Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 278: 116411, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38714085

RESUMO

Cadmium (Cd), a toxic element, often makes a serious threat to plant growth and development. Previous studies found that melatonin (Mel) reduced Cd accumulation and reestablished the redox balance to alleviate Cd stress in Medicago sativa L., however, the complex molecular mechanisms are still elusive. Here, comparative transcriptome analysis and biochemical experiments were conducted to explore the molecular mechanisms of Mel in enhancing Cd tolerance. Results showed that 7237 differentially expressed genes (DEGs) were regulated by Mel pretreatment to Cd stress compared to the control condition in roots of Medicago sativa L. Besides, in comparison with Cd stress alone, Mel upregulated 1081 DEGs, and downregulated 1085 DEGs. These DEGs were mainly involved in the transcription and translation of genes and folding, sorting and degradation of proteins, carbohydrate metabolism, and hormone signal network. Application of Mel regulated the expression of several genes encoding ribosomal protein and E3 ubiquitin-protein ligase involved in folding, sorting and degradation of proteins. Moreover, transcriptomic analyse suggested that Mel might regulate the expression of genes encoding pectin lyase, UDP-glucose dehydrogenase, sucrose-phosphate synthase, hexokinase-1, and protein phosphorylation in the sugar metabolism. Therefore, these could promote sucrose accumulation and subsequently alleviate the Cd damage. In conclusion, above findings provided the mining of important genes and molecular basis of Mel in mitigating Cd tolerance and genetic cultivation of Medicago sativa L.


Assuntos
Cádmio , Perfilação da Expressão Gênica , Medicago sativa , Melatonina , Medicago sativa/efeitos dos fármacos , Medicago sativa/genética , Cádmio/toxicidade , Melatonina/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Poluentes do Solo/toxicidade , Estresse Fisiológico/efeitos dos fármacos
2.
J Food Sci ; 89(2): 834-850, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38167751

RESUMO

Lactic acid fermentation is an effective method for improving the quality of black chokeberry. This study aimed to investigate the influence of lactic acid bacteria on the phenolic profile, antioxidant activities, and volatiles of black chokeberry juice. Initially, 107  cfu/mL of Lactiplantibacillus plantarum, Lactobacillus acidophilus, and Lacticaseibacillus rhamnosus were inoculated into pasteurized black chokeberry juice and fermented for 48 h at 37°C. All these strains enhanced the total phenolic and total flavonoid contents, with La. acidophilus showing the highest total phenolic (1683.64 mg/L) and total flavonoid (659.27 mg/L) contents. Phenolic acids, flavonoids, and anthocyanins were identified using ultrahigh-performance liquid chromatography-tandem mass spectrometry. The prevalent phenolic acid, flavonoid, and anthocyanin in the lactic-acid-fermented black chokeberry juice were cinnamic acid, rutin, and cyanidin-3-O-rutinoside, respectively. Furthermore, following fermentation, the DPPH and ABTS scavenging capacity, as well as the reducing power capacity, increased from 59.98% to 92.70%, 83.06% to 94.95%, and 1.24 to 1.82, respectively. Pearson's correlation analysis revealed that the transformation of phenolic acids, flavonoids, and anthocyanins probably contributed to enhancing antioxidant activities and color conversation in black chokeberry juice. A total of 40 volatiles were detected in the fermented black chokeberry juice by gas chromatography-ion mobility spectrometry. The off-flavor odors, such as 1-penten-3-one and propanal in the black chokeberry juice, were weakened after fermentation. The content of 2-pentanone significantly increased in all fermented juice, imparting an ethereal flavor. Hence, lactic acid fermentation can effectively enhance black chokeberry products' flavor and prebiotic value, offering valuable insights into their production. PRACTICAL APPLICATION: The application of lactic acid bacteria in black chokeberry juice not only enhances its flavor but also improves its health benefits. This study has expanded the range of black chokeberry products and offers a new perspective for the development of the black chokeberry industry.


Assuntos
Lactobacillales , Photinia , Antioxidantes/química , Antocianinas , Ácido Láctico/análise , Photinia/química , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Fenóis/análise , Flavonoides , Lactobacillus acidophilus/metabolismo , Lactobacillales/metabolismo
3.
J Sci Food Agric ; 104(4): 2049-2058, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37915307

RESUMO

BACKGROUND: Soy protein gel products are prone to direct oxidation by reactive oxygen during processing and transportation, thus reducing their functional properties and nutritional values. A covalent complex was prepared with soy protein isolate (SPI) and ferulic acid (FA) catalyzed by laccase (LC). The complex was further treated with microbial transglutaminase (TGase) to form hydrogels. The structural changes of the covalent complex (SPI-FA) and the properties and antioxidant stability of hydrogel were investigated. RESULTS: The SPI-FA complexes were demonstrated to be covalently bound by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and they had the least hydrophobic and free sulfhydryl groups at a 1.0 mg mL-1 FA concentration. The α-helix of complexes increased from 11.50% to 27.39%, and random coil dropped from 26.06% to 14.44%. The addition of FA caused SPI fluorescence quenching and redshift. The hydrogel was formed after the complex was induced with TGase, and its hardness and water holding capacity was increased by 50.61% and 26.21%, respectively. Scanning electron microscopy showed that a layered and ordered gel structure was formed. After in vitro digestion, the complex hydrogels maintained stable antioxidant activity, and the free radical scavenging rates of DPPH and ABTS reached 87.65% and 84.45%, respectively. CONCLUSION: SPI-FA covalent complexes were prepared under laccase catalysis, and complex hydrogels were formed by TGase. Hydrogels have stable antioxidant activity, which provides application prospects for the antioxidant development of food. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Ácidos Cumáricos , Proteínas de Soja , Proteínas de Soja/química , Antioxidantes/análise , Hidrogéis , Lacase
4.
Membranes (Basel) ; 13(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37999344

RESUMO

In this study, high-performance FAU (NaY type) zeolite membranes were successfully synthesized using small-sized seeds of 50 nm, and their gas separation performance was systematically evaluated. Employing nano-sized NaY seeds and an ultra-dilute reaction solution with a molar composition of 80 Na2O: 1Al2O3: 19 SiO2: 5000H2O, the effects of synthesis temperature, crystallization time, and porous support (α-Al2O3 or mullite) on the formation of FAU membranes were investigated. The results illustrated that further extending the crystallization time or increasing the synthesis temperature led to the formation of a NaP impurity phase on the FAU membrane layer. The most promising FAU membrane with a thickness of 2.7 µm was synthesized on an α-Al2O3 support at 368 K for 8 h and had good reproducibility. The H2 permeance of the membrane was as high as 5.34 × 10-7 mol/(m2 s Pa), and the H2/C3H8 and H2/i-C4H10 selectivities were 183 and 315, respectively. The C3H6/C3H8 selectivity of the membrane was as high as 46, with a remarkably high C3H6 permeance of 1.35 × 10-7 mol/(m2 s Pa). The excellent separation performance of the membrane is mainly attributed to the thin, defect-free membrane layer and the relatively wide pore size (0.74 nm).

5.
J Food Sci ; 88(6): 2679-2692, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37199447

RESUMO

The application of lactic acid bacteria (LAB) fermentation to the production of probiotic beverages is a common method for modifying the health-related functional characteristics and phytochemical content of such beverages. This study evaluated the effect of fermentation with Lactobacillus acidophilus NCIB1899, Lactobacillus casei CRL 431, and Lactobacillus paracasei LP33 on the total phenolic contents (PCs), flavonoid contents (FCs), phenolic profiles, and antioxidant capacities of the solvent-extractable (free) and cell-wall-bound (bound) fractions in quinoa varying in bran color. Compared with unfermented beverages, LAB fermentation significantly increased the free PCs and free FCs by 15.7%-79.4% and 7.6%-84.3%, respectively. The bound PCs increased, whereas bound FCs decreased in fermented black and red quinoa juice. The increments of procyanidin B2 , protocatechuic acid, p-hydroxybenzaldehyde, rutin, and kaempferol through 30 h fermentation exceeded 189%-622%, 13.8%-191%, 55.6%-100%, 48.5%-129%, and 120%-325%, respectively. However, the contents of catechin, procyanidin B1 , and ferulic acid decreased with fermentation. Overall, L. acidophilus NCIB1899, L. casei CRL431, and L. paracasei LP33 strains may be suitable for producing fermented quinoa probiotic beverages. L. acidophilus NCIB1899 was superior for fermentation to L. casei CRL431 and L. paracasei LP33. Red and black quinoa had significantly higher total (sum of free and bound) PC and FC concentrations and antioxidant capacities than white quinoa (p < 0.05) because of their higher concentrations of proanthocyanins and polyphenol, respectively. PRACTICAL APPLICATION: In this study, different LAB (L. acidophilus NCIB1899, L. casei CRL431, and L. paracasei LP33) were singly inoculated on aqueous solutions from quinoa to ferment probiotic beverage and to compare the metabolic capacity of LAB strains on nonnutritive phytochemicals (phenolic compounds). We observed that LAB fermentation greatly enhanced the phenolic and antioxidant activity of quinoa. The comparison indicated that the L. acidophilus NCIB1899 strain has the highest fermentation metabolic capacity.


Assuntos
Chenopodium quinoa , Lactobacillales , Probióticos , Lactobacillus/metabolismo , Antioxidantes/metabolismo , Fermentação , Lactobacillus acidophilus/metabolismo , Chenopodium quinoa/química , Lactobacillales/metabolismo , Fenóis/análise
6.
J Food Sci ; 87(11): 4878-4891, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36258662

RESUMO

This research aims to investigate the effects of both sequential fermentation and coinoculation fermentation with yeast and lactic acid bacterial (LAB) on the dynamics of changes in basic quality parameters and organic acid, anthocyanin, and phenolic components as well as antioxidant activity during the fermentation of blueberry. The coculture-fermented blueberry wine showed significant decreases in total phenolics, flavonoids, and anthocyanins,by 23.9%, 15.9%, and 13.7%, respectively, as compared with those before fermentation Fermentation changed the contents of organic acids in each group, with a more than 7-fold increase in lactic acid contents as well as a more than 4-fold reduction in quinic acid and malic acid contents. The content of all investigated anthocyanins first increased and then decreased. Moreover, different fermentation strategies exerted a profound influence on the dynamic change in phenolic components during fermentation; specifically, most of the phenolic acids showed a trend of increasing first, then decreasing, and finally increasing. Gallic acid, p-coumaric acid, quercetin, and myricetin were increased by 116.9%, 130.1%, 127.2% and 177.6%, respectively, while syringic acid, ferulic acid, cinnamic acid, and vanillic acid were decreased by 49.5%, 68.5%, and 37.1% in sequentially fermented blueberry wine. Coinoculation fermentation with yeast and LAB produces faster dynamic variations and higher organic acid, anthocyanin, and phenolic profiles than sequential inoculation fermentation. PRACTICAL APPLICATION: In this work, brewing technology of sequential fermentation and coinoculation fermentation with yeast and LAB (Lactobacillus plantarum SGJ-24 and Oenococcus oeni SD-2a) was adopted to ferment blueberry wine. This is an innovative technology of fruit wine brewing technology to produce wine products. Compared with traditional sequential brewing, simultaneous inoculation brewing can significantly accelerate the brewing process of fruit wine and slightly improve the quality of fruit wine in terms of active ingredients.


Assuntos
Mirtilos Azuis (Planta) , Lactobacillales , Vinho , Vinho/análise , Antocianinas , Fermentação , Saccharomyces cerevisiae , Fenóis/análise , Ácido Láctico/análise
7.
Med Oncol ; 39(2): 21, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982264

RESUMO

Hepatocellular carcinoma (HCC) is a global health problem with complex etiology and pathogenesis. Microarray data are increasingly being used as a novel and effective method for cancer pathogenesis analysis. An integrative analysis of genes and miRNA for HCC was conducted to unravel the potential prognosis of HCC. Two gene microarray datasets (GSE89377 and GSE101685) and two miRNA expression profiles (GSE112264 and GSE113740) were obtained from Gene Expression Omnibus database. A total of 177 differently expressed genes (DEGs) and 80 differently expressed miRNAs (DEMs) were screened out. Functional enrichment of DEGs was proceeded by Clue GO and these genes were significantly enriched in the chemical carcinogenesis pathway. A protein-protein interaction network was then established on the STRING platform, and ten hub genes (CDC20, TOP2A, ASPM, NCAPG, AURKA, CYP2E1, HMMR, PRC1, TYMS, and CYP4A11) were visualized via Cytoscape software. Then, a miRNA-target network was established to identify the hub dysregulated miRNA. A key miRNA (hsa-miR-124-3p) was filtered. Finally, the miRNA-target-transcription factor network was constructed for hsa-miR-124-3p. The network for hsa-miR-124-3p included two transcription factors (TFs) and five targets. These identified DEGs and DEMs, TFs, targets, and regulatory networks may help advance our understanding of the underlying pathogenesis of HCC.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , Análise em Microsséries , Carcinogênese , Carcinoma Hepatocelular/patologia , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Neoplasias Hepáticas/patologia , Prognóstico
8.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769134

RESUMO

Cadmium (Cd) is one of the most injurious heavy metals, affecting plant growth and development. Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, and it is since known to act as a multifunctional molecule to alleviate abiotic and biotic stresses, especially Cd stress. Endogenously triggered or exogenously applied melatonin re-establishes the redox homeostasis by the improvement of the antioxidant defense system. It can also affect the Cd transportation and sequestration by regulating the transcripts of genes related to the major metal transport system, as well as the increase in glutathione (GSH) and phytochelatins (PCs). Melatonin activates several downstream signals, such as nitric oxide (NO), hydrogen peroxide (H2O2), and salicylic acid (SA), which are required for plant Cd tolerance. Similar to the physiological functions of NO, hydrogen sulfide (H2S) is also involved in the abiotic stress-related processes in plants. Moreover, exogenous melatonin induces H2S generation in plants under salinity or heat stress. However, the involvement of H2S action in melatonin-induced Cd tolerance is still largely unknown. In this review, we summarize the progresses in various physiological and molecular mechanisms regulated by melatonin in plants under Cd stress. The complex interactions between melatonin and H2S in acquisition of Cd stress tolerance are also discussed.


Assuntos
Cádmio/metabolismo , Melatonina/metabolismo , Plantas/metabolismo , Estresse Fisiológico , Sulfeto de Hidrogênio/metabolismo
9.
J Food Sci ; 86(5): 1726-1736, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33844283

RESUMO

In this work, red quinoa was successively subjected to α-amylase steaming, complex enzyme Viscozyme (R) L hydrolysis, and lactic acid bacteria (LAB) fermentation. The total phenolic compound content (TPC), flavonoid content (TFC), and antioxidant capacities of the solvent-extractable (free) and bound fractions and the individual phenolic compounds released were determined. Compared to steaming with α-amylase, enzymatic hydrolysis and fermentation of quinoa resulted in approximately 82.6, 26.9, 36.3, and 45.2% increases in the TPC (the sum of free and bound fractions), TFC, DPPH, and ORAC values, respectively. HPLC-QqQ-MS/MS analysis showed that enzymolysis and fermentation increased the content of protocatechuic acid, catechin, procyanidin B2 , and quercetin by 126.3, 101.9, 524, and 296.3%, respectively. Moreover, a major proportion of individual phenolic compounds existed as bound form. The results indicated that complex enzymatic hydrolysis and LAB fermentation were practical and useful to release promising polyphenols. This research provides a basis for the processing of quinoa beverages rich in phenolic compounds. PRACTICAL APPLICATION: In this work, liquefying with α-amylase, hydrolyzing with cellulolytic enzyme mixture, and fermenting with Lactic acid bacteria (LAB), successively, were exploited to process quinoa. This is an innovative method of quinoa processing to produce beverage products. Complex enzymatic hydrolysis and fermentation with LAB can significantly enhance phenolic compound, especially protocatechuic acid, catechin, procyanidin B2 , and quercetin. In additional, LAB fermentation is very beneficial to improve the antioxidant activity of quinoa. We also found that a major proportion of phenolic compounds existed as bound forms in quinoa.


Assuntos
Antioxidantes/análise , Chenopodium quinoa/metabolismo , Manipulação de Alimentos/métodos , Lactobacillus/metabolismo , Complexos Multienzimáticos/metabolismo , Fenóis/análise , Chenopodium quinoa/química , Fermentação , Flavonoides/análise , Hidrólise , Hidroxibenzoatos/análise , Soluções , Vapor , Água , alfa-Amilases/metabolismo
10.
Food Chem Toxicol ; 150: 112096, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33647349

RESUMO

To unravel the potential of Licochalcone B as an anti-tumour phytochemical agent and evaluate its underlying mechanisms, we analyzed the mRNAs and miRNAs expression profiles of HepG2 cells in response to Licochalcone B (120 µM). mRNA and miRNA expression libraries were conducted and functional analysis for differential expression mRNAs was carried out utilizing Clue GO. We found 763 Licochalcone B -responsive differently expressed genes, among them, 572 mRNAs were up-regulated and 191 mRNAs were down-regulated, many of which were related to the MAPK signaling pathway. A protein-protein interaction network was constructed to discover the hub genes, and IL6, FOS, JUN, NOTCH1, UBC, UBB, CXCL8, CDKN1A, IL1B, ATF3, and GATA3 genes were screened out. Additionally, miRNAs engaged in Licochalcone B -mediated regulation on HepG2 cells were also studied. 85 differential expression miRNAs were identified, including 39 up-regulated miRNAs and 46 down-regulated miRNAs. Co-expression of miRNA-mRNA network was created and two key miRNAs (hsa-miR-29b-3p and hsa-miR-96-5p) were identified. These recognized key genes, miRNA, and the miRNA-mRNA regulatory network may provide clues to understand the molecular mechanism of Licochalcone B as an apoptotic inducer which may offer hint for its application as a functional food component.


Assuntos
Antineoplásicos/farmacologia , Chalconas/farmacologia , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Antineoplásicos/química , Chalconas/química , Citocinas/genética , Citocinas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , MicroRNAs/genética , RNA Mensageiro/genética
11.
Front Nutr ; 8: 807574, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34988109

RESUMO

Hepatocellular carcinoma is a malignancy with a low survival rate globally, and there is imperative to unearth novel natural phytochemicals as effective therapeutic strategies. Licochalcone A is a chalcone from Glycyrrhiza that displayed various pharmacological efficacy. A globally transcriptome analysis was carried out to reveal the gene expression profiling to explore Licochalcone A's function as an anti-cancer phytochemical on HepG2 cells and investigate its potential mechanisms. Altogether, 6,061 dysregulated genes were detected (3,414 up-regulated and 2,647 down-regulated). SP1 was expected as the transcription factor that regulates the functions of most screened genes. GO and KEGG analysis was conducted, and the MAPK signaling pathway and the FoxO signaling pathway were two critical signal pathways. Protein-protein interaction (PPI) network analysis based on STRING platform to discover the hub genes (MAPK1, ATF4, BDNF, CASP3, etc.) in the MAPK signaling pathway and (AKT3, GADD45A, IL6, CDK2, CDKN1A, etc.) the FoxO signaling pathway. The protein level of essential genes that participated in significant pathways was consistent with the transcriptome data. This study will provide an inclusive understanding of the potential anti-cancer mechanism of Licochalcone A on hepatocellular, signifying Licochalcone A as a promising candidate for cancer therapy.

12.
Bioprocess Biosyst Eng ; 43(7): 1299-1307, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32193756

RESUMO

(R)-Mandelic acid (R-MA) is a key precursor for the synthesis of semi-synthetic penicillin, cephalosporin, anti-obesity drugs, antitumor agents, and chiral resolving agents for the resolution of racemic alcohols and amines. In this study, an enzymatic method for the large-scale production of R-MA by a stereospecific nitrilase in an aqueous system was developed. The nitrilase activity of the Escherichia coli BL21(DE3)/pET-Nit whole cells reached 138.6 U/g in a 20,000-L fermentor. Using recombinant E. coli cells as catalyst, 500 mM R,S-mandelonitrile (R,S-MN) was resolved into 426 mM (64.85 g/L) R-MA within 8 h, and the enantiomeric excess (ee) value of R-MA reached 99%. During the purification process, pure R-MA with a recovery rate of 78.8% was obtained after concentration and crystallization. This study paved the foundation for the upscale production of R-MA using E. coli whole cells as biocatalyst.


Assuntos
Aminoidrolases/metabolismo , Ácidos Mandélicos/metabolismo , Reatores Biológicos , Catálise , Meios de Cultura , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Fermentação , Concentração de Íons de Hidrogênio , Ácidos Mandélicos/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Água
13.
Pharmacogn Mag ; 14(53): 103-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29576709

RESUMO

BACKGROUND: Mulberry fruits are a superior source of polyphenol, especially anthocyanins that contribute potentially to the beneficial effects which include reducing the risk of cardiovascular diseases and cancers with antioxidant, anti-inflammatory, and chemoprotective properties. OBJECTIVES: In this study, purification of the polyphenol-rich extract from mulberry fruit (MPE) was purified and assessed the activities of antioxidant and hemolysis protective in vivo and in vitro. MATERIALS AND METHODS: Antioxidant activities in vitro was measured by quantifying its 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, reducing power and Fe2+-chelating ability. MPE was purified by high-pressure liquid chromatography (HPLC) and analyzed individual polyphenols using liquid chromatography-mass spectrometry (LC-MS)/MS. RESULTS: The total polyphenol content was 147.69 ± 0.02 mg gallic acid equivalents (GAE)/g dried weight (DW) in the extract and 403.55 ± 0.02 mg GAE/g DW in the purified extract. Further identification by HPLC-ultraviolet-visible and LC-MS/MS analysis indicated in MPE, an anthocyanin compound, cyanidin-3-O-glucoside. With regard to in vitro assays, MPE possessed antioxidant effect, especially in Fe2+ chelating ability with an IC50 value of 1.016 mg/mL. The protective effects on mouse red blood cell hemolysis and lipid peroxidation ex vivo were dose and time dependent. CONCLUSION: It indicates that MPE could be a good candidate for future biomedical applications to promote human health with limited side effects. SUMMARY: Mulberry fruit is an excellent source of polyphenols, in particular, anthocyanins, which has infinite health benefits. This study determined the predominant anthocyanin, cyanidin-3-glucoside, could possibly be the rationale behind the antioxidant and antihemolytic effect of MPE. Results indicate that MPE could be a good candidate for future biomedical applications to promote human health with limited side effects. Abbreviations used: MPE: Purification of the polyphenol-rich extract from mulberry fruit, LC-MS: Liquid chromatography-mass spectrometry, HPLC: High-pressure liquid chromatography, DPPH: 2,2-diphenyl-1-picrylhydrazyl scavenging activity, RBC: Red blood cell, GAE: Gallic acid equivalent, FeCl2: Ferrous chloride, H2O2: Hydrogen peroxide, EDTA-2Na: Ethylenediaminetetraacetic acid disodium salt, PBS: Phosphate-buffered saline, TCA: Trichloroacetic acid, TBA: 2-thiobarbituric acid, FeSO4: Ferrous sulphate, MDA: Malondialdehyde, VC: Vitamin C, DW: Dried weight.

14.
Int J Clin Exp Pathol ; 10(12): 11666-11672, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31966525

RESUMO

Laryngeal carcinoma is a serious, life-threatening disease. Tumor necrosis factor α (TNF-α), a proinflammatory cytokine, has complex effects on the proliferation and growth of cancer cells. Previously, we treated a laryngeal cancer cell line (HEp-2) with TNF-α and demonstrated that this treatment suppressed polycystin-2, a transient receptor potential cation channel expression and ATP-induced Ca2+ release but increased HEp-2 cell proliferation and growth. However, the mechanisms and signaling pathways underlying the TNF-α effects on the HEp-2 cells were unclear. Therefore, we here used RNA-seq techniques to examine the effect of TNF-α on the gene transcript expression profile in these cells. We found that TNF-α treatment (100 ng/mL, 24 h) upregulated 2,811 genes and downregulated 1,128 genes. The IRAK1 gene encoding an effector protein downstream of toll-like receptor 4 (TLR4) was ranked 19th in the upregulated differentially expressed genes. In a gene ontology (GO) analysis, 168 GO terms were identified in the biological process domain for the upregulated differentially expressed genes, and cell cycle and DNA replication functions were enriched. In a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, TNF-α treatment enhanced the NF-κB pathway in HEp-2 cells. Moreover, both the transcript and protein expression levels of TLR4 as well as the expression of genes encoding downstream TLR4 effectors were significantly increased in TNF-α-treated HEp-2 cells. We concluded that TNF-α increased HEp-2 cell proliferation and growth likely via enhancing TLR4- and NF-κB-associated signaling pathways and that TNF-α may play an important role in the development of laryngeal cancer.

15.
Braz. j. microbiol ; 45(2): 721-729, Apr.-June 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-723139

RESUMO

DNJ, an inhibitor of α-glucosidase, is used to suppress the elevation of postprandial hyperglycemia. In this study, we focus on screening an appropriate microorganism for performing fermentation to improve DNJ content in mulberry leaf. Results showed that Ganoderma lucidum was selected from 8 species and shown to be the most effective in improvement of DNJ production from mulberry leaves through fermentation. Based on single factor and three factor influence level tests by following the Plackett-Burman design, the optimum extraction yield was analyzed by response surface methodology (RSM). The extracted DNJ was determined by reverse-phase high performance liquid chromatograph equipped with fluorescence detector (HPLC-FD). The results of RSM showed that the optimal condition for mulberry fermentation was defined as pH 6.97, potassium nitrate content 0.81% and inoculums volume 2 mL. The extraction efficiency reached to 0.548% in maximum which is 2.74 fold of those in mulberry leaf.


Assuntos
1-Desoxinojirimicina/isolamento & purificação , 1-Desoxinojirimicina/metabolismo , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Morus/metabolismo , Reishi/metabolismo , Biotecnologia/métodos , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Fermentação , Concentração de Íons de Hidrogênio , Folhas de Planta/metabolismo , Reishi/crescimento & desenvolvimento , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA