Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Angew Chem Int Ed Engl ; : e202405913, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683647

RESUMO

Inactivating hyperactivated transcription factors can overcome tumor therapy resistance, but their undruggable features limit the development of conventional inhibitors. Here, we report that carbon-centered free radicals (R∙) can inactivate NF-κB transcription by capping the active sites in both NF-κB and DNA. We construct a type of thermosensitive R∙ initiator loaded amphiphilic nano-micelles to facilitate intracellular delivery of R∙. At a temperature of 43°C, the generated R∙ engage in electrophilic radical addition towards double bonds in nucleotide bases, and simultaneously cap the sulfhydryl residues in NF-κB through radical chain reaction. As a result, both NF-κB nuclear translocation and NF-κB-DNA binding are suppressed, leading to a remarkable NF-κB inhibition of up to 94.1%. We have further applied R∙ micelles in a clinical radiofrequency ablation tumor therapy model, showing remarkable NF-κB inactivation and consequently tumor metastasis inhibition. Radical capping strategy not only provides a method to solve the heat-sink effect in clinic tumor hyperthermia, but also suggests a new perspective for controllable modification of biomacromolecules in cancer therapy.

2.
Front Bioeng Biotechnol ; 12: 1340160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515623

RESUMO

To study the relationship between the diversity of the surface microbial community and tobacco flavor, and to improve tobacco quality using microorganisms. The microbial community composition and diversity of 14 samples of flue-cured tobacco from tobacco-producing areas in Yunnan with varying grades were analyzed by high-throughput sequencing. PICRUSt was used for predicting microbial functions. A strain of Bacillus amyloliquefaciens W6-2 with the ability to degrade pectin was screened from the surface of flued-cured tobacco leaves from Yunnan reroasted tobacco leave. The enzyme preparation was prepared through fermentation and then applied for treating flue-cured tobacco. The improvement effect was evaluated by measuring the content of macromolecule and the changes in volatile components, combined with sensory evaluations. The bacterial communities on the surface of flue-cured tobacco exhibited functional diversity, consisting primarily of Variovorax, Pseudomonas, Sphingomonas, Burkholderia, and Bacillus. These bacterial strains played a role in the aging process of flue-cured tobacco leaves by participating in amino acid metabolism and carbohydrate metabolism. These metabolic activity converted complex macromolecules into smaller molecular compounds, ultimately influence the smoking quality and burning characteristics of flue-cured tobacco. The pectinase preparation produced through fermentation using W6-2 has been found to enhance the aroma and sweetness of flue-cured tobacco, leading to improved aroma, reduced impurities, and enhanced smoothness. Additionally, the levels of pectin, cellulose, and hemicellulose decreased, while the levels of water-soluble sugar and reducing sugar increased, and the contents of esters, ketones, and aldehydes increased, and the contents of benzoic acid decreased. The study revealed the correlation between surface microorganisms and volatile components of Yunnan tobacco leaves, and the enzyme produced by the pectin-degrading bacteria W6-2 effectively improved the quality of flue-cured tobacco.

3.
J Imaging Inform Med ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378963

RESUMO

This study aimed to construct an imaging genomics nomogram based on intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) to predict the status of the alpha thalassemia/mental retardation syndrome X-linked (ATRX) gene in patients with brain gliomas. We retrospectively analyzed routine MR and IVIM-DWI data from 85 patients with pathologically confirmed brain gliomas from January 2017 to May 2023. The data were divided into a training set (N=61) and a test set (N=24) in a 7:3 ratio. Regions of interest (ROIs) of brain gliomas, including the solid tumor region (rCET), edema region (rE), and necrotic region (rNec), were delineated using 3D-Slicer software and projected onto the D, D*, and f sequences. A total of 1037 features were extracted from each ROI, resulting in 3111 features per patient. Age was incorporated in the calculation of the Radscore, and a clinical-imaging genomics combined model was constructed, from which a nomogram graph was generated. Separate models were built for the D, D*, and f parameters. The AUC value of the D parameter model was 0.97 (95% CI: 0.93-1.00) in the training set and 0.91 (95% CI: 0.79-1.00) in the validation set, which was significantly higher than that of the D* parameter model (0.90, 0.82) and the f parameter model (0.89, 0.91). The imaging genomics nomogram based on IVIM-DWI can effectively predict the ATRX gene status of patients with brain gliomas, with the D parameter showing the highest efficacy.

4.
Cancer Res ; 84(3): 372-387, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37963207

RESUMO

Neuronal activity can drive progression of high-grade glioma by mediating mitogen production and neuron-glioma synaptic communications. Glioma stem cells (GSC) also play a significant role in progression, therapy resistance, and recurrence in glioma, which implicates potential cross-talk between neuronal activity and GSC biology. Here, we manipulated neuronal activity using chemogenetics in vitro and in vivo to study how it influences GSCs. Neuronal activity supported glioblastoma (GBM) progression and radioresistance through exosome-induced proneural-to-mesenchymal transition (PMT) of GSCs. Molecularly, neuronal activation led to elevated miR-184-3p in neuron-derived exosomes that were taken up by GSCs and reduced the mRNA N6-methyladenosine (m6A) levels by inhibiting RBM15 expression. RBM15 deficiency decreased m6A modification of DLG3 mRNA and subsequently induced GSC PMT by activating the STAT3 pathway. Loss of miR-184-3p in cortical neurons reduced GSC xenograft growth, even when neurons were activated. Levetiracetam, an antiepileptic drug, reduced the neuronal production of miR-184-3p-enriched exosomes, inhibited GSC PMT, and increased radiosensitivity of tumors to prolong survival in xenograft mouse models. Together, these findings indicate that exosomes derived from active neurons promote GBM progression and radioresistance by inducing PMT of GSCs. SIGNIFICANCE: Active neurons secrete exosomes enriched with miR-184-3p that promote glioblastoma progression and radioresistance by driving the proneural-to-mesenchymal transition in glioma stem cells, which can be reversed by antiseizure medication levetiracetam.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , MicroRNAs , Humanos , Animais , Camundongos , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Levetiracetam/metabolismo , Levetiracetam/uso terapêutico , Células-Tronco Neoplásicas/patologia , Glioma/patologia , Neurônios/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética
5.
Aging (Albany NY) ; 15(24): 15402-15418, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38154107

RESUMO

This study aimed to evaluate the potential of cluster of differentiation 86 (CD86) as a biomarker in high-grade glioma (HGG). The TCGA and TCIA databases were used to obtain the CD86 expression value, clinical data, and MRI images of HGG patients. Prognostic values were assessed by the Kaplan-Meier method, Receiver operating characteristic curve (ROC), Cox regression, logistic regression, and nomogram analyses. CD86-associated pathways were also explored. We found that CD86 was significantly upregulated in HGG compared with the normal group. Survival analysis showed a significant association between CD86 high expression and shorter overall survival time. Its independent prognostic value was also confirmed. These results suggested the possibility of CD86 as a biomarker in HGG. We also innovatively established 2 radiomics models with Support Vector Machine (SVM) and Logistic regression (LR) algorithms to predict the CD86 expression. The 2 models containing 5 optimal features by SVM and LR methods showed similar favorable performance in predicting CD86 expression in the training set, and their performance were also confirmed in validation set. These results indicated the successful construction of a radiomics model for non-invasively predicting biomarker in HGG. Finally, pathway analysis indicated that CD86 might be involved in the natural killer cell-mediated cytotoxicity in HGG progression.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Imageamento por Ressonância Magnética/métodos , Biomarcadores
6.
Am J Transl Res ; 15(7): 4678-4686, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560227

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) is commonly used to analyze the relationship between tumors and nerves before surgery. However, the application value of diffusion tensor imaging (DTI), diffusion weighted imaging (DWI), and post-processing techniques needs further elucidation. PURPOSE: To assess the value of DTI, DWI, and various post-processing techniques in determining the relationship between tumors and nerves. MATERIAL AND METHODS: The participants were 42 patients diagnosed with peripheral nerve-related tumors and 20 healthy controls. DTI and DWI scans were performed before surgery, and then DTI unidirectional maximum intensity projection (MIP) post-processing and DWI subtraction of unidirectionally encoded images for suppression of heavily isotropic objects (DWISUSHI) postprocessing techniques were used to observe the relationship between the mass and the target nerves. The mean apparent diffusion coefficient (ADC) of nerves was compared among the target neural origin group, non-target neural origin group, and healthy control group using the paired Wilcoxon rank-sum test. RESULTS: The diagnostic coincidence rates of preoperative DTI and DWI findings with postoperative pathology were 88.1% and 100%, respectively. DTI images were of poor quality when compared to DWISUSHI (P < 0.05). The mean ADC value of the target neural origin group was greater than that of the non-target neural origin group and the healthy control group (P < 0.05). CONCLUSION: Both DTI and DWISUSHI can stereoscopically display the relationship between peripheral nerves and tumors, but the latter contributes to better quality of the reconstructed images.

7.
J Nanobiotechnology ; 21(1): 233, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481646

RESUMO

BACKGROUND: The immunosuppressive microenvironment in glioma induces immunotherapy resistance and is associated with poor prognosis. Glioma-associated mesenchymal stem cells (GA-MSCs) play an important role in the formation of the immunosuppressive microenvironment, but the mechanism is still not clear. RESULTS: We found that GA-MSCs promoted the expression of CD73, an ectonucleotidase that drives immunosuppressive microenvironment maintenance by generating adenosine, on myeloid-derived suppressor cells (MDSCs) through immunosuppressive exosomal miR-21 signaling. This process was similar to the immunosuppressive signaling mediated by glioma exosomal miR-21 but more intense. Further study showed that the miR-21/SP1/DNMT1 positive feedback loop in MSCs triggered by glioma exosomal CD44 upregulated MSC exosomal miR-21 expression, amplifying the glioma exosomal immunosuppressive signal. Modified dendritic cell-derived exosomes (Dex) carrying miR-21 inhibitors could target GA-MSCs and reduce CD73 expression on MDSCs, synergizing with anti-PD-1 monoclonal antibody (mAb). CONCLUSIONS: Overall, this work reveals the critical role of MSCs in the glioma microenvironment as signal multipliers to enhance immunosuppressive signaling of glioma exosomes, and disrupting the positive feedback loop in MSCs with modified Dex could improve PD-1 blockade therapy.


Assuntos
Glioma , MicroRNAs , Células Supressoras Mieloides , Humanos , Retroalimentação , Imunossupressores , MicroRNAs/genética , Microambiente Tumoral , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Fator de Transcrição Sp1
8.
Clinics (Sao Paulo) ; 78: 100238, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37354775

RESUMO

OBJECTIVE: To investigate the value of a nomogram based on multiparametric and multiregional MR images to predict Isocitrate Dehydrogenase-1 (IDH1) gene mutations in glioma. DATA AND METHODS: The authors performed a retrospective analysis of 110 MR images of surgically confirmed pathological gliomas; 33 patients with IDH1 gene Mutation (IDH1-M) and 77 patients with Wild-type IDH1 (IDH1-W) were divided into training and validation sets in a 7:3 ratio. The clinical features were statistically analyzed using SPSS and R software. Three glioma regions (rCET, rE, rNEC) were outlined using ITK-SNAP software and projected to four conventional sequences (T1, T2, Flair, T1C) for feature extraction using AI-Kit software. The extracted features were screened using R software. A logistic regression model was established, and a nomogram was generated using the selected clinical features. Eight models were developed based on different sequences and ROIs, and Receiver Operating Characteristic (ROC) curves were used to evaluate the predictive efficacy. Decision curve analysis was performed to assess the clinical usefulness. RESULTS: Age was selected with Radscore to construct the nomogram. The Model 1 AUC values based on four sequences and three ROIs were the highest in these models, at 0.93 and 0.89, respectively. Decision curve analysis indicated that the net benefit of model 1 was higher than that of the other models for most Pt-values. CONCLUSION: A nomogram based on multiparametric and multiregional MR images can predict the mutation status of the IDH1 gene accurately.


Assuntos
Glioma , Nomogramas , Humanos , Estudos Retrospectivos , Glioma/diagnóstico por imagem , Glioma/genética , Curva ROC , Mutação/genética , Imageamento por Ressonância Magnética/métodos , Isocitrato Desidrogenase/genética
9.
BMC Musculoskelet Disord ; 24(1): 5, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600227

RESUMO

BACKGROUND: Tranexamic acid (TXA) has been widely applied in total knee arthroplasty (TKA) to significantly reduce perioperative blood loss and improve knee function recovery in patients after surgery. The choice of antithrombotic agents for venous thromboembolism (VTE) prevention after TKA is controversial. Therefore, this study aimed to compare the effects of different antithrombotic agents on patients after primary unilateral TKA in the context of applied TXA. METHODS: A total of 180 patients undergoing primary unilateral TKA from October 2020 to December 2021 were included in this study. All patients were given an intraoperative drip of 60 mg/kg TXA. Thereafter, patients were divided into three groups (n = 60 each). Baseline data were comparable among the three groups. The average follow-up time was 3.02 ± 0.09 months. Group 1 enrolled patients receiving oral rivaroxaban (RA) at 10 mg, Group 2 included patients who received subcutaneous Dalteparin sodium at 2500 IU, while Group 3 included patients taking oral aspirin (ASA) at 100 mg. Patients in all the three groups received treatment once a day for 30 days at 12 h postoperatively. The primary outcomes in this study were post-treatment drainage volume and thrombotic complication rate. The secondary outcomes included hematologic parameters, transfusion rate, intraoperative blood loss, total blood loss (TBL), and bleeding complication rate. RESULTS: The average drainage volume after treatment was significantly lower in Group 3 than in Group 1 and Group 2 (205.2 ± 69.0 vs 243.4 ± 72.5 vs 295.4 ± 72.5 ml, P < 0.001), and there was a significant difference between Group 1 and Group 2 (243.4 ± 72.5 mL vs 295.4 ± 72.5 mL, P < 0.001). The blood transfusion rate of Group 2 dramatically increased compared with Group 1 and Group 3 (20.0% vs 6.7% vs 5.0%, P = 0.01). The bleeding complication rate in Group 1 apparently increased relative to Group 2 and Group 3 (26.7% vs 10.0% vs 8.3%, P = 0.008). Besides, there was no significant difference in the thrombotic complication rate among the three groups. CONCLUSION: Under the background of TXA application, ASA, RA, and Dalteparin sodium were all effective on preventing VTE after TKA. In addition, ASA effectively reduced post-treatment Hemoglobin (Hb) loss, drainage volume, TBL, transfusion rate, and bleeding complications compared with RA and Dalteparin sodium. TRIAL REGISTRATION: The trial was registered at the Chinese Clinical Trial Registry (ChiCTR2200060169). Date of Registration: 21/05/2022.


Assuntos
Antifibrinolíticos , Artroplastia do Joelho , Ácido Tranexâmico , Tromboembolia Venosa , Humanos , Ácido Tranexâmico/efeitos adversos , Artroplastia do Joelho/efeitos adversos , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle , Fibrinolíticos/efeitos adversos , Antifibrinolíticos/efeitos adversos , Dalteparina , Estudos Prospectivos , Perda Sanguínea Cirúrgica/prevenção & controle , Rivaroxabana/efeitos adversos , Anticoagulantes , Hemorragia Pós-Operatória/etiologia , Hemorragia Pós-Operatória/prevenção & controle
10.
Front Med ; 17(1): 143-155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36414916

RESUMO

Gliomas are the most common central nervous system tumours; they are highly aggressive and have a poor prognosis. RGS16 belongs to the regulator of G-protein signalling (RGS) protein family, which plays an important role in promoting various cancers, such as breast cancer, pancreatic cancer, and colorectal cancer. Moreover, previous studies confirmed that let-7c-5p, a well-known microRNA, can act as a tumour suppressor to regulate the progression of various tumours by inhibiting the expression of its target genes. However, whether RGS16 can promote the progression of glioma and whether it is regulated by miR let-7c-5p are still unknown. Here, we confirmed that RGS16 is upregulated in glioma tissues and that high expression of RGS16 is associated with poor survival. Ectopic deletion of RGS16 significantly suppressed glioma cell proliferation and migration both in vitro and in vivo. Moreover, RGS16 was validated as a direct target gene of miR let-7c-5p. The overexpression of miR let-7c-5p obviously downregulated the expression of RGS16, and knocking down miR let-7c-5p had the opposite effect. Thus, we suggest that the suppression of RGS16 by miR let-7c-5p can promote glioma progression and may serve as a potential prognostic biomarker and therapeutic target in glioma.


Assuntos
Glioma , MicroRNAs , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Glioma/genética , Genes Supressores de Tumor , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
11.
Clinics ; 78: 100238, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1506042

RESUMO

Abstract Objective To investigate the value of a nomogram based on multiparametric and multiregional MR images to predict Isocitrate Dehydrogenase-1 (IDH1) gene mutations in glioma. Data and methods The authors performed a retrospective analysis of 110 MR images of surgically confirmed pathological gliomas; 33 patients with IDH1 gene Mutation (IDH1-M) and 77 patients with Wild-type IDH1 (IDH1-W) were divided into training and validation sets in a 7:3 ratio. The clinical features were statistically analyzed using SPSS and R software. Three glioma regions (rCET, rE, rNEC) were outlined using ITK-SNAP software and projected to four conventional sequences (T1, T2, Flair, T1C) for feature extraction using AI-Kit software. The extracted features were screened using R software. A logistic regression model was established, and a nomogram was generated using the selected clinical features. Eight models were developed based on different sequences and ROIs, and Receiver Operating Characteristic (ROC) curves were used to evaluate the predictive efficacy. Decision curve analysis was performed to assess the clinical usefulness. Results Age was selected with Radscore to construct the nomogram. The Model 1 AUC values based on four sequences and three ROIs were the highest in these models, at 0.93 and 0.89, respectively. Decision curve analysis indicated that the net benefit of model 1 was higher than that of the other models for most Pt-values. Conclusion A nomogram based on multiparametric and multiregional MR images can predict the mutation status of the IDH1 gene accurately.

12.
Adv Rheumatol ; 63: 24, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447147

RESUMO

Abstract Introduction The relationship between humidity and systemic lupus erythematosus (SLE) has yielded inconsistent results in prior research, while the effects of humidity on lupus in animal experiments and its underlying mechanism remain inadequately explored. Methods The present study aimed to investigate the impact of high humidity (80 ± 5%) on lupus using female and male MRL/lpr mice, with a particular focus on elucidating the role of gut microbiota in this process. To this end, fecal microbiota transplantation (FMT) was employed to transfer the gut microbiota of MRL/lpr mice under high humidity to blank MRL/lpr mice under normal humidity (50 ± 5%), allowing for an assessment of the effect of FMT on lupus. Results The study revealed that high humidity exacerbated lupus indices (serum anti-dsDNA, ANA, IL-6, and IFN- g, and renal pathology) in female MRL/lpr mice but had no significant effect on male MRL/lpr mice. The aggravation of lupus caused by high humidity may be attributed to the increased abundances of the Rikenella, Romboutsia, Turicibacter, and Escherichia-Shigella genera in female MRL/lpr mice. Furthermore, FMT also exacerbated lupus in female MRL/lpr mice but not in male MRL/lpr mice. Conclusion In summary, this study has demonstrated that high humidity exacerbated lupus by modulating gut microbiota in female MRL/lpr mice. The findings underscore the importance of considering environmental factors and gut microbiota in the development and progression of lupus, particularly among female patients.

13.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499501

RESUMO

Bladder cancer (BC) is the tenth most commonly diagnosed cancer worldwide, and its carcinogenesis mechanism has not been fully elucidated. BC is able to induce natural killer (NK) cell dysfunction and escape immune surveillance. The present study found that exosomes derived from the urinary bladder cancer cell line (T24 cell) contribute in generating NK cell dysfunction by impairing viability, and inhibiting the cytotoxicity of the NK cell on target cells. Meanwhile, T24 cell-derived exosomes inhibited the expression of the important functional receptors NKG2D, NKp30, and CD226 on NK cells as well as the secretion of perforin and granzyme-B. The critical miRNAs with high expression in T24 cell-derived exosomes were identified using high-throughput sequencing. Furthermore, following dual-luciferase reporter assay and transfection experiments, miR-221-5p and miR-186-5p were confirmed as interfering with the stability of the mRNAs of DAP10, CD96, and the perforin gene in NK cells and may be potential targets used in the therapy for BC.


Assuntos
Exossomos , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Exossomos/genética , Exossomos/metabolismo , Células Matadoras Naturais/metabolismo , RNA Mensageiro/metabolismo , Proliferação de Células , Linhagem Celular Tumoral
14.
Nat Commun ; 13(1): 7353, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446788

RESUMO

Bacteria and excessive inflammation are two main factors causing non-healing wounds. However, current studies have mainly focused on the inhibition of bacteria survival for wound healing while ignoring the excessive inflammation induced by dead bacteria-released lipopolysaccharide (LPS) or peptidoglycan (PGN). Herein, a boron-trapping strategy has been proposed to prevent both infection and excessive inflammation by synthesizing a class of reactive metal boride nanoparticles (MB NPs). Our results show that the MB NPs are gradually hydrolyzed to generate boron dihydroxy groups and metal cations while generating a local alkaline microenvironment. This microenvironment greatly enhances boron dihydroxy groups to trap LPS or PGN through an esterification reaction, which not only enhances metal cation-induced bacterial death but also inhibits dead bacteria-induced excessive inflammation both in vitro and in vivo, finally accelerating wound healing. Taken together, this boron-trapping strategy provides an approach to the treatment of bacterial infection and the accompanying inflammation.


Assuntos
Nanopartículas Metálicas , Infecção dos Ferimentos , Humanos , Peptidoglicano , Lipopolissacarídeos/toxicidade , Boro/farmacologia , Cicatrização , Bactérias , Ligante de CD40 , Inflamação , Compostos de Boro
15.
Steroids ; 188: 109131, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273543

RESUMO

PURPOSE: Spinal cord injury can lead to incomplete or complete loss of voluntary movement and sensory function, leading to serious complications. Numerous studies have shown that progesterone exhibits strong therapeutic potential for spinal cord injury. However, the mechanism by which progesterone treats spinal cord injury remains unclear. Therefore, this article explores the mechanism of progesterone in the treatment of spinal cord injury by means of molecular docking and molecular dynamics simulation. METHODS: We used bioinformatics to screen active pharmaceutical ingredients and potential targets, and molecular docking and molecular dynamics were used to validate and analysis by the supercomputer platform. RESULTS: Progesterone had 3606 gene targets, spinal cord injury had 6560 gene targets, the intersection gene targets were 2355. GO and KEGG analysis showed that the abundant pathways involved multiple pathways related to cell metabolism and inflammation. Molecular docking showed that progesterone played a role in treating spinal cord injury by acting on BDNF, AR, NGF and TNF. Molecular dynamics was used to prove and analyzed the binding stability of active ingredients and protein targets, and AR/Progesterone combination has the strongest binding energy. CONCLUSION: Progesterone promotes recovery from spinal cord injury by promoting axonal regeneration, remyelination, neuronal survival and reducing inflammation.


Assuntos
Progesterona , Traumatismos da Medula Espinal , Humanos , Progesterona/farmacologia , Progesterona/uso terapêutico , Progesterona/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Preparações Farmacêuticas , Inflamação/tratamento farmacológico
16.
Medicine (Baltimore) ; 101(37): e30619, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36123948

RESUMO

Colorectal cancer (CRC) is known to display a high risk of metastasis and recurrence. The main objective of our investigation was to shed more light on CRC pathogenesis by screening CRC datasets for the identification of key genes and signaling pathways, possibly leading to new approaches for the diagnosis and treatment of CRC. We downloaded the colorectal cancer datasets from the Gene Expression Omnibus (GEO) database site. We used GEO2R to screen for differentially expressed genes (DEGs) of which those with a fold change >1 were considered as up-regulated and those with a fold change <-1 were considered as down-regulated on the basis of a P < .05. "Gene ontology (GO)" and "Kyoto Encyclopedia of Genes and Genomes (KEGG)" data were analyzed by the "DAVID" software. The online search tool "STRING" was used to search for interacting genes or proteins and we used Cytoscape (v3.8.0) to generate a PPI network map and to identify key genes. Finally, survival analysis and stage mapping of key genes were performed using "GEPIA" with the aim of elucidating their potential impact on CRC. Our study revealed 120 intersecting genes of which 55 were up- and 65 were downregulated, respectively. GO analysis revealed that these genes were involved in cell proliferation, exosome secretion, G2/M transition, cytosol, protein binding, and protein kinase activity. KEGG pathway analysis showed that these genes were involved in cell cycle and mineral absorption. The Cytoscape PPI map showed 17 nodes and 262 edges, and 10 hub genes were identified by top 10 degrees. Survival analysis demonstrated that the AURKA, CCNB1, and CCNA2 genes were strongly associated with the survival rate of CRC patients. In addition, CCNB1, CCNA2, CDK1, CKS2, MAD2L1, and DLGAP5 could be correlated to pathological CRC staging. In this research, we identified key genes that may explain the molecular mechanism of occurrence and progression of CRC but may also contribute to an improvement in the clinical staging and prognosis of CRC patients.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias Colorretais , Aurora Quinase A , Proteínas de Ciclo Celular , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Humanos , Prognóstico
17.
World J Clin Cases ; 10(25): 9132-9141, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36157642

RESUMO

BACKGROUND: Chondrosarcoma of the foot is a rare malignant bone tumour, and it is even rarer when it originates in a toe bone. Surgical excision is the only effective treatment. The osteolytic destruction of the tumour severely affects limb function and carries the risk of distant metastasis. Most such tumours are removed surgically to minimize local recurrence and distant metastases, maximize limb function, and prolong the patient's tumour-free survival time. The main objective of this article is to present the case of a chondrosarcoma that invaded the first phalanx of the left foot and formed a large phalangeal mass with osteolytic destruction of the distal bone. CASE SUMMARY: A 74-year-old man suffered from swelling of his left toe for six months, with pain and swelling for two months. Computed tomography and magnetic resonance imaging showed that the tumour on the first phalanx of the left foot was approximately 54.9 mm × 44.6 mm, surrounded by a significant soft tissue signal mass, with osteolytic destruction of the distal phalanx and a speckled bone-like high-density shadow within it. CONCLUSION: Chondrosarcoma occurring in a toe bone is extremely rare. In this case, extensive surgical resection of the large low-grade chondrosarcoma, which showed osteolytic destruction and invaded the distal metatarsal bone, was safe and effective.

18.
Artigo em Inglês | MEDLINE | ID: mdl-35990842

RESUMO

Purpose: The research aims to investigate the mechanism of action of aspirin in the treatment of Kawasaki disease. Methods: We predicted the targets of aspirin with the help of the Drugbank and PharmMapper databases, the target genes of Kawasaki disease were mined in the GeneCards and Disgenet databases, the intersection targets were processed in the Venny database, and the gene expression differences were observed in the GEO database. The Drugbank and PharmMapper databases were used to predict the target of aspirin, and the target genes of Kawasaki disease were explored in the GeneCards and Disgenet databases, and the Venny was used for intersection processing. We observed the gene expression differences in the GEO database. The disease-core gene target-drug network was established and molecular docking was used for verification. Molecular dynamics simulation verification was carried out to combine the active ingredient and the target with a stable combination. The supercomputer platform was used to measure and analyze the binding free energy, the number of hydrogen bonds, the stability of the protein target at the residue level, the radius of gyration, and the solvent accessible surface area. Results: Aspirin had 294 gene targets, Kawasaki disease had 416 gene targets, 42 intersecting targets were obtained, we screened 13 core targets by PPI; In the GO analysis, we learned that the biological process of Kawasaki disease involved the positive regulation of chemokine biosynthesis and inflammatory response; pathway enrichment involved PI3K-AKT signaling pathway, tumor necrosis factor signaling pathway, etc. After molecular docking, the data showed that CTSG, ELANE, and FGF1 had the best binding degree to aspirin. Molecular dynamics was used to prove and analyze the binding stability of active ingredients and protein targets, and Aspirin/ELANE combination has the strongest binding energy. Conclusion: In the treatment of Kawasaki disease, aspirin may regulate inflammatory response and vascular remodeling through CTSG, ELANE, and FGF1.

19.
Phytomed Plus ; 2(2): 100252, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35403089

RESUMO

Purpose Pulmonary fibrosis caused by COVID-19 pneumonia is a serious complication of COVID-19 infection, there is a lack of effective treatment methods clinically. This article explored the mechanism of action of berberine in the treatment of COVID-19 (Corona Virus Disease 2019, COVID-19) pneumonia pulmonary fibrosis with the help of the network pharmacology and molecular docking. Methods We predicted the role of berberine protein targets with the Pharmmapper database and the 3D structure of berberine in the Pubchem database. And GeneCards database was used in order to search disease target genes and screen common target genes. Then we used STRING web to construct PPI interaction network of common target protein. The common target genes were analyzed by GO and KEGG by DAVID database. The disease-core target gene-drug network was established and molecular docking was used for prediction. We also analyzed the binding free energy and simulates molecular dynamics of complexes. Results Berberine had 250 gene targets, COVID-19 pneumonia pulmonary fibrosis had 191 gene targets, the intersection of which was 23 in common gene targets. Molecular docking showed that berberine was associated with CCl2, IL-6, STAT3 and TNF-α. GO and KEGG analysis reveals that berberine mainly plays a vital role by the signaling pathways of influenza, inflammation and immune response. Conclusion Berberine acts on TNF-α, STAT3, IL-6, CCL2 and other targets to inhibit inflammation and the activation of fibrocytes to achieve the purpose of treating COVID-19 pneumonia pulmonary fibrosis.

20.
Angew Chem Int Ed Engl ; 60(40): 21905-21910, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34322970

RESUMO

In solid tumors, tumor invasion and metastasis account for 90 % of cancer-related deaths. Cell migration is steered by the lamellipodia formed at the leading edge. These lamellipodia can drive the cell body forward by its mechanical deformation regulated by cofilin. Inhibiting cofilin activity can cause significant defects in directional lamellipodia formation and the locomotory capacity of cell invasion, thus contributing to antimetastatic treatment. Herein, a near infrared light (NIR)-controlled nanoscale proton supplier was designed with upconversion nanoparticles (UCNPs) as a core coated in MIL-88B for interior photoacids loading; this photoacids loading can boost H+ transients in cells, which converts the cofilin to an inactive form. Strikingly, inactive cofilin loses the ability to mediate lamellipodia deformation for cell migration. Additionally, the iron, which serves as a catalyticaly active center in MIL-88B, initiates an enhanced Fenton reaction due to the increased H+ in the tumor, ultimately achieving intensive chemodynamic therapy (CDT). This work provides new insight into H+ transients in cells, which not only regulates cofilin protonation for antimetastatic treatment but also improves chemodynamic therapy.


Assuntos
Antineoplásicos/farmacologia , Estruturas Metalorgânicas/farmacologia , Nanopartículas/química , Fotoquimioterapia , Pseudópodes/efeitos dos fármacos , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Estruturas Metalorgânicas/química , Camundongos , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA