Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
iScience ; 27(6): 110112, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947495

RESUMO

The impact of endothelial cell-specific molecule 1 (ESM1) on the initiation and progression of diverse cancers has been extensively studied, yet its regulatory mechanisms in relation to cervical cancer remain insufficiently understood. Through bioinformatics analysis, we revealed that ESM1 was highly expressed in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) and correlated with dismal clinicopathological features. The activation of ESM1 is facilitated by the presence of oncogenic HPV E6 and E7. HPV E6 and E7 enhance the expression of ESM1 by diminishing the levels of miR-205-5p, which specifically targets the 3' untranslated region of ESM1 mRNA. In addition, we demonstrated that ESM1 facilitates aerobic glycolysis of cervical cancer cells via the Akt/mTOR pathway. Suppression of ESM1 led to a reduction in the expression of HIF-1α and multiple glycolytic enzymes. Taken together, our findings provide insights into the mechanisms by which HPV infections regulate oncogenes, thereby contributing to cervical carcinogenesis.

2.
Pharm Dev Technol ; 29(5): 415-428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626316

RESUMO

Sleep disorders are one of the most common acute reactions on the plateau, which can cause serious complications. However, there is no effective and safe treatment currently available. Nimodipine (NMD) is a dihydropyridine calcium channel blocker with neuroprotective and vasodilating activity, mainly used for the treatment of ischemic brain injury. Commercial oral or injectable NMD formulations are not a good option for central neuron diseases due to their poor brain delivery. In this study, nimodipine dissolving microneedles (NDMNs) were prepared for the prevention of sleep disorders caused by hypoxia. NDMNs were composed of NMD and polyvinyl pyrrolidone (PVP) K90 with a conical morphology and high rigidity. After administration of NDMNs on the back neck of mice, the concentration of NMD in the brain was significantly higher than that of oral medication as was confirmed by the fluorescent imaging on mouse models. NDMNs enhanced cognitive function, alleviated oxidative stress, and improved the sleep quality of mice with high-altitude sleep disorders. The blockage of calcium ion overloading may be an important modulation mechanism. NDMNs are a promising and user-friendly formulation for the prevention of high-altitude sleep disorders.


Assuntos
Bloqueadores dos Canais de Cálcio , Nimodipina , Transtornos do Sono-Vigília , Animais , Camundongos , Nimodipina/administração & dosagem , Transtornos do Sono-Vigília/tratamento farmacológico , Transtornos do Sono-Vigília/prevenção & controle , Masculino , Bloqueadores dos Canais de Cálcio/administração & dosagem , Altitude , Agulhas , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Estresse Oxidativo/efeitos dos fármacos , Povidona/química , Camundongos Endogâmicos C57BL
3.
J Transl Med ; 22(1): 272, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475878

RESUMO

BACKGROUND: In HBV-associated HCC, T cells often exhibit a state of functional exhaustion, which prevents the immune response from rejecting the tumor and allows HCC to progress. Moreover, polymerase-specific T cells exhibit more severe T-cell exhaustion compared to core-specific T cells. However, whether HBV DNA polymerase drives HBV-specific CD8+ T cell exhaustion in HBV-related HCC remains unclear. METHODS: We constructed a Huh7 cell line stably expressing HA-HBV-DNA-Pol and applied co-culture systems to clarify its effect on immune cell function. We also examined how HBV-DNA-Pol modulated PD-L1 expression in HCC cells. In addition, HBV-DNA-Pol transgenic mice were used to elucidate the underlying mechanism of HBV-DNA-Pol/PD-L1 axis-induced T cell exhaustion. RESULTS: Biochemical analysis showed that Huh7 cells overexpressing HBV-DNA-Pol inhibited the proliferation, activation, and cytokine secretion of Jurkat cells and that this effect was dependent on their direct contact. A similar inhibitory effect was observed in an HCC mouse model. PD-L1 was brought to our attention during screening. Our results showed that the overexpression of HBV-DNA-Pol upregulated PD-L1 mRNA and protein expression. PD-L1 antibody blockade reversed the inhibitory effect of Huh7 cells overexpressing HBV-DNA-Pol on Jurkat cells. Mechanistically, HBV-DNA-Pol interacts with PARP1, thereby inhibiting the nuclear translocation of PARP1 and further upregulating PD-L1 expression. CONCLUSIONS: Our findings suggest that HBV-DNA-Pol can act as a regulator of PD-L1 in HCC, thereby directing anti-cancer immune evasion, which further provides a new idea for the clinical treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Vírus da Hepatite B/genética , DNA Viral , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos , DNA Polimerase Dirigida por DNA/metabolismo
4.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358372

RESUMO

BACKGROUND: The essential function of HBV DNA polymerase (HBV-DNA-Pol) is to initiate viral replication by reverse transcription; however, the role of HBV-DNA-Pol in HBV-associated HCC has not been clarified. Glycogen phosphorylase L (PYGL) is a critical regulator of glycogenolysis and is involved in tumorigenesis, including HCC. However, it is unknown whether HBV-DNA-Pol regulates PYGL to contribute to HCC tumorigenesis. METHODS: Bioinformatic analysis, real-time quantitative PCR, western blotting, and oncology functional assays were performed to determine the contribution of HBV-DNA-Pol and PYGL to HCC development and glycolysis. The mechanisms of co-immunoprecipitation and ubiquitination were employed to ascertain how HBV-DNA-Pol upregulated PYGL. RESULTS: Overexpression of HBV-DNA-Pol enhanced HCC progression in vitro and in vivo. Mechanistically, HBV-DNA-Pol interacted with PYGL and increased PYGL protein levels by inhibiting PYGL ubiquitination, which was mediated by the E3 ligase TRIM21. HBV-DNA-Pol competitively impaired the binding of PYGL to TRIM21 due to its stronger binding affinity to TRIM21, suppressing the ubiquitination of PYGL. Moreover, HBV-DNA-Pol promoted glycogen decomposition by upregulating PYGL, which led to an increased flow of glucose into glycolysis, thereby promoting HCC development. CONCLUSIONS: Our study reveals a novel mechanism by which HBV-DNA-Pol promotes HCC by controlling glycogen metabolism in HCC, establishing a direct link between HBV-DNA-Pol and the Warburg effect, thereby providing novel targets for HCC treatment and drug development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Glicogênio , Carcinoma Hepatocelular/genética , DNA Viral , Neoplasias Hepáticas/genética , DNA Polimerase Dirigida por DNA/genética , Carcinogênese/genética
5.
Front Plant Sci ; 14: 1306580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093999

RESUMO

Reactive oxygen species (ROS) are closely related to the antiviral immune response of plants, while virus can regulate ROS through various pathways to facilitate their own infection or replication. Citrus yellow vein clearing virus (CYVCV) is one of the most devastating viruses affecting lemon (Citrus limon) industry worldwide. However, the pathogenesis of CYVCV remains poorly understood. In this study, direct interaction between the coat protein (CP) of CYVCV and the ascorbate peroxidase 1 of lemon (ClAPX1) was confirmed for the first time by yeast two-hybrid, Bimolecular Fluorescence Complementation, and Co-immunoprecipitation assays. Transient expression of CP in lemon and Nicotiana benthamiana significantly enhanced the enzyme activity of the ClAPX1, and then inhibited the accumulation of H2O2. In addition, overexpression of ClAPX1 in lemon by transgene significantly promoted CYVCV accumulation and depressed the expression of most genes involved in jasmonic acid (JA) signaling pathway. Correspondingly, ClAPX1 silencing by RNA interference inhibited CYVCV accumulation and increased the expression of most genes involved in JA signaling pathway. To our knowledge, this is the first report that viruses regulate ROS by targeting APX directly, thereby suppressing host immune response and promoting viral accumulation, which may be mediated by JA signaling pathway.

6.
Nat Commun ; 14(1): 8170, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071219

RESUMO

Human cancer cell lines have long served as tools for cancer research and drug discovery, but the presence and the source of intra-cell-line heterogeneity remain elusive. Here, we perform single-cell RNA-sequencing and ATAC-sequencing on 42 and 39 human cell lines, respectively, to illustrate both transcriptomic and epigenetic heterogeneity within individual cell lines. Our data reveal that transcriptomic heterogeneity is frequently observed in cancer cell lines of different tissue origins, often driven by multiple common transcriptional programs. Copy number variation, as well as epigenetic variation and extrachromosomal DNA distribution all contribute to the detected intra-cell-line heterogeneity. Using hypoxia treatment as an example, we demonstrate that transcriptomic heterogeneity could be reshaped by environmental stress. Overall, our study performs single-cell multi-omics of commonly used human cancer cell lines and offers mechanistic insights into the intra-cell-line heterogeneity and its dynamics, which would serve as an important resource for future cancer cell line-based studies.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Multiômica , Linhagem Celular Tumoral , Epigenômica , Transcriptoma , Neoplasias/genética
7.
Exp Cell Res ; 433(2): 113823, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890607

RESUMO

Breast carcinoma (BC) is one of the most common malignant cancers in females, and metastasis remains the leading cause of death in these patients. Chemotaxis plays an important role in cancer cell metastasis and the mechanism of breast cancer chemotaxis has become a central issue in contemporary research. PKCζ, a member of the atypical PKC family, has been reported to be an essential component of the EGF-stimulated chemotactic signaling pathway. However, the molecular mechanism through which PKCζ regulates chemotaxis remains unclear. Here, we used a proteomic approach to identify PKCζ-interacting proteins in breast cancer cells and identified VASP as a potential binding partner. Intriguingly, stimulation with EGF enhanced this interaction and induced the translocalization of PKCζ and VASP to the cell membrane. Further experiments showed that PKCζ catalyzes the phosphorylation of VASP at Ser157, which is critical for the biological function of VASP in regulating chemotaxis and actin polymerization in breast cancer cells. Furthermore, in PKCζ knockdown BC cells, the enrichment of VASP at the leading edge was reduced, and its interaction with profilin1 was attenuated, thereby reducing the chemotaxis and overall motility of breast cancer cells after EGF treatment. In functional assays, PKCζ promoted chemotaxis and motility of BC cells through VASP. Our findings demonstrate that PKCζ, a new kinase of VASP, plays an important role in promoting breast cancer metastasis and provides a theoretical basis for expanding new approaches to tumor biotherapy.


Assuntos
Neoplasias da Mama , Quimiotaxia , Proteína Quinase C , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Quimiotaxia/genética , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Proteômica
8.
Cell Rep Med ; 4(10): 101231, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852187

RESUMO

Neoadjuvant chemotherapy (NAC) for rectal cancer (RC) shows promising clinical response. The modulation of the tumor microenvironment (TME) by NAC and its association with therapeutic response remain unclear. Here, we use single-cell RNA sequencing and spatial transcriptome sequencing to examine the cell dynamics in 29 patients with RC, who are sampled pairwise before and after treatment. We construct a high-resolution cellular dynamic landscape remodeled by NAC and their associations with therapeutic response. NAC markedly reshapes the populations of cancer-associated fibroblasts (CAFs), which is strongly associated with therapeutic response. The remodeled CAF subsets regulate the TME through spatial recruitment and crosstalk to activate immunity and suppress tumor progression through multiple cytokines, including CXCL12, SLIT2, and DCN. In contrast, the epithelial-mesenchymal transition of malignant cells is upregulated by CAF_FAP through MIR4435-2HG induction, resulting in worse outcomes. Our study demonstrates that NAC inhibits tumor progression and modulates the TME by remodeling CAFs.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Retais , Humanos , Fibroblastos Associados a Câncer/patologia , Terapia Neoadjuvante , Transcriptoma/genética , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Neoplasias Retais/patologia , Proliferação de Células , Microambiente Tumoral/genética
9.
Front Endocrinol (Lausanne) ; 14: 1226387, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635957

RESUMO

Cytochrome P450 oxidoreductase deficiency (PORD) is a rare form of congenital adrenal hyperplasia that can manifest with skeletal malformations, ambiguous genitalia, and menstrual disorders caused by cytochrome P450 oxidoreductase (POR) mutations affecting electron transfer to all microsomal cytochrome P450 and some non-P450 enzymes involved in cholesterol, sterol, and drug metabolism. With the advancement of molecular biology and medical genetics, increasing numbers of PORD cases were reported, and the clinical spectrum of PORD was extended with studies on underlying mechanisms of phenotype-genotype correlations and optimum treatment. However, diagnostic challenges and management dilemma still exists because of unawareness of the condition, the overlapping manifestations with other disorders, and no clear guidelines for treatment. Delayed diagnosis and management may result in improper sex assignment, loss of reproductive capacity because of surgical removal of ruptured ovarian macro-cysts, and life-threatening conditions such as airway obstruction and adrenal crisis. The clinical outcomes and prognosis, which are influenced by specific POR mutations, the presence of additional genetic or environmental factors, and management, include early death due to developmental malformations or adrenal crisis, bilateral oophorectomies after spontaneous rupture of ovarian macro-cysts, genital ambiguity, abnormal pubertal development, and nearly normal phenotype with successful pregnancy outcomes by assisted reproduction. Thus, timely diagnosis including prenatal diagnosis with invasive and non-invasive techniques and appropriate management is essential to improve patients' outcomes. However, even in cases with conclusive diagnosis, comprehensive assessment is needed to avoid severe complications, such as chromosomal test to help sex assignment and evaluation of adrenal function to detect partial adrenal insufficiency. In recent years, it has been noted that proper hormone replacement therapy can lead to decrease or resolve of ovarian macro-cysts, and healthy babies can be delivered by in vitro fertilization and frozen embryo transfer following adequate control of multiple hormonal imbalances. Treatment may be complicated with adverse effects on drug metabolism caused by POR mutations. Unique challenges occur in female PORD patients such as ovarian macro-cysts prone to spontaneous rupture, masculinized genitalia without progression after birth, more frequently affected pubertal development, and impaired fertility. Thus, this review focuses only on 46, XX PORD patients to summarize the potential molecular pathogenesis, differential diagnosis of classic and non-classic PORD, and tailoring therapy to maintain health, avoid severe complications, and promote fertility.


Assuntos
Hiperplasia Suprarrenal Congênita , Fenótipo de Síndrome de Antley-Bixler , Cistos , Transtornos do Desenvolvimento Sexual , Feminino , Gravidez , Humanos , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , Hiperplasia Suprarrenal Congênita/terapia , Fenótipo de Síndrome de Antley-Bixler/diagnóstico , Fenótipo de Síndrome de Antley-Bixler/genética , Fenótipo de Síndrome de Antley-Bixler/terapia , Ruptura Espontânea , Cariótipo , Transtornos do Desenvolvimento Sexual/diagnóstico , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/terapia
10.
Cell Res ; 33(8): 585-603, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37337030

RESUMO

Dissecting and understanding the cancer ecosystem, especially that around the tumor margins, which have strong implications for tumor cell infiltration and invasion, are essential for exploring the mechanisms of tumor metastasis and developing effective new treatments. Using a novel tumor border scanning and digitization model enabled by nanoscale resolution-SpaTial Enhanced REsolution Omics-sequencing (Stereo-seq), we identified a 500 µm-wide zone centered around the tumor border in patients with liver cancer, referred to as "the invasive zone". We detected strong immunosuppression, metabolic reprogramming, and severely damaged hepatocytes in this zone. We also identified a subpopulation of damaged hepatocytes with increased expression of serum amyloid A1 and A2 (referred to collectively as SAAs) located close to the border on the paratumor side. Overexpression of CXCL6 in adjacent malignant cells could induce activation of the JAK-STAT3 pathway in nearby hepatocytes, which subsequently caused SAAs' overexpression in these hepatocytes. Furthermore, overexpression and secretion of SAAs by hepatocytes in the invasive zone could lead to the recruitment of macrophages and M2 polarization, further promoting local immunosuppression, potentially resulting in tumor progression. Clinical association analysis in additional five independent cohorts of patients with primary and secondary liver cancer (n = 423) showed that patients with overexpression of SAAs in the invasive zone had a worse prognosis. Further in vivo experiments using mouse liver tumor models in situ confirmed that the knockdown of genes encoding SAAs in hepatocytes decreased macrophage accumulation around the tumor border and delayed tumor growth. The identification and characterization of a novel invasive zone in human cancer patients not only add an important layer of understanding regarding the mechanisms of tumor invasion and metastasis, but may also pave the way for developing novel therapeutic strategies for advanced liver cancer and other solid tumors.


Assuntos
Ecossistema , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Neoplasias Hepáticas/patologia , Hepatócitos/metabolismo , Terapia de Imunossupressão , Linhagem Celular Tumoral
11.
Carbohydr Polym ; 316: 121024, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321722

RESUMO

Clinical wound management of combined radiation and burn injury (CRBI) remains a huge challenge due to serious injuries induced by redundant reactive oxygen species (ROS), the accompanying hematopoietic, immunologic suppression and stem cell reduction. Herein, the injectable multifunctional Schiff base cross-linked with gallic acid modified chitosan (CSGA)/oxidized dextran (ODex) hydrogels were rationally designed to accelerate wound healing through elimination of ROS in CRBI. CSGA/ODex hydrogels, fabricated by mixing solutions of CSGA and Odex, displayed good self-healing ability, excellent injectability, strong antioxidant activity, and favorable biocompatibility. More importantly, CSGA/ODex hydrogels exhibited excellent antibacterial properties, which is facilitated for wound healing. Furthermore, CSGA/ODex hydrogels significantly suppressed the oxidative damage of L929 cells in an H2O2-induced ROS microenvironment. The recovery of mice with CRBI in mice demonstrated that CSGA/ODex hydrogels significantly reduced the hyperplasia of epithelial cells and the expression of proinflammatory cytokine, and accelerated wound healing which was superior to the treatment with commercial triethanolamine ointment. In conclusion, the CSGA/ODex hydrogels as a wound dressing could accelerate the wound healing and tissue regeneration of CRBI, which provides great potential in clinical treatment of CRBI.


Assuntos
Queimaduras , Quitosana , Camundongos , Animais , Quitosana/farmacologia , Quitosana/uso terapêutico , Dextranos/farmacologia , Hidrogéis/farmacologia , Hidrogéis/uso terapêutico , Peróxido de Hidrogênio , Espécies Reativas de Oxigênio , Cicatrização , Queimaduras/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
12.
J Plant Res ; 136(3): 371-382, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36862271

RESUMO

Ascorbate peroxidase (APX) is one of the most important antioxidant enzymes in the reactive oxygen metabolic pathway of plants. The role of APX under biotic and abiotic stress conditions has been explored, but the response pattern of APX under biotic stresses is relatively less known. In this study, seven CsAPXs gene family members were identified based on the sweet orange (Citrus sinensis) genome and subjected to evolutionary and structural analysis using bioinformatics software. The APX genes of lemon (ClAPXs) were cloned and showed a high conservation to CsAPXs by sequences alignment. In citrus yellow vein clearing virus (CYVCV)-infected Eureka lemons (C. limon) at 30th day post inoculation, APX activity and accumulation of hydrogen peroxide (H2O2) and malondialdehyde were measured to be 3.63, 2.29, and 1.73 times to that of the healthy control. The expression levels of 7 ClAPX genes in different periods of CYVCV-infected Eureka lemon were analyzed. Notably, ClAPX1, ClAPX5, and ClAPX7 showed higher expression levels compared to healthy plants, while ClAPX2, ClAPX3, and ClAPX4 showed lower expression levels. Functional identification of ClAPX1 in Nicotiana benthamiana showed that increasing the expression of ClAPX1 could significantly reduce the accumulation of H2O2, and it was verified that ClAPX1 is located in the plasma membrane of the cell. The present study provided information on the evolution and function of citrus APXs and revealed for the first time their response pattern to CYVCV infection.


Assuntos
Citrus , Ascorbato Peroxidases/genética , Citrus/metabolismo , Peróxido de Hidrogênio/metabolismo , Plantas/metabolismo , Antioxidantes , Regulação da Expressão Gênica de Plantas
13.
Int J Pharm ; 637: 122872, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36958611

RESUMO

Post-traumatic stress disorder (PTSD), which normally follows psychological trauma, has been increasingly studied as a brain disease. However, the blood-brain barrier (BBB) prevents conventional drugs for PTSD from entering the brain. Our previous studies proved the effectiveness of cannabidiol (CBD) against PTSD, but low water solubility, low brain targeting efficiency and poor bioavailability restricted its applications. Here, a bionic delivery system, camouflage CBD-loaded macrophage-membrane nanovesicles (CMNVs), was constructed via co-extrusion of CBD with macrophage membranes, which had inflammatory and immune escape properties. In vitro anti-inflammatory, cellular uptake and pharmacokinetic experiments respectively verified the anti-inflammatory, inflammatory targeting and immune escape properties of CMNVs. Brain targeting and excellent anti-PTSD effects of CMNVs had been validated in vivo by imaging and pharmacodynamics studies. In our study, the potential of ultrasound to open BBBs and improve the brain-targeted delivery of CBD was evaluated. In conclusion, this cell membrane bionic delivery system assisted with ultrasound had good therapeutic effect against PTSD mice, which is expected to help convey CBD to inflammatory areas within the brain and alleviate the symptoms of PTSD.


Assuntos
Canabidiol , Transtornos de Estresse Pós-Traumáticos , Camundongos , Animais , Canabidiol/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Biomimética , Macrófagos , Anti-Inflamatórios/uso terapêutico
14.
J Control Release ; 354: 810-820, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36709924

RESUMO

Head-mounted medical devices (HMDs) are disruptive inventions representing laboratories and clinical institutions worldwide are climbing the apexes of brain science. These complex devices are inextricably linked with a wide range knowledge containing the Physics, Imaging, Biomedical engineering, Biology and Pharmacology, particularly could be specifically designed for individuals, and finally exerting integrated bio-effect. The salient characteristics of them are non-invasive intervening in human brain's physiological structures, and alterating the biological process, such as thermal ablating the tumor, opening the BBB to deliver drugs and neuromodulating to enhance cognitive performance or manipulate prosthetic. The increasing demand and universally accepted of them have set off a dramatic upsurge in HMDs' studies, seminal applications of them span from clinical use to psychiatric disorders and neurological modulation. With subsequent pre-clinical studies and human trials emerging, the mechanisms of transcranial stimulation methods of them were widely studied, and could be basically came down to three notable approach: magnetic, electrical and ultrasonic stimulation. This review provides a comprehensive overviews of their stimulating mechanisms, and recent advances in clinic and military. We described the potential impact of HMDs on brain science, and current challenges to extensively adopt them as promising alternative treating tools.


Assuntos
Encéfalo , Ultrassom , Humanos
15.
Biomed Pharmacother ; 158: 114142, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527844

RESUMO

Radiation-induced brain injury (RIBI) is a serious adverse effect of radiotherapy. RIBI has garnered considerable clinical attention owing to its powerful effects on brain function and cognition; however, no effective treatment is available. The microbiota-gut-brain axis theory is a novel concept of treating RIBI by regulating gut microbiota. Quercetin, a particularly common flavonoid compound, has a wide range of biological activities and can regulate gut microbiota; however, it has poor solubility and dispersibility. In the present study, oral gels of inclusion complex comprising quercetin and HP-ß-CD were prepared, which increased quercetin dispersion and extended its release time in the intestinal tract. First, the relative abundance and diversity of gut microbiota in RIBI mice changed after oral administration of quercetin inclusion complex gels (QICG). Second, the spontaneous activity behavior and short-term memory ability as well as anxiety level were improved. Third, changes in physical symptoms were observed, including a decrease in TNF-α and IL-6 levels. H&E staining revealed that gut epithelial injury and intestinal inflammation as well as hippocampal inflammation were ameliorated. Antibiotics treatment (Abx) mice were developed to disrupt the mice's original gut microbiota composition. No significant improvement was observed in behavior or histopathology after oral administration of QICG in Abx mice of RIBI, indicating that the effect of QICG on improving RIBI was regulated by intestinal microbiota. Finally, the QICG preparation is efficient, exerting a protective effect on RIBI by regulating gut microbiota via the microbiota-gut-brain axis, which provides a novel idea for RIBI treatment.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Lesões por Radiação , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Encéfalo , Lesões Encefálicas/tratamento farmacológico , Inflamação , Camundongos Endogâmicos C57BL
16.
Biomed Pharmacother ; 155: 113779, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271560

RESUMO

Microwave is commonly used in the life, manufacturing and military fields, which may induce body injuries. Brain is the major target organ of microwave radiation and microwave-induced brain injury (MIBI) can lead to insomnia, dreaminess, and a decline in learning and memory. However, there is no clinical medications are available currently. Calcium channel blockers may protect the brain tissue from microwave but most of them cannot enter the brain. Here, we selected a calcium channel blocker-cinnarizine to prepare its dissolving microneedles (MNs) for the therapy of MIBI. The cinnarizine MNs was composed of polyvinyl pyrrolidone (PVP) K90 as the tip, the photopolymerized PVP as the base and the drug, which owned high mechanical strength, leading to easily piecing the skin on the neck and high drug release in vivo. The cinnarizine MNs markedly improved the recovery of spatial memory and spontaneous exploratory behavior of the rats after microwave radiation by inhibiting the expression of calcineurin and calpain-1. The dissolving MN technique is a promising method to improve drugs into the body and perform the anti-microwave radiation action.


Assuntos
Lesões Encefálicas , Cinarizina , Ratos , Animais , Administração Cutânea , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Agulhas , Sistemas de Liberação de Medicamentos/métodos , Calcineurina , Calpaína , Polivinil , Povidona
17.
Leuk Res ; 120: 106920, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872339

RESUMO

Acute megakaryoblastic leukaemia (AMKL) is characterized by expansion of megakaryoblasts, which are hyper-proliferative cells that fail to undergo differentiation. Insight to the cell-cycle regulation revealed important events in early or late megakaryocytes (MKs) maturation; the cyclin-dependent kinases 4 and 6 (CDK4/6) have been reported to participate in the development of progenitor megakaryocytes, mainly by promoting cell cycle progression and DNA polyploidization. However, it remains unclear whether the continuous proliferation, but not differentiation, of megakaryoblasts is related to an aberrant regulation of CDK4/6 in AMKL. Here, we found that CDK4/6 were up regulated in patients with AMKL, and persistently maintained at a high level during the differentiation of abnormal megakaryocytes in vitro, according to a database and western blot. Additionally, AMKL cells were exceptionally reliant on the cell cycle regulators CDK4 or 6, as blocking their activity using an inhibitor or short hairpin RNA (shRNA) significantly reduced the proliferation of 6133/MPL megakaryocytes, reduced DNA polyploidy, induced apoptosis, decreased the level of phosphorylated retinoblastoma protein (p-Rb), and activation of caspase 3. Additionally, CDK4/6 inhibitors and shRNA reduced the numbers of leukemia cells in the liver and bone marrow (BM), alleviated hepatosplenomegaly, and prolonged the survival of AMKL-transplanted mice. These results suggested that blocking the activity of CDK4/6 may represent an effective approach to control megakaryoblasts in AMKL.


Assuntos
Leucemia Megacarioblástica Aguda , Animais , Ciclinas , DNA , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Células Progenitoras de Megacariócitos , Camundongos , RNA Interferente Pequeno
18.
Anal Biochem ; 639: 114520, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34896376

RESUMO

Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without evident protein coding function. They play important regulatory roles in many biological processes, e.g., gene regulation, chromatin remodeling, and cell fate determination during development. Dysregulation of lncRNAs has been observed in various diseases including cancer. Interacting with proteins is a crucial way for lncRNAs to play their biological roles. Therefore, the characterization of lncRNA binding proteins is important to understand their functions and to delineate the underlying molecular mechanism. Large-scale studies based on mass spectrometry have characterized over a thousand new RNA binding proteins without known RNA-binding domains, thus revealing the complexity and diversity of RNA-protein interactions. In addition, several methods have been developed to identify the binding proteins for particular RNAs of interest. Here we review the progress of the RNA-centric methods for the identification of RNA-protein interactions, focusing on the studies involving lncRNAs, and discuss their strengths and limitations.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Humanos , Ligação Proteica , RNA Longo não Codificante/análise , Proteínas de Ligação a RNA/análise
19.
Exp Ther Med ; 23(1): 83, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34934452

RESUMO

Numerous studies have demonstrated that microRNAs (miRNAs or miRs) play an important role in regulating osteogenic differentiation, but their specific regulatory mechanism requires further investigation. In the present study, it was revealed that during osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs), the expression level of miR-144-3p was decreased with increased osteogenic induction duration and was negatively associated with osteogenic marker gene expression. Overexpression of miR-144-3p inhibited osteogenic differentiation, while inhibition of miR-144-3p expression promoted osteogenic differentiation. In addition, dual-luciferase activity analysis and adenovirus infection experiments revealed that GATA binding protein 4 targeted miR-144-3p for regulation and that overexpression of GATA4 promoted the expression of miR-144-3p. These data indicated that miR-144-3p plays a role in inhibiting BMSC osteogenic differentiation and that GATA4 inhibits osteogenic differentiation by targeting miR-144-3p expression.

20.
Chemotherapy ; 66(5-6): 169-178, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34666331

RESUMO

INTRODUCTION: Somatic mutations in the calreticulin (CALR) gene occur in most myeloproliferative neoplasm (MPN) patients who lack Janus kinase 2 or thrombopoietin receptor (MPL) mutations, but the molecular pathogenesis of MPN with mutated CALR is unclear, which limited the further treatment for CALR gene mutant patients. OBJECTIVES: Previous studies showed that CALR mutations not only activated serine/threonine protein kinase (AKT) in primary mouse bone marrow cells but also mitogen-activated protein kinases (MAPKs) in MARIMO cells harboring a heterozygous 61-bp deletion in CALR exon 9, which were responsible for mutant CALR cell survival, respectively. Hence, we aimed to initially explore the mechanism of AKT activation and observe the synergistic inhibitory effect of combining AKT (MK-2206) and MAPK kinase (AZD 6244) inhibitors in MARIMO cells. METHODS: We detected the expression of phosphorylated AKT in MARIMO cells treated with inhibitors for 24 or 48 h by western blotting and analyzed cell proliferation, cell cycle, and apoptosis by flow cytometry. We further examined the synergistic inhibitory effect of combining MK-2206 and AZD 6244 in MARIMO cells using the median effect principle of Chou and Talalay. RESULTS: We found that the AKT was activated in MARIMO cells, and blocking its activity significantly inhibited MARIMO cell growth with downregulation of cyclin D and E, and accelerated cell apoptosis by decreasing Bcl-2 but increasing Bax and cleaved caspase-3 levels in a dose-dependent manner. Further analysis showed that AKT activation was dependent on mammalian target of rapamycin but not on the JAK signaling pathway in MARIMO cells, displaying that inhibition of JAK activity by ruxolitinib (RUX) did not decrease the AKT phosphorylation. Furthermore, the combination of MK-2206 and AZD 6244 produced a significantly synergistic inhibitory effect on MARIMO cells. CONCLUSIONS: AKT activation is a feature of MARIMO cells and co-targeting of AKT and MAPKs signaling pathways synergistically inhibits MARIMO cell growth.


Assuntos
Calreticulina , Transtornos Mieloproliferativos , Animais , Benzimidazóis , Calreticulina/genética , Calreticulina/metabolismo , Compostos Heterocíclicos com 3 Anéis , Humanos , Camundongos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA