization of these four components constituting the LNPs have demonstrated enhanced vaccine efficacy and diminished adverse effects. The incorporation of biodegradable lipids enhance the biocompatibility of LNPs, thereby improving its potential as an efficacious therapeutic approach for a wide range of challenging and intricate diseases, encompassing infectious diseases, liver disorders, cancer, cardiovascular diseases, cerebrovascular conditions, among others. Consequently, this review aims to furnish the scientific community with the most up-to-date information regarding mRNA vaccines and LNP delivery systems.

2.
Phys Med Biol ; 69(9)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38537307

RESUMO

Objective.Up to this point, 1.5 T linac-compatible coil array layouts have been restricted to one or two rows of coils because of the desire to place radiation-opaque circuitry adjacent to the coils and outside the window through which the linac beam travels. Such layouts can limit parallel imaging performance. The purpose of this work was to design and build a three-row array in which remotely located circuits permitted a central row of coils while preserving the radiolucent window.Approach.The remote circuits consisted of a phase shifter to cancel the phase introduced by the coaxial link between the circuit and coil, followed by standard components for tuning, matching, detuning, and preamplifier decoupling. Tests were performed to compare prototype single-channel coils with remote or local circuits, which were followed by tests comparing two and three-row arrays .Main results.The single-channel coil with the remote circuit maintained 85% SNR at depths of 30 mm or more as compared to a coil with local circuit. The three-row array provided similar SNR as the two-row array, along with geometry factor advantages for parallel imaging acceleration in the head-foot direction.Significance.The remote circuit strategy could potentially support future MR-linac arrays by allowing greater flexibility in array layout compared to those confined by local circuits, which can be leveraged for parallel imaging acceleration.


Assuntos
Carmustina , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos , Etoposídeo , Desenho de Equipamento , Razão Sinal-Ruído
3.
Oncol Lett ; 26(4): 432, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37664649

RESUMO

Gastrointestinal (GI) cancers are the most common types of tumors worldwide. The lack of cancer biomarkers and targeted drug resistance are barriers to achieving effective cancer therapy. Low-density lipoprotein receptor-related protein 1 (LRP1) is a transmembrane protein that has multiple functions due to its ability to recognize different ligands; however, the role of LRP1 in GI cancer cells remains unclear. The present study aimed to investigate the role of LRP1 in GI tumors. The Cancer Genome Atlas database was used to analyze the potential correlation between expression of LRP1 and prognosis in patients with GI cancer. Bioinformatics analysis was utilized and the expression of LRP1 was simultaneously validated in GI cancer at the cellular level through western blot experiments. LRP1 was expressed at high levels in HGC-27, HepG2 and BxPC-3 cells. LRP1 expression in GI cancer cells was knocked down using lentivirus-mediated shRNA and the effects on biological functions were observed. LRP1 knockdown suppressed the proliferation, invasion and migration of GI cancer cells. LRP1 knockdown inhibited CD36 gene expression in HepG2 and BxPC-3 cells. LRP1 knockdown inhibited the proliferation, invasion and migration of GI cancer cells, suggesting that LRP1 may be a novel target for treatment of GI tumors.

4.
Onco Targets Ther ; 12: 5751-5765, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31410021

RESUMO

Background: Chemotherapy remains a primary treatment method for advanced pancreatic cancer. However, chemotherapy resistance can influence the therapeutic effect of pancreatic cancer. The resistance mechanism of chemotherapeutic agents such as gemcitabine, which is an agent typically used to treat pancreatic cancer, is complicated and can be influenced by genes and the environment. Oridonin is a tetracyclic diterpenoid compound extracted from the traditional Chinese herb Rabdosia labtea. Oridonin may overcome drug resistance in pancreatic cancer, but researching pancreatic cancer drug resistance of chemotherapy by oridonin is not completely understood. Purpose: The present study aimed to assess the impact of oridonin on multidrug resistance proteins, apoptosis-associated proteins and energy metabolism in gemcitabine-resistant PANC-1 (PANC-1/Gem) pancreatic cancer cells. Methods: Gemcitabine resistance in PANC-1/Gem cells was induced using a concentration gradient of gemcitabine. Cell Counting Kit-8 assays were used to detect the impact of gemcitabine and oridonin on the proliferation of PANC-1 and PANC-1/Gem cells. Western blot analysis and immunofluorescence were used to detect the expression of multidrug resistance proteins, apoptosis-associated proteins and low-density lipoprotein receptor protein 1 (LRP1) proteins in PANC-1/Gem cells. The effects of gemcitabine and oridonin on PANC-1/Gem cells apoptosis were detected using flow cytometry. Animal xenograft tumor assays were used to detect the effect of gemcitabine and oridonin on pancreatic cancer in vivo. Furthermore, the ATP Assay kit was used to determine the effects of gemcitabine and oridonin on ATP levels in PANC-1/Gem cells. Immunofluorescence assays were used to detect the effects of gemcitabine and oridonin on the expression of low-density lipoprotein receptor protein 1 (LRP1) in PANC-1/Gem cells. In addition, LRP1 expression was knocked down in PANC-1/Gem cells via lentiviral vector-mediated RNA silencing. Clone formation assays and Western blot analysis were used to detect the effect of LRP1 knockdown on the proliferation of PANC-1/Gem cells. Results: The present results demonstrate that oridonin overcomes PANC-1/Gem cells gemcitabine reistance by regulating GST pi and LRP1/ERK/JNK signaling. Conclusion: In conclusion, the present study indicated that oridonin could overcome gemcitabine resistance in PANC-1/Gem cells by regulating GST pi and LRP1/ ERK/JNK signaling, inducing cell apoptosis. Therefore, oridonin with gemcitabine may be a promising preoperative treatment for patients who suffer from pancreatic cancer.

5.
Acta Biochim Biophys Sin (Shanghai) ; 51(8): 814-825, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31314060

RESUMO

Recent studies have demonstrated that the expression of the long non-coding RNA (lncRNA) AFAP1-AS1 in pancreatic cancer is negatively correlated with survival and prognosis. However, the effects of oridonin and lncRNA AFAP1-AS1 on the epithelial-to-mesenchymal transition (EMT) and migration of pancreatic cancer cells have not been fully elucidated. Surgery is the only potentially curative method for pancreatic cancer, but postoperative recurrence and metastasis are common. The aim of the present study was to assess the effect of oridonin and lncRNA AFAP1-AS1 silencing on pancreatic cancer cells. The pancreatic cancer cell lines BxPC-3 and PANC-1 cells were transfected with siAFAP1-AS1 and its negative control (siNC). After that, oridonin was used to treat the siAFAP1-AS1-transfected cells. The expression of lncRNA AFAP1-AS1 was downregulated in the pancreatic cancer cell lines BxPC-3 and PANC-1. The apoptosis and cell cycle progression of pancreatic cancer cells were evaluated by flow cytometry and Hoechst 33258 staining. Metastasis and invasion of BxPC-3 and PANC-1 cells were detected by transwell migration assay, real-time cell analysis, and western blot analysis. Cells were transfected with the lentiviral siAFAP1-AS1 and siNC, and tumorigenesis was evaluated in BALB/C nude mice. Immunohistochemical examination was used to verify the effects of oridonin and siAFAP1-AS1 on pancreatic cancer. The results demonstrated that the combination of oridonin and siAFAP1-AS1 inhibited pancreatic cancer cell proliferation, induced apoptosis, arrested cell cycle progression, prevented the migration, regulated EMT-related protein expression in BxPC-3 and PANC-1 cells, and inhibited pancreatic cancer cell tumorigenicity and EMT in nude mice.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , RNA Longo não Codificante/genética , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Neoplasias Pancreáticas/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA