Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Leukemia ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783159

RESUMO

Immunotherapy with programmed cell death 1 ligand 1 (PD-L1) blockade was effective in patients with NK/T-cell lymphoma. In addition to PD-L1, indoleamine 2,3-dioxygenase-1 (IDO1) is one of the most promising immunotherapeutic targets. High proportions of PD-L1 and IDO1 proteins were observed by immunohistochemistry (IHC) from 230 newly diagnosed patients with NK/T lymphoma with tissue samples from three cancer centers and were associated with poor overall survival (OS) in patients with NK/T lymphoma. Importantly, the coexpression of PD-L1 and IDO1 was related to poor OS and short restricted mean survival time in patients with NK/T lymphoma and was an independent prognostic factor in the training cohorts, and which was also validated in 58 NK/T lymphoma patients (GSE90597). Moreover, a nomogram model constructed with PD-L1 and IDO1 expression together with age could provide concise and precise predictions of OS rates and median survival time. The high-risk group in the nomogram model had a positive correlation with CD4 + T-cell infiltration in the validation cohort, as did the immunosuppressive factor level. Therefore, high PD-L1 and IDO1 expression was associated with poor OS in patients with NK/T lymphoma. PD-L1 and IDO1 might be potential targets for future immune checkpoint blockade (ICB) therapy for NK/T lymphoma.

2.
Infect Agent Cancer ; 19(1): 25, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802946

RESUMO

This paper introduces two cases of multiple myeloma, COVID-19 infection during autologous stem cell transplantation, the treatment process, and different results of the two patients, which provides a reference for how to carry out ASCT safely during the COVID-19 normalization stage.

3.
Exp Ther Med ; 27(1): 15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38125352

RESUMO

The ovary is an essential reproductive organ in the female organism and its development seriously affects the physical and mental health of female patients. Ovarian diseases include ovarian cancer, premature ovarian insufficiency (POI) and polycystic ovary syndrome (PCOS). Women should pay attention to the most effective treatments for this condition because it is one of the most prevalent gynecological illnesses at present. Extracellular vesicles (EVs), which are smaller vesicles that mediate the exchange of cellular information, include the three categories of exosomes, microvesicles and apoptotic bodies. They are able to transport proteins, RNA and other substances to adjacent or distal cells, thus allowing cellular and tissue homeostasis to be maintained. Numerous previous studies have revealed that EVs are crucial for the treatment of ovarian diseases. They are known to transport its contents to ovarian cancer cells as well as other ovarian cells such as granulosa cells, affecting the development of ovarian disease processes. Therefore, this extracellular vesicle may be involved as a target in the therapeutic process of ovarian disease and may have great potential in the treatment of ovarian disease. In the present review, the role of EVs in the development of three ovarian diseases, including ovarian cancer, POI and PCOS, was mainly summarizes. It is expected that this will provide some theoretical support for the treatment of ovarian disease.

4.
J Cancer Res Clin Oncol ; 149(20): 17881-17896, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37947869

RESUMO

PURPOSE: Peritoneal metastasis in gastric cancer (GC) is a late-stage condition with a poor prognosis. Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy (HIPEC) is a popular treatment for peritoneal metastases. Here, we aim to investigate the real-world application and efficacy of HIPEC alone for GC patients with synchronous peritoneal metastases. METHODS: We conducted a retrospective analysis on GC patients with synchronous peritoneal metastasis at the Sixth Affiliated Hospital of Sun Yat-sen University between January 2011 and December 2022. Survival analyses and Cox regression models were performed based on overall survival (OS) and cancer-specific survival (CSS), and subgroup analysis was used to determine the prognostic value of HIPEC across different treatment. RESULTS: We enrolled 250 patients, of whom 120 (48%) received HIPEC while 130 (52%) did not. HIPEC showed no survival benefit for GC patients (P = 0.220 for OS and P = 0.370 for CSS). However, subgroup analysis found that HIPEC can only improve OS and CSS when combined with primary tumor resection (P = 0.034 for OS and P = 0.036 for CSS). Moreover, survival analyses also demonstrated that HIPEC independently improved OS (HR for OS = 0.58, 95% CI 0.37-0.92, P = 0.020) and CSS (HR for CSS = 0.58, 95% CI 0.37-0.93, P = 0.024) for patients who underwent primary site resection, but not for those who did not. CONCLUSION: HIPEC can improve survival in GC patients with synchronous peritoneal metastases who have primary tumor resection, but not in those without primary tumor resection.


Assuntos
Neoplasias Colorretais , Hipertermia Induzida , Neoplasias Peritoneais , Neoplasias Gástricas , Humanos , Prognóstico , Estudos Retrospectivos , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Terapia Combinada , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Taxa de Sobrevida , Neoplasias Colorretais/patologia
5.
World J Surg Oncol ; 21(1): 319, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821872

RESUMO

BACKGROUND: With the aging of the population, the burden of elderly gastric cancer (EGC) increases worldwide. However, there is no consensus on the definition of EGC and the efficacy of adjuvant chemotherapy in patients with stage II EGC. Here, we investigated the effectiveness of adjuvant chemotherapy in defined EGC patients. METHODS: We enrolled 5762 gastric cancer patients of three independent cohorts from the Sixth Affiliated Hospital of Sun Yat-sen University (local), the Surveillance, Epidemiology, and End Results (SEER), and the Asian Cancer Research Group (ACRG). The optimal age cutoff for EGC was determined using the K-adaptive partitioning algorithm. The defined EGC group and the efficacy of adjuvant chemotherapy for them were confirmed by Cox regression and Kaplan-Meier survival analyses. Furthermore, gene set variation analyses (GSVA) were performed to reveal pathway enrichment between groups. RESULTS: The optimal age partition value for EGC patients was 75. In the local, SEER, and ACRG cohorts, the EGC group exhibited significantly worse overall survival and cancer-specific survival than the non-EGC group (P < 0.05) and was an independent risk factor. Stratified analyses based on chemotherapy showed that EGC patients derived little benefit from adjuvant chemotherapy. Furthermore, GSVA analysis revealed the activation of DNA repair-related pathways and downregulation of the p53 pathway, which may partially contribute to the observed findings. CONCLUSION: In this retrospective, international multi-center study, 75 years old was identified as the optimal age cutoff for EGC definition, and adjuvant chemotherapy proved to be unbeneficial for stage II EGC patients.


Assuntos
Neoplasias Gástricas , Humanos , Idoso , Neoplasias Gástricas/patologia , Estudos Retrospectivos , Fatores de Risco , Estimativa de Kaplan-Meier , Quimioterapia Adjuvante , Estadiamento de Neoplasias
6.
J Colloid Interface Sci ; 650(Pt A): 350-357, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413869

RESUMO

Bimetallic two-dimensional (2D) nanomaterials are widely used in electrocatalysis owing to their unique physicochemical properties, while trimetallic 2D materials of porous structures with large surface area are rarely reported. In this paper, a one-pot hydrothermal synthesis of ternary ultra-thin PdPtNi nanosheets is developed. By adjusting the volume ratio of the mixed solvents, PdPtNi with porous nanosheets (PNSs) and ultrathin nanosheets (UNSs) was prepared. The growth mechanism of PNSs was investigated through a series of control experiments. Notably, thanks to the high atom utilization efficiency and fast electron transfer, the PdPtNi PNSs have remarkable activity of methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The mass activities of the well-tuned PdPtNi PNSs for MOR and EOR were 6.21 A mg-1 and 5.12 A mg-1, respectively, much higher than those of commercial Pt/C and Pd/C. In addition, after durability test, the PdPtNi PNSs exhibited desirable stability with the highest retained current density. Therefore, this work provides a significant guidance for designing and synthesizing a new 2D material with excellent catalytic performance toward direct fuel cells applications.

7.
J Transl Med ; 21(1): 399, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337244

RESUMO

BACKGROUND: Bone marrow metastasis (BMM) is underestimated in gastric cancer (GC). GC with BMM frequently complicate critical hematological abnormalities like diffused intravascular coagulation and microangiopathic hemolytic anemia, which constitute a highly aggressive GC (HAGC) subtype. HAGC present a very poor prognosis with peculiar clinical and pathological features when compared with not otherwise specified advanced GC (NAGC). But the molecular mechanisms underlying BMM from GC remain rudimentary. METHODS: The transcriptomic difference between HAGC and NAGC were analyzed. Genes that were specifically upregulated in HAGC were identified, and their effect on cell migration and invasion was studied. The function of ACTN2 gene were confirmed by GC cell lines, bone-metastatic animal model and patients' tissues. Furthermore, the molecular mechanism of ACTN2 derived-BMM was explored by multiple immunofluorescence staining, western blot, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS: We elucidated the key mechanisms of BMM depending on the transcriptomic difference between HAGC and NAGC. Five genes specifically upregulated in HAGC were assessed their effect on cell migration and invasion. The ACTN2 gene encoding protein α-Actinin-2 was detected enhanced the metastatic capability and induced BMM of GC cells in mouse models. Mechanically, α-Actinin-2 was involved in filopodia formation where it promoted the Actin filament cross-linking by replacing α-Actinin-1 to form α-Actinin-2:α-Actinin-4 complexes in GC cells. Moreover, NF-κB subunit RelA and α-Actinin-2 formed heterotrimers in the nuclei of GC cells. As a direct target of RelA:α-Actinin-2 heterotrimers, the ACTN2 gene was a positive auto-regulatory loop for α-Actinin-2 expression. CONCLUSIONS: We demonstrated a link between filopodia, BMM and ACTN2 activation, where a feedforward activation loop between ACTN2 and RelA is established via actin in response to distant metastasis. Given the novel filopodia formation function and the new mechanism of BMM in GC, we propose ACTN2 as a druggable molecular vulnerability that may provide potential therapeutic benefit against BMM of GC.


Assuntos
Actinina , Neoplasias da Medula Óssea , Neoplasias Gástricas , Animais , Camundongos , Actinina/genética , Actinina/metabolismo , Linhagem Celular Tumoral , NF-kappa B/metabolismo , Pseudópodes/metabolismo , Pseudópodes/patologia , Neoplasias Gástricas/patologia
8.
J Hazard Mater ; 440: 129773, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35988494

RESUMO

Environmental behavior and ecotoxicity of microplastics (MPs) are significantly influenced by the omnipresent self-assembly of microbial extracellular polymeric substances (EPS) on them. However, mechanisms of EPS self-assembly onto MPs at nanoscale resolution and effects of aging are unclear. For the first time, temporospatial nano-heterogeneity of self-assembly of EPS onto fresh and one-year aged polypropylene (PP) MPs were investigated by atomic-force-microscopy-infrared-spectroscopy (AFM-IR). Natural aging caused high degree nanoscale fragmentation of MPs physically and chemically. Self-assembly of EPS on MPs was aging-dependent. Polysaccharides were assembled on MP surface faster than proteins. Initially, regardless of the fresh or aged MPs, polysaccharides and proteins, with the former being predominant, were successively and separately assembled to different nanospaces because of their competition for binding sites. More and more proteins and polysaccharides were superimposed on each other with assembly time due to intermolecular forces. The nanochemical textural analysis showed that the nano-heterogeneity of EPS assembly to MPs was clearly correlated with the aging-induced nanochemical and nanomechanical heterogeneity of MP surface. The spontaneous self-assembly of EPS with temporospatial nano-heterogeneity on MPs have multiple impacts on behavior, ecotoxicity and fate of MPs and their associated pollutants as well as other key ecological processes in aquatic environment.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Poluentes Ambientais/análise , Matriz Extracelular de Substâncias Poliméricas/química , Microplásticos/toxicidade , Plásticos , Polipropilenos , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Front Oncol ; 12: 796738, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141162

RESUMO

Patients with extranodal natural killer/T-cell lymphoma (ENKTL), nasal type are benefit from peg-asparaginase, gemcitabine, and methotrexate. Therefore, we conducted a prospective phase II trial using a combination of these drugs as GAD-M regimen in naïve ENKTL patients, simultaneously, explored the combinational mechanism. The GAD-M regimen was administered for 6 cycles sandwiched by radiotherapy for stage I/II and 6 cycles for stage III/IV patients. After 6 cycles, the overall response rate of 36 patients was 91.6%, and the complete remission rate increased to 83.3%. The 3-year progression-free survival (PFS) and overall survival (OS) rates were 74.8% and 77.8%, respectively. The 5-year PFS and OS were 68.3% and 77.8%. No patient suffered from the central nervous system (CNS) relapse. Most patients experienced recoverable liver dysfunction and anemia in this study. The plasma MTX concentration ratio at 12 to 24 hr during the first cycle could be an early predictor of outcomes in ENKTL (PFS, P=0.005; OS, P=0.002). Additionally, we found that high dose MTX (HD-MTX) and gemcitabine had the synergistic effect of ENKTL cell in vitro. Mechanistically, we demonstrated that the combination could lead to obviously apoptosis in ENKTL cell with extremely release of reactive oxygen spices (ROS), which mediated by endoplasmic reticulum stress. In conclusion, the GAD-M regimen could be a new choice to newly diagnosed ENKTL, especially for stage I/II patients. Furthermore, our results showed the synergy effect of HD-MTX with gemcitabine in ENKTL. CLINICAL TRIAL REGISTRATION: This trial was registered at www.clinicaltrials.gov as #NCT01991158.

12.
Front Cell Infect Microbiol ; 11: 734750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858869

RESUMO

The biological functions of growth factor, such as granulins, have been explored in parasites, and we elucidated that Clonorchis sinensis granulin (CsGRN) promoted the metastasis of hepatocellular carcinoma in our previous study. However, it is still unclear for the malignant transformation role of CsGRN in normal human hepatocytes. In this study, by transfecting pEGFP-C1-CsGRN eukaryotic expression plasmid, a cell line with stable overexpression of CsGRN in normal hepatocyte (LO2-GRN cells) was constructed. The effects on cell proliferation were detected by carrying out cell counting kit-8 (CCK8) assay and colony formation assay. Additionally, we conducted flow cytometry analysis to determine whether the proliferation of CsGRN was due to cell cycle arrest. Subsequently, the migration ability and the invasion ability of LO2-GRN cells were evaluated through wound-healing assay and transwell assay. Meanwhile, the levels of the markers of RAS/MAPK/ERK and PI3K/Akt signaling pathways activation in LO2-GRN cells were assessed by quantitative RT-PCR and Western blot. Our results indicated that CsGRN promoted the proliferation of LO2 cells by regulating the expression of cell-cycle-related genes. Moreover, the overexpression of CsGRN regulates malignant metastasis of liver cells by inducing the upregulation of epithelial-mesenchymal transition (EMT) marker proteins. Furthermore, both mRNA and protein expression levels of p-EGFR, RAS, p-ERK, p-AKT, p-PI3K, and p-braf have been enhanced by CsGRN. These results showed that CsGRN promoted the malignant transformation of hepatocytes by regulating epidermal growth factor receptor (EGFR)-mediated RAS/MAPK/ERK and PI3K/Akt signaling pathways, which suggested that CsGRN could serve as a novel oncoprotein during Clonorchis sinensis-associated malignant transformation of hepatocytes.


Assuntos
Clonorchis sinensis , Neoplasias Hepáticas , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Clonorchis sinensis/genética , Clonorchis sinensis/metabolismo , Receptores ErbB , Granulinas , Hepatócitos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
13.
Hematol Oncol ; 39(5): 625-638, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34543472

RESUMO

Primary central nervous system lymphoma (PCNSL) is an aggressive and rare malignancy with poor prognosis. However, there are no reliable prognostic biomarkers for PCNSL in clinical practice. Here, we aimed to identify a reliable prognostic biomarker for predicting the survival of PCNSL patients. In this study, multiplex immunofluorescence and digital imaging analysis were used to characterize tumor-associated macrophages (TAMs) immunophenotypes and the expression of programmed cell death ligand 1 on TAMs, with regard to prognosis from diagnostic tumor tissue samples of 59 PCNSL patients. We found that the M2-to-M1 ratio was a more reliable prognostic biomarker for PCNSL than M1-like or M2-like macrophage infiltration. In addition, the combination of programmed death-ligand 1 (PD-L1) expression on TAMs and the M2-to-M1 ratio in PCNSL demonstrated improved performance in prognostic discrimination than PD-L1-positive TAMs or M2-to-M1 ratio. To validate the prognostic significance of the combined TAMs associated biomarkers, they were integrated into the International Extranodal Lymphoma Study Group (IELSG) index and termed as IELSG-M index. Kaplan-Meier plots showed that the IELSG-M index could discriminate patients into low-, intermediate- or high-risk subgroups, better than IELSG, in terms of prognosis. The areas under the receiver operating characteristic curves of IELSG-M was 0.844 for overall survival; superior to the IELSG model (0.580). Taken together, this study's findings showed that the combination of PD-L1 on TAMs and the M2-to-M1 ratio could be strong prognostic predictive biomarkers for PCNSL and the IELSG-M index had improved prognostic significance than the IELSG index.


Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/análise , Neoplasias do Sistema Nervoso Central/mortalidade , Linfoma/mortalidade , Microambiente Tumoral , Macrófagos Associados a Tumor/imunologia , Neoplasias do Sistema Nervoso Central/imunologia , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Seguimentos , Humanos , Linfoma/imunologia , Linfoma/metabolismo , Linfoma/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida
14.
J Exp Clin Cancer Res ; 40(1): 149, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931075

RESUMO

BACKGROUND: Radiotherapy is a conventional and effective local treatment for breast cancer. However, residual or recurrent tumors appears frequently because of radioresistance. Novel predictive marker and the potential therapeutic targets of breast cancer radioresistance needs to be investigated. METHODS: In this study, we screened all 10 asparagine-linked glycosylation (ALG) members in breast cancer patients' samples by RT-PCR. Cell viability after irradiation (IR) was determined by CCK-8 assay and flow cytometry. The radiosensitivity of cell lines with different ALG3 expression was determined with the colony formation assay by fitting the multi-target single hit model to the surviving fractions. Cancer stem-like traits were assessed by RT-PCR, Western blot, and flow cytometry. The mechanisms of ALG3 influencing radiosensitivity was detected by Western blot and immunoprecipitation. And the effect of ALG3 on tumor growth after IR was verified in an orthotopic xenograft tumor models. The association of ALG3 with prognosis of breast cancer patients was confirmed by immunohistochemistry. RESULTS: ALG3 was the most significantly overexpressing gene among ALG family in radioresistant breast cancer tissue. Overexpression of ALG3 predicted poor clinicopathological characteristics and overall survival (OS), and early local recurrence-free survival (LRFS) in breast cancer patients. Upregulating ALG3 enhanced radioresistance and cancer stemness in vitro and in vivo. Conversely, silencing ALG3 increased the radiosensitivity and repressed cancer stemness in vitro, and more importantly inhibition of ALG3 effectively increased the radiosensitivity of breast cancer cells in vivo. Mechanistically, our results further revealed ALG3 promoted radioresistance and cancer stemness by inducing glycosylation of TGF-ß receptor II (TGFBR2). Importantly, both attenuation of glycosylation using tunicamycin and inhibition of TGFBR2 using LY2109761 differentially abrogated the stimulatory effect of ALG3 overexpression on cancer stemness and radioresistance. Finally, our findings showed that radiation played an important role in preventing early recurrence in breast cancer patients with low ALG3 levels, but it had limited efficacy in ALG3-overexpressing breast cancer patients. CONCLUSION: Our results suggest that ALG3 may serve as a potential radiosensitive marker, and an effective target to decrease radioresistance by regulating glycosylation of TGFBR2 in breast cancer. For patients with low ALG3 levels, radiation remains an effective mainstay therapy to prevent early recurrence in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Manosiltransferases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glicosilação , Humanos , Manosiltransferases/genética , Camundongos , Tolerância a Radiação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Ann Hematol ; 100(9): 2293-2302, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33991204

RESUMO

Despite the clinical value of HMGB1 in non-Hodgkin lymphoma (NHL), the impact of HMGB1 protein expression on survival of patients with mature T-cell and NK-cell lymphoma (T/NK-CL) is unknown. Here, we evaluated correlations of HMGB1 expression in tumor tissues with pathophysiological characteristics of disease and determined the prognostic value of HMGB1 expression in relapsed/refractory T/NK-CL. HMGB1 expression was detected by immunohistochemistry (IHC) in 66 cases of relapsed/refractory T/NK-CL, and specimens were classified as high or low HMGB1 expression. Univariate and multivariate Cox regression analyses identified prognostic factors associated with progression-free survival (PFS) and overall survival (OS). High HMGB1 expression was significantly correlated with increased Ki67 levels and progressive lymphoma subtypes. Univariate Cox regression analysis showed that high HMGB1 expression was associated with unfavorable PFS (P = 0.006) and poorer OS (P < 0.001). Prognostic factors identified by univariate analysis were prognostic index for peripheral T-cell lymphoma non-specified (PIT) score ≥ 2, bone marrow involvement, Ki67 ≥ 70%, and high HMGB1 expression. Multivariate Cox regression analysis revealed that high HMGB1 expression was an independent prognostic factor for poorer PFS [hazard ratio (HR) 3.593; 95% confidence interval (CI) 1.171-11.027; P = 0.025] and OS [HR 7.663; 95% CI 2.367-24.803; P = 0.001]. A proposal prognostic model combining HMGB1 and Ki67 expression showed improved prognostic capacity and may help guide treatment planning. High HMGB1 expression may be a promising prognostic predictor and a potential therapeutic target for relapsed/refractory T/NK-CL. Furthermore, to apply HMGB1 as one of the best bio-maker, an external independent control cohort is needed.


Assuntos
Proteína HMGB1/análise , Linfoma Extranodal de Células T-NK/diagnóstico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Feminino , Humanos , Antígeno Ki-67/análise , Linfoma Extranodal de Células T-NK/tratamento farmacológico , Linfoma Extranodal de Células T-NK/patologia , Linfoma Extranodal de Células T-NK/radioterapia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Prednisona/uso terapêutico , Prognóstico , Análise de Sobrevida , Vincristina/uso terapêutico , Adulto Jovem
16.
J Immunother Cancer ; 8(2)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33158915

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) induce better tumor regression in melanoma with programmed cell death 1 ligand 1 (PD-L1) high expression, but there has been an upsurge of failed responses. In this study, we aimed to explore the additional mechanisms possibly accounting for ICIs resistance and interventional strategies to overcome the resistance in melanoma with PD-L1 high expression. METHODS: Melanoma xenografts and cytotoxicity assays were used to investigate function of SOX2 in regulating antitumor immunity. The activity of the janus kinase-signal transducer and activator of transcriptions (JAK-STAT) pathway was investigated by western blots, quantitative PCR and luciferase assay. Epigenetic compounds library screen was employed to identify inhibitors that could decrease SOX2 level. The effect of histone deacetylase inhibitor SAHA in antitumor immunity alone or in combination with immunotherapy was also determined in vitro and in vivo. Prognostic impact of SOX2 was analyzed using transcriptional profiles and clinical data download from the Gene Expression Omnibus and The Cancer Genome Atlas repository. RESULTS: We uncovered a role of SOX2 in attenuating the sensitivity of melanoma cells to CD8+ T-cell killing. Mechanistically, SOX2 inhibited phosphatases suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase non-receptor type 1 (PTPN1) transcription, induced duration activation of the JAK-STAT pathway and thereby overexpression of interferon stimulated genes resistance signature (ISG.RS). By targeting the SOX2-JAK-STAT signaling, SAHA promoted the antitumor efficacy of IFNγ or anti-PD-1 in vitro and in vivo. Moreover, SOX2 was an independent prognostic factor for poor survival and resistant to anti-PD-1 therapy in melanoma with PD-L1 high expression. CONCLUSIONS: Our data unveiled an additional function of SOX2 causing immune evasion of CD8+ T-cell killing through alleviating the JAK-STAT pathway and ISG.RS expression. We also provided a rationale to explore a novel combination of ICIs with SAHA clinically, especially in melanoma with PD-L1 and SOX2 high expression.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Melanoma/terapia , Fatores de Transcrição SOXB1/imunologia , Vorinostat/farmacologia , Animais , Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/biossíntese , Resistencia a Medicamentos Antineoplásicos/imunologia , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Evasão da Resposta Imune , Melanoma/tratamento farmacológico , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus
17.
Sci Rep ; 10(1): 15021, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929120

RESUMO

Ubiquinol-cytochrome c reductase hinge protein (UQCRH) is the hinge protein for the multi-subunit complex III of the mitochondrial electron transport chain and is involved in the electron transfer reaction between cytochrome c1 and c. Recent genome-wide transcriptomic and epigenomic profiling of clear cell renal cell carcinoma (ccRCC) by The Cancer Genome Atlas (TCGA) identified UQCRH as the top-ranked gene showing inverse correlation between DNA hypermethylation and mRNA downregulation. The function and underlying mechanism of UQCRH in the Warburg effect metabolism of ccRCC have not been characterized. Here, we verified the clinical association of low UQCRH expression and shorter survival of ccRCC patients through in silico analysis and identified KMRC2 as a highly relevant ccRCC cell line that displays hypermethylation-induced UQCRH extinction. Ectopic overexpression of UQCRH in KMRC2 restored mitochondrial membrane potential, increased oxygen consumption, and attenuated the Warburg effect at the cellular level. UQCRH overexpression in KMRC2 induced higher apoptosis and slowed down in vitro and in vivo tumor growth. UQCRH knockout by CRISPR/Cas9 had little impact on the metabolism and proliferation of 786O ccRCC cell line, suggesting the dispensable role of UQCRH in cells that have entered a Warburg-like state through other mechanisms. Together, our study suggests that loss of UQCRH expression by hypermethylation may promote kidney carcinogenesis through exacerbating the functional decline of mitochondria thus reinforcing the Warburg effect.


Assuntos
Carcinoma de Células Renais/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Neoplasias Renais/metabolismo , Efeito Warburg em Oncologia , Animais , Apoptose , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Metilação de DNA , Regulação para Baixo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos
18.
Clin Immunol ; 207: 68-78, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31374257

RESUMO

This study aimed to investigate the possible functions and mechanisms of positive and negative costimulatory molecules in the pathological process of myasthenia gravis (MG). The expression levels of membrane-bound inducible costimulator (ICOS) and programmed cell death 1 (PD-1) in peripheral blood T cells, their corresponding ligands ICOSL and PDL-1 on B cells, and their soluble forms (sICOS, sPD-1, sICOSL, and sPDL-1) in plasma were detected in patients with untreated-stage MG (USMG) and remission-stage MG (RSMG). The results showed that the expression levels of membrane-bound ICOS and PD-1 in the peripheral blood T cells of the USMG group and their corresponding ligands ICOSL and PD-L1 on B cells were significantly increased compared to those in the RSMG group and healthy controls (HCs). The levels of sICOSL and sPD-1 were significantly upregulated in USMG patients compared to those in the RSMG and HC groups, while the levels of sICOS and sPD-L1 were not different. The expression of PD-L1 on CD19+ B cells was positively correlated with the concentrations of AchR Ab in the USMG group. The expression of ICOS and PD-1 in CD4+ T cells and the expression of ICOSL and PD-L1 on CD19+ B cells were positively correlated with the quantitative myasthenia gravis (QMG) scores in the USMG group. Also, in the USMG group, the plasma levels of sICOSL and sPD-1 were positively correlated with the QMG scores. In addition, the percentage of peripheral blood follicular helper T (Tfh) cells in the USMG group was positively correlated with ICOS and PD-1 expression on CD4+ T cells and ICOSL and PD-L1 expression on CD19+ B cells. There were positive correlations between sICOSL and sPD-1 levels and the percentage of peripheral blood Tfh cells and plasma interleukin-21 (IL-21) levels in the USMG group. The results suggest that the positive ICOS/ICOSL and negative PD-1/PD-L1 costimulatory molecule pairs participate in the pathological process of MG. Abnormal sICOSL and sPD-1 expression might interfere with the normal signal transduction of ICOS and PD-1 on Tfh cells, causing excessive activation of Tfh cells and promotion of disease progression. sICOSL and sPD-1 have potential value in monitoring MG disease states.


Assuntos
Antígeno B7-H1/metabolismo , Regulação da Expressão Gênica , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Miastenia Gravis/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Adulto , Idoso , Antígeno B7-H1/genética , Feminino , Humanos , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Ligantes , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/genética , Regulação para Cima , Adulto Jovem
19.
Cancer Med ; 8(10): 4688-4698, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31218841

RESUMO

Patients with Non-Hodgkin lymphoma (NHL) treated by conventional chemotherapeutic drugs usually require a long recovery period. However, metronomic combination chemotherapy (MCC) enhances therapeutic efficacy and decreases side effects in the treatment of NHL. In this study, we tested and compared the effects of metronomic chemotherapy (MC) using podophyllotoxin derivative etoposide (VP-16) alone and that of MCC using both VP-16 and everolimus (RAD001) in the treatment of NHL. Two types of NHL cells, OCI-LY-10 and SU-DHL-6, were employed for the experiments. Cell proliferation, apoptosis, and cell senescence were measured to test the effects of drugs in each experiment. In addition, the influences of MC and MCC on the cell cycle and autophagy pathway were evaluated to study the functional mechanisms behind their effects. Finally, we conducted analyses of the growth inhibitory effect and synergistic activity for different MCC. The results showed that MC using low-dose VP-16 alone demonstrated strong treatment effects in terms of inducing apoptosis, cell senescence, and reducing tumor cell proliferation, and this treatment also led to changes of the cell cycle. Compared with MC, MCC using VP-16 and RAD001 together demonstrated even stronger treatment effects, with both the cell cycle and autophagy-related proteins being affected. Considering the synergistic activity, our results showed the MCC of VP-16 48 hours + RAD001 24 hours is the optimal method for treating NHL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Relacionadas à Autofagia/metabolismo , Etoposídeo/farmacologia , Everolimo/farmacologia , Linfoma não Hodgkin/metabolismo , Administração Metronômica , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma não Hodgkin/tratamento farmacológico , Análise de Sobrevida , Resultado do Tratamento
20.
J Colloid Interface Sci ; 551: 81-88, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31075636

RESUMO

Designing and fabricating highly active and efficient catalysts are of vital importance for the practical applications of direct ethylene glycol fuel cells (DEGFCs). In this study, we employ a feasible one-pot synthetic method to construct highly monodispersed PtCu nanospheres (NSs) as high-efficiency anode electrocatalysts for DEGFCs. Interestingly, the optimized carbon supported Pt1Cu1 NSs can display the highest mass activity of 2146.9 mA mg-1 in 1 M KOH + 1 M EG solution under the scan rate of 50 mV s-1, which is 1.9 times higher than that of commercial Pt/C catalysts. This is ascribed to the favorable electronic effect between Pt and Cu, which is beneficial for ethylene glycol oxidation reaction (EGOR) in fuel cells. Meanwhile, such monodispersed Pt1Cu1 NSs can also exhibit excellent durability, where the Pt1Cu1 catalyst retains 62.6% of the initial value after the cyclic voltammetry of 500 cycles. This work not only provides a significant approach for designing catalysts for fuel cells, but also constructs a novel class of active and stable electrocatalysts for EGOR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA