Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS One ; 19(3): e0300180, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457419

RESUMO

BACKGROUND: The development of short popular science video platforms helps people obtain health information, but no research has evaluated the information characteristics and quality of short videos related to cervical cancer. The purpose of this study was to evaluate the quality and reliability of short cervical cancer-related videos on TikTok and Kwai. METHODS: The Chinese keyword "cervical cancer" was used to search for related videos on TikTok and Kwai, and a total of 163 videos were ultimately included. The overall quality of these videos was evaluated by the Global Quality Score (GQS) and the modified DISCERN tool. RESULTS: A total of 163 videos were included in this study, TikTok and Kwai contributed 82 and 81 videos, respectively. Overall, these videos received much attention; the median number of likes received was 1360 (403-6867), the median number of comments was 147 (40-601), and the median number of collections was 282 (71-1296). In terms of video content, the etiology of cervical cancer was the most frequently discussed topic. Short videos posted on TikTok received more attention than did those posted on Kwai, and the GQS and DISCERN score of videos posted on TikTok were significantly better than those of videos posted on Kwai. In addition, the videos posted by specialists were of the highest quality, with a GQS and DISCERN score of 3 (2-3) and 2 (2-3), respectively. Correlation analysis showed that GQS was significantly correlated with the modified DISCERN scores (p<0.001). CONCLUSION: In conclusion, the quality and reliability of cervical cancer-related health information provided by short videos were unsatisfactory, and the quality of the videos posted on TikTok was better than that of videos posted on Kwai. Compared with those posted by individual users, short videos posted by specialists provided higher-quality health information.


Assuntos
Meios de Comunicação , Mídias Sociais , Neoplasias do Colo do Útero , Humanos , Feminino , Reprodutibilidade dos Testes , Povo Asiático , Emoções , Gravação em Vídeo
2.
Brain Res ; 1821: 148585, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722469

RESUMO

Apoptosis induced by oxygen-glucose deprivation/reperfusion (OGD/R) injury is the main cause of neuronal damage. Cornuside, a small-molecule cyclic enol ether terpene glycoside extracted from the dried fruit of mature Cornus officinalis Sieb. et Zucc., has vigorous anti-apoptotic and antioxidant effects. Previous studies have shown that Cornuside can reduce apoptosis and improve mitochondrial energy metabolism in cortical neurons of rats by inhibiting caspase-3 and calcium release. In this study, we treated SH-SY5Y cells with OGD/R to simulated ischemia/reperfusion (I/R) injury. Using high-throughput transcriptome sequencing, differentially expressed genes were analyzed in the OGD/R group versus the OGD/R + Cornuside (10 µmol/L) group to explore the neuroprotective mechanisms of Cornuside. The differentially expressed genes were mainly enriched in apoptosis signaling pathway, cell cycle, DNA damage and repair, and p38/JNK MAPK and p53 signaling pathways. The results showed that OGD/R significantly reduced the survival of SH-SY5Y cells, induced apoptosis, disrupted the nucleus, promoted the release of ROS, and led to cell cycle arrest. Cornuside reversed OGD/R-induced damage. By upregulating MAPK8IP1 and downregulating MAPK14, TP53INP1, and signaling pathway-related proteins (p-p38, p-JNK, and p-p53), Cornuside ameliorated cell damage induced by p38/JNK MAPK and p53 signaling pathways. Cornuside also downregulated apoptosis regulatory proteins (Bax, Bcl-2, caspase-3, caspase-9, and cytochrome c) and cell cycle regulatory proteins (cyclin B1, cyclin E, and p21).


Assuntos
Neuroblastoma , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Glucose/metabolismo , Oxigênio/metabolismo , Caspase 3/metabolismo , Proteína Supressora de Tumor p53 , Traumatismo por Reperfusão/metabolismo , Apoptose , Proteínas de Transporte , Proteínas de Choque Térmico/metabolismo
3.
Sci Total Environ ; 860: 160396, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36435251

RESUMO

To bridge the organic-dependent barrier on nitrogen from low carbon/nitrogen (C/N) municipal wastewater, employing algal biochar supported nano zero-valent iron (ABC-nZVI) was investigated using A/A/O-MBR. Firstly, it can be seen that adequate carbon source is indispensable for the removal, since total nitrogen (TN) removal reached 77.89 % with the influent C/N of 7.8. Secondly, conducted in batch experiments with different doses of ABC-nZVI with/without active sludge, removal efficiency of total inorganic nitrogen (TIN) and the effective time achieved 84.94 % and 24 h with an ABC-nZVI dose of 300 mg/L, respectively. Thirdly, it was found that the duration of high-efficiency denitrification reached 9 h with the addition of 250 mg/L of ABC-nZVI to the anoxic tank of A/A/O-MBR, and the effluent ammonium nitrogen (NH4+-N) also meet the national discharge standard. Besides, biodiversity of both anoxic and aerobic sludge was apparently promoted with the addition of ABC-nZVI, while the lab-scale A/A/O-MBR could also be fully rehabilitated within 12 h. Finally, predicted through PICRUSt2, relevant abundance of functional genes involved in nitrogen metabolism could be enriched by nZVI addition. As an alternative supporting electron donor and mediator, ABC-nZVI can also be participated in the enhanced nitrogen removal in A/A/O-MBR at low C/N.


Assuntos
Esgotos , Águas Residuárias , Carbono , Desnitrificação , Nitrogênio , Ferro , Reatores Biológicos
4.
Int Immunopharmacol ; 110: 109045, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35978505

RESUMO

Adult neurogenesis in hippocampus dentate gyrus (DG) is associated with numerous neurodegenerative diseases such as aging and Alzheimer's disease (AD). Overactivation of microglia induced neuroinflammation is well acknowledged to contribute to the impaired neurogenesis in pathologies of these diseases and then leading to cognitive dysfunction. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia to modulate inflammatory response. However, whether inhibition of H3R is responsible for the neurogenesis and cognition in chronic neuroinflammation induced injury and the mechanism remains unclear. In this study, we found that inhibition of H3R by thioperamide reduced the microglia activity and promoted a phenotypical switch from pro-inflammatory M1 to anti-inflammatory M2 in microglia, and ultimately attenuated lipopolysaccharide (LPS) induced neuroinflammation in mice. Additionally, thioperamide rescued the neuroinflammation induced impairments of neurogenesis and cognitive function. Mechanically, the neuroprotection of thioperamide was involved in histamine dependent H2 receptor (H2R) activation, because cimetidine, an H2R antagonist but not pyrilamine, an H1R antagonist reversed the above effects of thioperamide. Moreover, thioperamide activated the H2R downstream phosphorylated protein kinase A (PKA)/cyclic AMP response element-binding protein (CREB) pathway but inhibited nuclear factor kappa-B (NF-κB) signaling. Activation of CREB by thioperamide promoted interaction of CREB-CREB Binding Protein (CBP) to increase anti-inflammatory cytokines (Interleukin-4 and Interleukin-10) and brain-derived neurotrophic factor (BDNF) release but inhibited NF-κB-CBP interaction to decrease pro-inflammatory cytokines (Interleukin-1ß, Interleukin-6 and Tumor necrosis factor α) release. H89, an inhibitor of PKA/CREB signaling, abolished effects of thioperamide on neuroinflammation and neurogenesis. Taken together, these results suggested under LPS induced neuroinflammation, the H3R antagonist thioperamide inhibited microglia activity and inflammatory response, and ameliorated impairment of neurogenesis and cognitive dysfunction via enhancing histamine release. Histamine activated H2R and reinforced CREB-CBP interaction but weakened NF-κB-CBP interaction to exert anti-inflammatory effects. This study uncovered a novel histamine dependent mechanism behind the therapeutic effect of thioperamide on neuroinflammation.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocinas/metabolismo , Hipocampo , Histamina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia , NF-kappa B/metabolismo , Neurogênese , Doenças Neuroinflamatórias , Receptores Histamínicos H2/metabolismo
5.
Biomed Res Int ; 2022: 3768880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033571

RESUMO

Dihuang Yinzi, as a classical Chinese medicine prescription, plays an important role for the treatment of ischemic stroke. Gut microbiota play a functional role for the expression of proinflammatory cytokines and anti-inflammatory cytokines, which further affect central nervous system and change brain function. Our research confirmed that Dihuang Yinzi can exert brain protection by inhibiting inflammatory reaction. Dihuang Yinzi can significantly decrease the contents of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-17 (IL-17) in brain, serum, and colon tissues and increase the contents of transforming growth factor-ß (TGF-ß) and interleukin-10 (IL-10) in cerebral ischemia-reperfusion model rats. The results of 16s rRNA high-throughput sequencing showed that Dihuang Yinzi had a significant effect on microbiome in rats. The firmicutes, bacteroidetes, and proteobacteria were dominant in Dihuang Yinzi group. The content of firmicutes increased with the increase of dosage of Dihuang Yinzi. Especially, the content of actinomycetes in the high-dose group was higher than other groups. At the genus level, the number of bacteroides in the antibiotic groups was significantly higher than that in the other treatment groups. The results suggest that Dihuang Yinzi may play important roles in treatment of ischemic stroke by regulating the gut microbiota and the inflammatory reaction in the colon tissues, serum, and brain of the model rats, to verify the scientific nature of this prescription in relieving brain inflammatory reaction and brain injury by this way and to reveal the brain-gut related mechanism of Dihuang Yinzi in treating ischemic stroke.


Assuntos
Isquemia Encefálica , Microbioma Gastrointestinal , AVC Isquêmico , Animais , Infarto Cerebral , Citocinas , Inflamação , RNA Ribossômico 16S , Ratos , Ratos Sprague-Dawley , Reperfusão
6.
Exp Neurol ; 347: 113870, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563511

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease, which characterized by deposition of amyloid-ß (Aß) plaques, neurofibrillary tangles, neuronal loss, and accompanied by neuroinflammation. Neuroinflammatory processes are well acknowledged to contribute to the progression of AD pathology. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia and astrocytes. H3R antagonist has been reported to have anti-inflammatory efficacy. However, whether inhibition of H3R is responsible for the anti-neuroinflammation in glial cells and neuroprotection on APPswe, PSEN1dE9 (APP/PS1 Tg) mice remain unclear. In this study, we found that inhibition of H3R by thioperamide reduced the gliosis and induced a phenotypical switch from A1 to A2 in astrocytes, and ultimately attenuated neuroinflammation in APP/PS1 Tg mice. Additionally, thioperamide rescued the decrease of cyclic AMP response element-binding protein (CREB) phosphorylation and suppressed the phosphorylated P65 nuclear factor kappa B (p-P65 NF-κB) in APP/PS1 Tg mice. H89, an inhibitor of CREB signaling, abolished these effects of thioperamide to suppress gliosis and proinflammatory cytokine release. Lastly, thioperamide alleviated the deposition of amyloid-ß (Aß) and cognitive dysfunction in APP/PS1 mice, which were both reversed by administration of H89. Taken together, these results suggested the H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated gliosis and inflammation inhibiting, which contributed to Aß clearance. This study uncovered a novel mechanism involving inflammatory regulating behind the therapeutic effect of thioperamide in AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Gliose/patologia , Doenças Neuroinflamatórias/patologia , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Masculino , Camundongos , Camundongos Transgênicos
7.
Front Oncol ; 11: 623506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33747937

RESUMO

Background: Breast ultrasound is the first choice for breast tumor diagnosis in China, but the Breast Imaging Reporting and Data System (BI-RADS) categorization routinely used in the clinic often leads to unnecessary biopsy. Radiologists have no ability to predict molecular subtypes with important pathological information that can guide clinical treatment. Materials and Methods: This retrospective study collected breast ultrasound images from two hospitals and formed training, test and external test sets after strict selection, which included 2,822, 707, and 210 ultrasound images, respectively. An optimized deep learning model (DLM) was constructed with the training set, and the performance was verified in both the test set and the external test set. Diagnostic results were compared with the BI-RADS categorization determined by radiologists. We divided breast cancer into different molecular subtypes according to hormone receptor (HR) and human epidermal growth factor receptor 2 (HER2) expression. The ability to predict molecular subtypes using the DLM was confirmed in the test set. Results: In the test set, with pathological results as the gold standard, the accuracy, sensitivity and specificity were 85.6, 98.7, and 63.1%, respectively, according to the BI-RADS categorization. The same set achieved an accuracy, sensitivity, and specificity of 89.7, 91.3, and 86.9%, respectively, when using the DLM. For the test set, the area under the curve (AUC) was 0.96. For the external test set, the AUC was 0.90. The diagnostic accuracy was 92.86% with the DLM in BI-RADS 4a patients. Approximately 70.76% of the cases were judged as benign tumors. Unnecessary biopsy was theoretically reduced by 67.86%. However, the false negative rate was 10.4%. A good prediction effect was shown for the molecular subtypes of breast cancer with the DLM. The AUC were 0.864, 0.811, and 0.837 for the triple-negative subtype, HER2 (+) subtype and HR (+) subtype predictions, respectively. Conclusion: This study showed that the DLM was highly accurate in recognizing breast tumors from ultrasound images. Thus, the DLM can greatly reduce the incidence of unnecessary biopsy, especially for patients with BI-RADS 4a. In addition, the predictive ability of this model for molecular subtypes was satisfactory,which has specific clinical application value.

8.
Phytomedicine ; 82: 153441, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33387968

RESUMO

BACKGROUND: Oxidative stress induces mitochondrial dysfunction, causing memory loss. Long noncoding RNAs influence mitochondrial function and suppress oxidative stress by regulating target protein expression and gene transcription. Celastrol, a natural antioxidant extracted from Tripterygium wilfordii Hook F. ("Thunder of God Vine"), effectively alleviates oxidative stress-mediated tissue injury. In the present study, we examined the effects of celastrol on memory dysfunction induced by ischemia/reperfusion (I/R) and elucidated the mechanisms underlying these effects. METHODS: C57BL/6 mice were used to mimic I/R using the bilateral common carotid clip reperfusion method, and a hippocampal cell line (HT-22) cells were used to establish a model of oxygen-glucose deprivation/reoxygenation (OGD/R). We observed changes in behavior and mitochondrial structure. Cell activity, cell respiration, and antioxidant capacity were measured. MAP3K12, p-JNK, p-c-Jun, p-Akt/Akt, PI3K, Bcl-2, and Bax expression were evaluated. RESULTS: I/R or OGD/R significantly increased AK005401 and MAP3K12 expression, further attenuating PI3K/Akt activation, promoting reactive oxygen species generation and causing mitochondrial dysfunction and cell apoptosis, thereby resulting in memory dysfunction. Celastrol increased antioxidant capacity, inhibited cell apoptosis, and improved mitochondrial function, effectively improving learning and memory by downregulating AK005401 and MAP3K12 and activating PI3K/Akt. CONCLUSIONS: The AK005401/MAP3K12 signaling pathway has an important role in I/R-mediated hippocampal injury, and celastrol can potentially reduce or possibly prevent I/R-induced neuronal injury by downregulating AK005401/MAP3K12 signaling.


Assuntos
Regulação para Baixo/efeitos dos fármacos , MAP Quinase Quinase Quinases/metabolismo , Memória/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
9.
Support Care Cancer ; 29(3): 1369-1375, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32661697

RESUMO

PURPOSE: Increasing evidence suggests that many adipokines are involved in cancer-related anorexia and cachexia syndrome (CACS), although the underlying mechanism remains to be clarify. Asprosin is a new peptide hormone mainly secreted by white adipose tissues that can increase appetite and body weight. In this cross-sectional study, we tested whether asprosin may intervene in the development of CACS. METHODS: The fasting plasma asprosin levels were determined via enzyme-linked immune-sorbent assay. Anorexia was determined using the anorexia/cachexia subscale (A/CS) of the functional assessment of anorexia/cachexia therapy (FAACT) questionnaire. The body composition was assessed using bioelectrical impedance analysis. The association of plasma asprosin with anorexia, cachexia, and nutritional status was analyzed. RESULTS: One hundred twenty treatment-naïve patients with pathological confirmed gastrointestinal or lung cancer and 14 mild gastritis patients were recruited. We found no significant difference in asprosin levels between subgroups of patients by age, sex, cancer types or stage. Correlation analysis suggested that asprosin levels were positively associated with body fat mass (r = 0.248, p = 0.043). No correlations were found between asprosin levels and hemoglobin, white blood cell count, blood platelet count, albumin, C-reactive protein, glucose, cholesterol, triglyceride, high density lipoprotein, low density lipoprotein, body mass index, body fat percentage, protein, skeletal muscle, muscle mass, lean body mass, and basal metabolic rate. Furthermore, asprosin levels were not significantly different between patients with or without cachexia. However, patients with anorexia had significantly lower asprosin levels compared with patients without anorexia. No significant difference in asprosin levels between gastritis and gastric cancer patients. Similarly, no significant change of asprosin levels occurred postoperatively in 10 gastric cancer patients. CONCLUSIONS: Patients with anorexia had significantly lower asprosin levels compared with patients without anorexia. We therefore speculated that asprosin might intervene in the development of cancer anorexia and serve as a potential therapeutic target.


Assuntos
Anorexia/terapia , Composição Corporal/genética , Peso Corporal/genética , Caquexia/terapia , Fibrilina-1/uso terapêutico , Proteína C-Reativa/metabolismo , Estudos Transversais , Feminino , Humanos , Masculino
10.
Oxid Med Cell Longev ; 2020: 4586839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566081

RESUMO

Stroke breaks the oxidative balance in the body and causes extra reactive oxygen species (ROS) generation, leading to oxidative stress damage. Long noncoding RNAs (lncRNAs) and microRNAs play pivotal roles in oxidative stress-mediated brain injury. Safflor yellow B (SYB) was able to effectively reduce ischemia-mediated brain damage by increasing antioxidant capacity and inhibiting cell apoptosis. In this study, we investigated the putative involvement of lncRNA AK046177 and microRNA-134 (miR-134) regulation in SYB against ischemia/reperfusion- (I/R-) induced neuronal injury. I/R and oxygen-glucose deprivation/reoxygenation (OGD/R) were established in vivo and in vitro. Cerebral infarct volume, neuronal apoptosis, and protein expression were detected. The effects of SYB on cell activity, cell respiration, nuclear factor erythroid 2-related factor 2 (Nrf2), antioxidant enzymes, and ROS were evaluated. I/R or OGD/R upregulated the expression of AK046177 and miR-134 and subsequently inhibited the activation and expression of CREB, which caused ROS generation and brain/cell injury. SYB attenuated the effects of AK046177, inhibited miR-134 expression, and promoted CREB activation, which in turn promoted Nrf2 expression, and then increased antioxidant capacities, improved cell respiration, and reduced apoptosis. We suggested that the antioxidant effects of SYB were driven by an AK046177/miR-134/CREB-dependent mechanism that inhibited this pathway, and that SYB has potential use in reducing or possibly preventing I/R-induced neuronal injury.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/genética , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/genética , Chalcona/análogos & derivados , Regulação para Baixo/genética , RNA Longo não Codificante/genética , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Lesões Encefálicas/complicações , Lesões Encefálicas/fisiopatologia , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Caspase 3/metabolismo , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalcona/farmacologia , Chalcona/uso terapêutico , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , NADPH Oxidase 4/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação , RNA Longo não Codificante/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Proteína X Associada a bcl-2/metabolismo
11.
Biosci Rep ; 39(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31729531

RESUMO

Colorectal cancer (CRC) remains the candidate for one of the typical types of malignant tumors of in gastrointestinal tract all around the world, which leads to tremendous death and ranks as the top leading death of cancer. Recently, microRNAs have emerged as double-edged sword in numerous cancers. This investigation aims to discuss the regulative role of microRNA-574-3p (miR-574-3p), elucidating its molecular mechanism and clinical significance in CRC. Herein, it revealed to us that miR-574-3p was lowly expressed in CRC tissues in comparison with the matched paracarcinoma tissues. In addition, transfection of SW480 and HT29 cells with miR-574-3p mimics prohibited the post-transcriptional expression of Cyclin D2 (CCND2), which then significantly blocked cell growth and cell migration, yet triggered cell apoptosis. Also, dual-luciferase reporter assays proved the role of CCND2 as the targeted gene for miR-574-3p. miR-574-3p overexpression prohibited the activity of CCND2 in SW480 and HT29 cells. Silencing of CCND2 in SW480 and HT29 CRC cell lines leading to reduced cell proliferative and migrative rates, and enhanced apoptotic rate. The suppressive effects of elevation of miR-574-3p on the proliferation of the human CRC cells and promotive effects on cell apoptosis by targeting CCND2 were further illustrated in the in vitro studies. Thus, we hypothesize that miR-574-3p may be served as a prospective therapeutic candidate for CRC.


Assuntos
Proliferação de Células/genética , Neoplasias Colorretais/genética , Ciclina D2/genética , MicroRNAs/genética , Idoso , Apoptose/genética , Movimento Celular/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HCT116 , Células HT29 , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia
12.
Med Sci Monit ; 24: 7035-7042, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30281585

RESUMO

BACKGROUND Colon cancer is one of the most common cancers and it is the fourth leading cause of cancer-related deaths worldwide. YAP can promote cell proliferation and inhibit apoptosis, leading to loss of cell contact inhibition and promoting malignant cell transformation. MATERIAL AND METHODS In this study we analyzed the effects of different curcumin concentrations on the proliferation of colon cancer cells using MTT and colony formation assays. Western blot detection was performed to confirm the YAP, LC3-II, and P62 expression. RESULTS Curcumin inhibited proliferation and promoted colon cancer cell autophagy. In addition, Western blot results indicated that curcumin suppressed YAP expression in colon cancer cells. To assess the mechanism, we treated the cell lines with curcumin and assessed YAP overexpression and YAP knockdown. The results revealed that curcumin inhibits the proliferation and promotes autophagy of these cell lines. Western blot results showed that curcumin reversed the effect of YAP in colon cancer cells. CONCLUSIONS Our results suggest that YAP has great promise for treatment of colon cancer and that it might be a potential diagnostic marker for colon cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Neoplasias do Colo/patologia , Curcumina/farmacologia , Fosfoproteínas/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Humanos , Fosfoproteínas/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP
13.
Acta Pharmacol Sin ; 39(5): 885-892, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29698390

RESUMO

Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.


Assuntos
Inibição de Contato/fisiologia , MicroRNAs/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Contagem de Células , Proliferação de Células/fisiologia , Cromonas/farmacologia , Regulação para Baixo , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , MicroRNAs/genética , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
14.
Molecules ; 22(9)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892008

RESUMO

(1) Background: Ionic liquids (ILs) are considered "green" solvents and have been widely used in the extraction and separation field in recent years; (2) Methods: In this study, some common ILs and functionalized magnetic ionic liquids (MILs) were used as adjuvants for the solvent extraction of paclitaxel from Taxus x media (T. x media) using methanol solution. The extraction conditions of methanol concentration, IL type and amount, solid-liquid ratio, extraction temperature, and ultrasonic irradiation time were investigated in single factor experiments. Then, three factors of IL amount, solid-liquid ratio, and ultrasonic irradiation time were optimized by response surface methodology (RSM); (3) Results: The MIL [C4MIM]FeCl3Br was screened as the optimal adjuvant. Under the optimization conditions of 1.2% IL amount, 1:10.5 solid-liquid ratio, and 30 min ultrasonic irradiation time, the extraction yield reached 0.224 mg/g; and (4) Conclusions: Compared with the conventional solvent extraction, this ultrasonic assisted extraction (UAE) using methanol and MIL as adjuvants can significantly improve the extraction yield, reduce the use of methanol, and shorten the extraction time, which has the potentiality of being used in the extraction of some other important bioactive compounds from natural plant resources.


Assuntos
Antineoplásicos Fitogênicos/isolamento & purificação , Líquidos Iônicos/química , Extração Líquido-Líquido/métodos , Paclitaxel/isolamento & purificação , Taxus/química , Análise Fatorial , Concentração de Íons de Hidrogênio , Extração Líquido-Líquido/economia , Metanol/química , Extratos Vegetais/química , Solventes/química , Sonicação , Temperatura , Fatores de Tempo
15.
Molecules ; 22(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379191

RESUMO

Abnormality of fibroblast growth factor receptor (FGFR)-mediated signaling pathways were frequently found in various human malignancies, making FGFRs hot targets for cancer treatment. To address the consistent need for a new chemotype of FGFR inhibitors, here, we started with a hit structure identified from our internal hepatocyte growth factor receptor (also called c-Met) inhibitor project, and conducted a chemical optimization. After exploring three parts of the hit compound, we finally discovered a new series of pyrrolo[2,3-b]pyrazine FGFR inhibitors, which contain a novel scaffold and unique molecular shape. We believe that our findings can help others to further develop selective FGFR inhibitors.


Assuntos
Pirazinas/química , Pirazinas/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/química , Sítios de Ligação , Domínio Catalítico , Ativação Enzimática , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade
16.
Eur J Pharmacol ; 797: 124-133, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28119074

RESUMO

Angiotensin II (Ang II), as a crucial factor of endothelial dysfunction, participates in endothelial oxidative damage and inflammation, which is present in all cardiovascular disease (CVD). Celastrol, extracted from Trypterygiun wilfordii Hook F. ("Thunder of God Vine"), is a natural compound with antioxidant and anti-inflammatory activities. In this study, the protective effects of celastrol on human umbilical vein endothelial cell (HUVEC) injury induced by Ang II were observed and its mechanisms were elucidated. Compared with the control group, Ang II significantly increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, enhanced reactive oxygen species levels and proinflammatory cytokines, decreased antioxidant enzyme activities, and suppressed cellular viability and promoted cell apoptosis. It accomplished this via inhibition of the nuclear factor erythroid 2-related factor 2 (Nrf2), increasing the expression levels of Nox2 and AngII type 1 receptor (AT1 receptor), and inducing the phosphorylation of extracellular signal regulated kinase (ERK1/2). In contrast, celastrol effectively suppressed reactive oxygen species generation, improved endothelial cell activity, and ameliorated Ang II-mediated HUVEC injury through activation of Nrf2, inhibition of Nox2/AT1 receptor expression, and upregulated phosphorylation of ERK1/2. After treatment with brusatol, a specific inhibitor of Nrf2, the protective effects of celastrol on Ang II-induced damage in HUVECs were remarkably alleviated. Taken together, celastrol-induced activation of Nrf2 and inhibition of NADPH oxidase activity were critical for the inhibition of Ang II-mediated endothelial dysfunction, and demonstrated the potential application of celastrol in CVD therapy.


Assuntos
Angiotensina II/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Triterpenos/farmacologia , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , NADPH Oxidase 2 , Triterpenos Pentacíclicos , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo
17.
Apoptosis ; 21(11): 1315-1326, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27658784

RESUMO

Angiotensin II (AngII) is an important factor that promotes the proliferation of cancer cells, whereas celastrol exhibits a significant antitumor activity in various cancer models. Whether celastrol can effectively suppress AngII mediated cell proliferation remains unknown. In this study, we studied the effect of celastrol on AngII-induced HepG2 cell proliferation and evaluated its underlying mechanism. The results revealed that AngII was able to significantly promote HepG2 cell proliferation via up-regulating AngII type 1 (AT1) receptor expression, improving mitochondrial respiratory function, enhancing nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, increasing the levels of reactive oxygen species (ROS) and pro-inflammatory cytokines. The excess ROS from mitochondrial dysfunction is able to cause the apoptosis of tumor cells via activating caspase3 signal pathway. In addition, the reaction between NO and ROS results in the formation of peroxynitrite (ONOO-), and then promoting cell damage. celastrol dramatically enhanced ROS generation, thereby causing cell apoptosis through inhibiting mitochodrial respiratory function and boosting the expression levels of AngII type 2 (AT2) receptor without influencing NADPH oxidase activity. PD123319 as a special inhibitor of AT2R was able to effectively decreased the levels of inflammatory cytokines and endothelial nitric oxide synthase (eNOS) activity, but only partially attenuate the effect of celastrol on AnII mediated HepG2 cell proliferation. Thus, celastrol has the potential for use in liver cancer therapy. ROS derived from mitochondrial is an important factor for celastrol to suppress HepG2 cell proliferation.


Assuntos
Angiotensina II/metabolismo , Apoptose/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Angiotensina II/genética , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , Humanos , Mitocôndrias/efeitos dos fármacos , NADPH Oxidases/genética , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Triterpenos Pentacíclicos , Transdução de Sinais/efeitos dos fármacos
18.
Appl Biochem Biotechnol ; 179(8): 1325-35, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27075456

RESUMO

In this study, enzyme-assisted three-phase partitioning (EATPP) was used to extract oil from flaxseed. The whole procedure is composed of two parts: the enzymolysis procedure in which the flaxseed was hydrolyzed using an enzyme solution (the influencing parameters such as the type and concentration of enzyme, temperature, and pH were optimized) and three-phase partitioning (TPP), which was conducted by adding salt and t-butanol to the crude flaxseed slurry, resulting in the extraction of flaxseed oil into alcohol-rich upper phase. The concentration of t-butanol, concentration of salt, and the temperature were optimized to maximize the extraction yield. Under optimized conditions of a 49.29 % t-butanol concentration, 30.43 % ammonium sulfate concentration, and 35 °C extraction temperature, a maximum extraction yield of 71.68 % was obtained. This simple and effective EATPP can be used to achieve high extraction yields and oil quality, and thus, it is potential for large-scale oil production.


Assuntos
Fracionamento Químico/métodos , Linho/química , Óleo de Semente do Linho/isolamento & purificação , Peptídeo Hidrolases/metabolismo , Poligalacturonase/metabolismo , Sulfato de Amônio/química , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Temperatura , terc-Butil Álcool/química
19.
Int J Clin Exp Pathol ; 7(5): 2595-608, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966974

RESUMO

Hydroxysafflor yellow A (HSYA), a major constituent in the hydrophilic fraction of the safflower plant, can retard the progress of hepatic fibrosis. However, the anti-inflammatory properties and the underlying mechanisms of HSYA on I/R-induced acute liver injury are unknown. Inhibiting macrophage activation is a potential strategy to treat liver ischemia/reperfusion (I/R) injury. In this study, we investigated the therapeutic effect of HSYA on liver I/R injury and the direct effect of HSYA on macrophage activation following inflammatory conditions. The therapeutic effects of HSYA on I/R injury were tested in vivo using a mouse model of segmental (70%) hepatic ischemia. The mechanisms of HSYA were examined in vitro by evaluating migration and the cytokine expression profile of the macrophage cell line RAW264.7 exposed to acute hypoxia and reoxygenation (H/R). Results showed that mice pretreated with HSYA had reduced serum transaminase levels, attenuated inflammation and necrosis, reduced expression of inflammatory cytokines, and less macrophage recruitment following segmental hepatic ischemia. In vitro HSYA pretreated RAW264.7 macrophages displayed reduced migratory response and produced less inflammatory cytokines. In addition, HSYA pretreatment down-regulated the expression of matrix matalloproteinase-9 and reactive oxygen species, and inhibited NF-κB activation and P38 phosphorylation in RAW264.7 cells. Thus, these data suggest that HSYA can reduce I/R-induced acute liver injury by directly attenuating macrophage activation under inflammatory conditions.


Assuntos
Anti-Inflamatórios/farmacologia , Chalcona/análogos & derivados , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Quinonas/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Linhagem Celular , Chalcona/farmacologia , Quimiotaxia/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Mediadores da Inflamação/metabolismo , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/imunologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Am J Chin Med ; 42(3): 543-59, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24871650

RESUMO

To discover and develop novel natural compounds, active ingredients, single herbs and combination formulas or prescriptions in traditional Chinese medicine (TCM) with therapeutic selectivity that can preferentially kill cancer cells and inhibit the amplification of cancer without significant toxicity is an important area in cancer therapy. A lot of valuable TCMs were applied as alternative or complementary medicines in the United States and Europe. But these TCMs, as one of the main natural resources, were widely used to research and develop new drugs in Asia. In TCMs, some specific herbs, animals, minerals and combination formulas were recorded and exploited due to their active ingredients and specific natural compounds with antitumor activities. The article focused on the antitumor properties of natural compounds and combination formulas or prescriptions in TCMs, described its influence on tumor progression, angiogenesis, metastasis, and revealed its mechanisms of antitumor and inhibitory action. Among the nature compounds, triptolide, berberine, matrine, oxymatrine, kurarinone and deoxypodophyllotoxin (DPT) with specific molecular structures have been separated, purified, and evaluated their antitumor properties in vitro and in vivo. Cancer is a multifactorial and multistep disease, so the treatment effect of combination formulas and prescriptions in TCMs involving multi-targets and multi-signal pathways on tumor may be superior than that of agents targeting a single molecular target alone. Shi Quan Da Bu Tang and Yanshu injection, as well known combination formulas and prescriptions in TCMs, have shown an excellent therapeutic effect on cancer.


Assuntos
Antineoplásicos Fitogênicos , Descoberta de Drogas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Neoplasias/tratamento farmacológico , Plantas Medicinais/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Venenos de Anfíbios/química , Venenos de Anfíbios/isolamento & purificação , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico , Animais , Berberina/isolamento & purificação , Berberina/farmacologia , Berberina/uso terapêutico , Diterpenos/isolamento & purificação , Diterpenos/farmacologia , Diterpenos/uso terapêutico , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/uso terapêutico , Compostos de Epóxi/isolamento & purificação , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Conformação Molecular , Terapia de Alvo Molecular , Neoplasias/genética , Neoplasias/patologia , Fenantrenos/isolamento & purificação , Fenantrenos/farmacologia , Fenantrenos/uso terapêutico , Podofilotoxina/análogos & derivados , Podofilotoxina/isolamento & purificação , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Quinolizinas/isolamento & purificação , Quinolizinas/farmacologia , Quinolizinas/uso terapêutico , Matrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA