Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Lipids Health Dis ; 23(1): 32, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291432

RESUMO

OBJECTIVE: Extensive research has explored the link between saturated fatty acids (SFAs) and cardiovascular diseases, alongside other biological dysfunctions. Yet, their association with cancer risk remains a topic of debate among scholars. The present study aimed to elucidate this association through a robust meta-analysis. METHODS: PubMed, Embase, Cochrane Library, and Web of Science databases were searched systematically to identify relevant studies published until December 2023. The Newcastle-Ottawa Scale was used as the primary metric for evaluating the quality of the included studies. Further, fixed- or random-effects models were adopted to determine the ORs and the associated confidence intervals using the Stata15.1 software. The subsequent subgroup analysis revealed the source of detection and the cancer types, accompanied by sensitivity analyses and publication bias evaluations. RESULTS: The meta-analysis incorporated 55 studies, comprising 38 case-control studies and 17 cohort studies. It revealed a significant positive correlation between elevated levels of total SFAs and the cancer risk (OR of 1.294; 95% CI: 1.182-1.416; P-value less than 0.001). Moreover, elevated levels of C14:0, C16:0, and C18:0 were implicated in the augmentation of the risk of cancer. However, no statistically significant correlation of the risk of cancer was observed with the elevated levels of C4:0, C6:0, C8:0, C10:0, C12:0, C15:0, C17:0, C20:0, C22:0, and C24:0. Subgroup analysis showed a significant relationship between excessive dietary SFA intake, elevated blood SFA levels, and heightened cancer risk. Increased total SFA levels correlated with higher risks of breast, prostate, and colorectal cancers, but not with lung, pancreatic, ovarian, or stomach cancers. CONCLUSION: High total SFA levels were correlated with an increased cancer risk, particularly affecting breast, prostate, and colorectal cancers. Higher levels of specific SFA subtypes (C14:0, C16:0, and C18:0) are also linked to an increased cancer risk. The findings of the present study would assist in providing dietary recommendations for cancer prevention, thereby contributing to the development of potential strategies for clinical trials in which diet-related interventions would be used in combination with immunotherapy to alter the levels of SFAs in patients and thereby improve the outcomes in cancer patients. Nonetheless, further high-quality studies are warranted to confirm these associations.


Assuntos
Gorduras na Dieta , Ácidos Graxos , Neoplasias , Humanos , Masculino , Gorduras na Dieta/efeitos adversos , Ácidos Graxos/efeitos adversos , Risco , Feminino , Neoplasias/epidemiologia
2.
BMC Cancer ; 24(1): 75, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221626

RESUMO

BACKGROUND: Obesity-induced abnormal bone marrow microenvironment is one of the important risk element for bone metastasis in prostate cancer (PCa). The present study aimed to determine whether obesity-induced elevation in palmitic acid (PA), which is the most abundant of the free fatty acids (FFAs), increased CCL2 via the GPRs/KLF7 pathway in bone marrow adipocytes (BMA) to facilitate PCa growth and metastasis. METHODS: We constructed a bone-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, observe the effect of PA on the expression level of CCL2 in BMA through GPRs/KLF7 signaling pathway. After co-culture of BMA and PCa cells, CCK8 assay and transwell experiment were used to detect the changes in biological behavior of PCa cells stimulated by BMA. RESULTS: The BMA distribution in the bone marrow cavity of BALB/c nude mice fed with the high-fat diet (HFD) was evidently higher than that in the mice fed with the normal diet (ND). Moreover, HFD-induced obesity promoted KLF7/CCL2 expression in BMA and PCa cell growth in the bone marrow cavity of the mice. In the vitro experiment, a conditioned medium with increased CCL2 obtained from the BMA cultured with PA (CM-BMA-PA) was used for culturing the PCa cell lines, which evidently enhanced the proliferation, invasion, and migration ability. KLF7 significantly increased the CCL2 expression and secretion levels in BMA by targeting the promoter region of the CCL2 gene. In addition, GPR40/120 engaged in the PA-induced high KLF7/CCL2 levels in BMA to facilitate the malignant progression of PC-3 cells. CONCLUSIONS: PA-activated GPRs/KLF7/CCL2 pathway in BMA facilitates prostate cancer growth and metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Medula Óssea/patologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Nus , Obesidade/patologia , Ácido Palmítico/farmacologia , Neoplasias da Próstata/patologia , Microambiente Tumoral
3.
FASEB J ; 37(7): e23033, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37342904

RESUMO

In the obesity context, inflammatory cytokines secreted by adipocytes lead to insulin resistance and are key to metabolic syndrome development. In our previous study, we found that the transcription factor KLF7 promoted the expression of p-p65 and IL-6 in adipocytes. However, the specific molecular mechanism remained unclear. In the present study, we found that the expression of KLF7, PKCζ, p-IκB, p-p65, and IL-6 in epididymal white adipose tissue (Epi WAT) in mice fed a high-fat diet (HFD) was significantly increased. In contrast, the expression of PKCζ, p-IκB, p-p65, and IL-6 was significantly decreased in Epi WAT of KLF7 fat conditional knockout mice. In 3T3-L1 adipocytes, KLF7 promoted the expression of IL-6 via the PKCζ/NF-κB pathway. In addition, we performed luciferase reporter and chromatin immunoprecipitation assays, which confirmed that KLF7 upregulated the expression of PKCζ transcripts in HEK-293T cells. Collectively, our results show that KLF7 promotes the expression of IL-6 by upregulating PKCζ expression and activating the NF-κB signaling pathway in adipocytes.


Assuntos
Transtornos do Metabolismo de Glucose , NF-kappa B , Animais , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Transtornos do Metabolismo de Glucose/metabolismo , Proteínas I-kappa B/metabolismo , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , NF-kappa B/metabolismo
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769291

RESUMO

The present study aimed to explore the molecular mechanism underlying the regulation of glucose metabolism by miR-548ag. For the first time, we found that miR-548ag expression was elevated in the abdominal adipose tissue and serum of subjects with obesity and type 2 diabetes mellitus (T2DM). The conditional knockout of adipose tissue Dicer notably reduced the expression and content of miR-548ag in mouse adipose tissue, serum, and liver tissue. The combined use of RNAseq, an miRNA target gene prediction software, and the dual luciferase reporter assay confirmed that miR-548ag exerts a targeted regulatory effect on DNMT3B and DPP4. miR-548ag and DPP4 expression was increased in the adipose tissue, serum, and liver tissue of diet-induced obese mice, while DNMT3B expression was decreased. It was subsequently confirmed both in vitro and in vivo that adipose tissue-derived miR-548ag impaired glucose tolerance and insulin sensitivity by inhibiting DNMT3B and upregulating DPP4. Moreover, miR-548ag inhibitors significantly improved the adverse metabolic phenotype in both obese mice and db/db mice. These results revealed that the expression of the adipose tissue-derived miR-548ag increased in obese subjects, and that this could upregulate the expression of DPP4 by targeting DNMT3B, ultimately leading to glucose metabolism disorder. Therefore, miR-548ag could be utilized as a potential target in the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , MicroRNAs , Camundongos , Animais , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Regulação para Cima , Camundongos Obesos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Tecido Adiposo/metabolismo , Fígado/metabolismo , Obesidade/genética , Obesidade/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL
5.
Cancer Sci ; 114(4): 1507-1518, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36445107

RESUMO

Obesity is a high-risk factor in the development of endometrial cancer (EC). Our previous study observed that miR-548ag was significantly overexpressed in the sera of obese individuals. Here, we report the function of miR-548ag and its mechanism in promoting the obesity-related progression of EC. The content of miR-548ag was increased in the serum of obese EC individuals. Bioinformatics analysis indicated that the survival rate of EC patients with a higher expression of miR-548ag was significantly reduced. The Mps One Binder Kinase Activator 1B (MOB1B, the core member of the Hippo signaling pathway) is a direct target gene of miR-548ag, which is inversely correlated with the expression of miR-548ag. The overexpression of miR-548ag enhances the proliferation, invasion, and migration, and inhibits apoptosis by downregulating the expression of MOB1B, leading to the deactivation of the Hippo pathway in EC cell lines and contributing to tumor progression in vivo. Our study has established that miR-548ag functions as an oncogene by suppressing MOB1B in the development of obesity-related EC.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Oncogenes/genética , Neoplasias do Endométrio/metabolismo , Obesidade/complicações , Obesidade/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
6.
J Diabetes Investig ; 13(4): 617-627, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34800086

RESUMO

AIM/INTRODUCTION: Obesity is considered an important risk factor for many metabolic disorders, especially type 2 diabetes mellitus, and microRNAs (miRNAs) play a vital role in the development of type 2 diabetes mellitus. Therefore, we conducted this study to investigate the role of miR-4431 in the obesity-associated pathobiology of type 2 diabetes mellitus. MATERIALS AND METHODS: Subjects were divided into normal control (n = 36), obese (n = 36), and type 2 diabetes mellitus (n = 12) groups, and serum miR-4431 levels were analyzed. Adenovirus-vectored miR-4431 mimic or sponge was intraperitoneally injected into the normal diet group and the high-fat diet group (HFD) mice to investigate glucose tolerance, insulin sensitivity, and lipid levels. The downstream target genes of miR-4431 were predicted using bioinformatics, and they were verified in vitro. RESULTS: Serum miR-4431 levels were significantly high in obese and type 2 diabetes mellitus individuals, and positively correlated with the body mass index and fasting plasma glucose levels. In HFD mice, miR-4431 levels in the serum, white adipose tissue, and liver were significantly increased. Moreover, miR-4431 impaired glucose tolerance, insulin sensitivity, and lipid metabolism in mice. Bioinformatic prediction suggested that TRIP10 and PRKD1 could be the downstream target genes of miR-4431. The HFD mice showed a remarkable reduction in the mRNA levels of TRIP10 and PRKD1 in the liver, which were countered by blocking miR-4431. In HepG2 and L02 cells, miR-4431 could downregulate TRIP10 and PRKD1 while blocking glucose uptake. The luciferase reporter assay showed that miR-4431 could bind TRIP10 and PRKD1 3'-UTR. CONCLUSION: miR-4431 targets TRIP10/PRKD1 and impairs glucose metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , MicroRNAs , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Humanos , Resistência à Insulina/genética , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo
7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 37(9): 781-787, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34533124

RESUMO

Objective To investigate the effect of RS102895, a specific C-C motif chemokine receptor 2 (CCR2) antagonist, on the biological behavior of prostate cancer (PCa) cells with different degrees of malignancy. Methods Non-androgen-dependent prostate cancer cells PC-3 and androgen-dependent prostate cancer cells 22RV1 were cultured in vitro. A control group, a recombinant C-C motif chemokine ligand 2 (rCCL2) treatment group, and a rCCL2 combined with RS102895 treatment group were established. Cell proliferation ability was detected by CCK-8 assay, cell invasion and migration abilities were detected by TranswellTM assay, mRNA expressions of cell antigen KI-67 (ki67) and matrix metalloproteinase 2 (MMP2) were detected by real-time quantitative PCR, and protein expression levels of ki67 and MMP2 were detected by Western blotting. Results The proliferation, invasion, and migration abilities of PC-3 cells were significantly enhanced by rCCL2, and the proliferation ability of 22RV1 cells was significantly increased as well. Meanwhile, the mRNA and protein expression levels of ki67 and MMP2 in PC-3 cells were significantly up-regulated by rCCL2. After RS102895 treatment, the above effects of rCCL2 were reversed. Conclusion RS102895 can inhibit the proliferation, invasion, and migration of PC-3 prostate cancer cells by specifically blocking the CCL2/CCR2 pathway and down-regulating the expressions of ki67 and MMP2.


Assuntos
Quimiocina CCL2 , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CCL2/genética , Humanos , Masculino , Metaloproteinase 2 da Matriz/genética , Invasividade Neoplásica , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores CCR2/genética , Receptores de Quimiocinas
8.
J Diabetes Investig ; 12(2): 165-175, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32579760

RESUMO

AIMS/INTRODUCTION: Microribonucleic acid-155 (microRNA155) and microRNA29 are reported to inhibit glucose metabolism in some cell and animal models, but no evidence from susceptible populations that examines the relationship between microRNA155 or microRNA29 and type 2 diabetes mellitus currently exists. Furthermore, target genes regulated by microRNA155 and microRNA29 that affect glucose and lipid metabolism remain unknown. MATERIALS AND METHODS: Human participants were divided into normal weight (n = 72), obesity (n = 120) and type 2 diabetes (n = 59) groups. The contents of microRNA155 and microRNA29 abundance in serum were measured, and candidate genes potentially related to glucose and lipid metabolism targeted by either microRNA155 or microRNA29 were screened. Overexpression of microRNA155 and microRNA29 in HepG2 cells was used to verify candidate gene expression, and measure the effects on glucose and lipid metabolism. RESULTS: Serum levels of microRNA155 and microRNA29 show a significant increase in individuals with obesity and type 2 diabetes compared with normal weight individuals. Identified target genes for microRNA155 were MAPK14, MAP3K10, DUSP14 and PRKAR2B. Identified target genes for microRNA29 were PEX11A and FADS1. Overexpression of microRNA155 or microRNA29 in HepG2 cells was found to downregulate the expression of identified target genes, and result in inhibition of triglyceride synthesis and glucose incorporation. CONCLUSIONS: MicroRNA155 and microRNA29 were significantly higher in type 2 diabetes patients compared with the control patients, their levels were also positively correlated with fasting plasma glucose levels, and over-expression of microRNA155 or microRNA29 were found to downregulate glucose and lipid metabolism target genes, and reduce lipid synthesis and glucose incorporation in HepG2 cells.


Assuntos
Biomarcadores/análise , Diabetes Mellitus Tipo 2/patologia , MicroRNAs/genética , Glicemia/análise , Estudos de Casos e Controles , Dessaturase de Ácido Graxo Delta-5 , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Seguimentos , Células Hep G2 , Humanos , Prognóstico
9.
Cancer Sci ; 111(10): 3600-3612, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32770813

RESUMO

Prostate cancer (PCa) continues to be the most common, noncutaneous cancer in men. Bone is the most frequent site of PCa metastases, and up to 90% of patients with advanced PCa develop bone metastases. An altered bone marrow microenvironment, induced by obesity, is a significant mediator for the bone tropism of PCa. However, the specific molecular mechanisms by which obesity causes changes in the bone marrow microenvironment, leading to PCa bone metastasis, are not fully understood. Our results demonstrate that a high-fat diet (HFD) leads to dyslipidemia and changes in bone marrow of nude mice: an increase in the area and number of adipocytes and a reduction in the area and number of osteoblasts. Moreover, a HFD promoted cyclooxygenase 2 (COX2) expression and inhibited osteoprotegerin (OPG) expression in the bone microenvironment. Additionally, the total level of free fatty acids (FFAs) and caprylic acid (C8:0) was significantly higher in PCa patients with bone metastases. In vitro, caprylic acid (C8:0) promoted bone mesenchymal stem cell (MSC)-derived adipocytic differentiation, COX2 expression, and prostaglandin E2 (PGE2) secretion, whereas osteoblastic differentiation and OPG expression were reduced. Furthermore, caprylic acid (C8:0)-treated adipocytes promoted the invasion and migration of PCa cells. Taken together, our findings suggest caprylic acid (C8:0) promotes bone metastasis of PCa by dysregulated adipo-osteogenic balance of bone marrow.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Neoplasias Ósseas/patologia , Caprilatos/farmacologia , Neoplasias da Próstata/patologia , Adipócitos/metabolismo , Animais , Medula Óssea/metabolismo , Neoplasias Ósseas/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/patologia , Células PC-3 , Neoplasias da Próstata/metabolismo , Microambiente Tumoral/efeitos dos fármacos
10.
Cancer Manag Res ; 12: 1355-1369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158268

RESUMO

INTRODUCTION: As one of the most common forms of cancer that threatens men's health, prostate cancer (PCa) is under a trend of increasing morbidity and mortality in most countries. More and more studies have pointed out that obesity is closely linked to the occurrence and development of PCa, although there are still many undiscovered molecular mechanisms between the two. METHODS: In the present study, we compare serum lipid levels in patients with PCa and normal individuals. PCa cells (PC3 and 22RV1) were cultured in vitro, the TC/TG/HDL/GLU assay kit was used to detect the glucose and lipid metabolism level of PCa cells, the flow cytometry technique was used to detect the proliferation ability of PCa cells, and the Transwell was used to detect the invasion and migration ability of PCa cells. Western blot/quantitative real-time PCR was used to detect peroxisome proliferator-activated receptor γ (PPARγ) and vimentin/vascular endothelial growth factor-A (VEGF-A) expression levels, and immunohistochemistry was used to observe tumor-associated gene expression levels in nude mice. All data were analysed using the Independent samples t-test or rank sum test. RESULTS: We found higher levels of FFA in the serum of patients with PCa. In vitro experiments have demonstrated that high levels of FFA can promote the proliferation, migration and invasion of two PCa cells (PC3 and 22RV1) and affect the energy metabolism of PCa cells. The upregulated PPARγ plays a key role in this process, and vimentin may be involved in this signaling pathway. CONCLUSION: We infer that high levels of FFA may promote PCa development by upregulating PPARγ expression.

11.
Food Funct ; 9(10): 5124-5138, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30256363

RESUMO

Turkish galls have been reported to exhibit remedial effects in ulcerative colitis (UC). However, the active constituents of Turkish galls for the treatment of UC remain unclear. The objective of this study was to screen for anti-inflammatory active constituents and clarify their associated molecular mechanisms. Therefore, systems pharmacology was developed to predict the relationship between constituents and the corresponding targets as well as pathways. In addition, mass spectrometry-guided preparative chromatography technique was used for preparing constituents to evaluate the anti-inflammatory activities and the therapeutic efficacy against UC. In silico, active constituents exhibited a remedial effect on UC possibly by regulating multiple pathways and attacking multiple targets, of which those involved mainly in the NF-κB pathway were selected for verification. In vitro, 5 categories of constituents were screened as active constituents by comparing the cytotoxicity and detecting the level of the pro-inflammatory factors of 9 category constituents. In vivo, dextran sulfate sodium (DSS)-induced UC was significantly ameliorated in active constituents-fed mice. The results indicated that the active fraction comprising methyl gallate, digallic acid, di-O-galloyl-ß-d-glucose, and tri-O-galloyl-ß-d-glucose primarily contributed to the treatment of UC. Moreover, active fraction could also inhibit the phosphorylation level of IKKß, thus inhibiting the downstream NF-κB signaling pathway. The approach developed in this study not only clarifies the anti-inflammation effect of Turkish galls but also provides a beneficial reference for the discovery of the base material and functional mechanism of this herbal medicine.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Extratos Vegetais/química , Quercus/química , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/imunologia , Depsídeos/administração & dosagem , Depsídeos/análise , Feminino , Ácido Gálico/administração & dosagem , Ácido Gálico/análogos & derivados , Ácido Gálico/análise , Humanos , Masculino , Espectrometria de Massas , Camundongos , Mariposas/fisiologia , NF-kappa B/genética , NF-kappa B/imunologia , Tumores de Planta/parasitologia , Quercus/parasitologia
12.
Obes Res Clin Pract ; 12(6): 520-527, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30031666

RESUMO

OBJECTIVE: The aim of the current study was to investigate the effect of adipocytes on the differentiation of osteoblasts at different stages of adipocyte development. METHODS: BMSCs were isolated from 4-week-old male wistar rat femurs and tibias, and flow cytometry was performed. Adipocytes were derived from BMSCs, cell morphology was continually observed from day 21 to day 50. Adipocyte medium was collected once every 2days (d) and ELISA kits were used for detection of triglycerides (TG), tumor necrosis factor-α (TNF-α), and interleukin-6(IL-6) expression level. 21d and 40d old adipocyte and osteoblast cells were co-cultured, and alizarin red staining was performed after 21d. After co-culture, the adherent cells were collected, and the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) was detected by real time PCR. RESULT: Results of cell characterisation showed that the cells had positive expression of CD29 (97.92%) and CD44 (89.32%). With the increase of the induction time of mature adipocytes, the number of adipocyte on 21thd was significantly higher than 40thd, while the volume of adipocyte was significantly lower than 40thd (P<0.05). The levels of TG(2.6±0.83mmol/l VS 3.8±0.66mmol/l), TNF-α(30.5±2.53pg/ml VS 57.6±5.1pg/ml), and IL-6(32.5±1.42pg/ml VS 55.1±5.97pg/ml) secreted by adipocytes increased with induction time: 40thd was significantly higher than 21thd (P<0.01). When 21thd adipocytes and osteoblasts were co-cultured, the number of calcium nodules significantly increased over that of the positive control group, When 40thd adipocytes and osteoblasts were co-cultured, the number of calcium nodules significantly decreased over that of the positive control group (P<0.05). The OPG(68.9±5.39 VS 1.00±0.36) expression was significantly increased, and the expression of RANKL (2.0±0.84 VS 34.4±2.01) was significantly decreased from the 21thd adipocytes co-cultured group compared with the 40thd adipocytes co-cultured group (P<0.001). CONCLUSION: The differential size of adipocytes in the bone marrow can affect bone metabolism by regulating the expression of OPG/RANKL.


Assuntos
Adipócitos/citologia , Diferenciação Celular/fisiologia , Osteoblastos/citologia , Fatores Etários , Animais , Células da Medula Óssea/citologia , Tamanho Celular , Técnicas de Cocultura , Fêmur/citologia , Ratos , Ratos Wistar , Tíbia/citologia
13.
Mediators Inflamm ; 2018: 1756494, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30598636

RESUMO

OBJECTIVE: To investigate the role and possible molecular mechanism of Krüppel-like factor 7 (KLF7) in the TLR4/NF-κB/IL-6 inflammatory signaling pathway activated by free fatty acids (FFA). METHODS: The mRNA and protein expression levels of KLF7 and the factors of TLR4/NF-κB/IL-6 inflammatory signal pathways were detected by qRT-PCR and Western blotting after cell culture with different concentrations of palmitic acid (PA). The expression of KLF7 or TLR4 in adipocytes was upregulated or downregulated; after that, the mRNA and protein expression levels of these key factors were detected. KLF7 expression was downregulated while PA stimulated adipocytes, and then the mRNA and protein expressions of KLF7/p65 and downstream inflammatory cytokine IL-6 were detected. The luciferase reporter assay was used to determine whether KLF7 had a transcriptional activation effect on IL-6. RESULTS: (1) High concentration of PA can promote the expression of TLR4, KLF7, and IL-6 in adipocytes. (2) TLR4 positively regulates KLF7 expression in adipocytes. (3) KLF7 positively regulates IL-6 expression in adipocytes. (4) PA promotes IL-6 expression via KLF7 in adipocytes. (5) KLF7 has a transcriptional activation on IL-6. CONCLUSION: PA promotes the expression of the inflammatory cytokine IL-6 by activating the TLR4/KLF7/NF-κB inflammatory signaling pathway. In addition, KLF7 may directly bind to the IL-6 promoter region and thus activate IL-6.


Assuntos
Adipócitos/metabolismo , Interleucina-6/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Células 3T3-L1 , Animais , Interleucina-6/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , NF-kappa B/genética , RNA Interferente Pequeno/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/genética
14.
Obes Res Clin Pract ; 11(4): 454-463, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28065384

RESUMO

OBJECTIVE: The aim of the current study was to investigate the effects of obesity, induced via a high-fat diet, on bone metabolism in rats. METHODS: Two hundred healthy Wistar male rats aged 4 weeks were fed a standard diet and a high-fat diet. At specific time points (week 0, 4, 6, 8, and 10), plasma was collected to determine the levels of glucose and lipid metabolism. Additionally, enzyme-linked immunoassays were performed to determine the plasma levels of adipocyte and bone metabolism factors. Micro-CT imaging was used to determine the parameters of bone metabolism. At 10th week, immunohistochemistry evaluation of femoral bone samples was performed to determine the expression of adipocyte factors. RESULT: Receptor activator of nuclear factor kB ligand (RANKL) was positively correlated with levels of triglyceride (TG), free fatty acids (FFA), and tumor necrosis factor alpha (TNF-α) (P<0.05), while receptor activator of the NF-κB (RANK) showed a positive correlation with TG, FFA, TNF-α and leptin (LPT) (P<0.05). CT imaging demonstrated that bone mineral density and trabecular thickness were elevated compared to controls before 6 weeks, but these values were found to be lower in rats fed a high fat diet in the following weeks (P<0.05). Immunohistochemistry showed that the expression of TNF-α, Interleukin- 6 (IL-6) and peroxisome proliferator activated receptor-γ (PPAR-γ) were increased and the expression of adiponectin (APN) were diminished in rats fed a high-fat diet compared to controls at 10 weeks (P<0.05). CONCLUSION: With obesity intensifies, the release of FFA cause inflammation factor increase, resulting in bone parameters decreased.


Assuntos
Osso e Ossos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Obesidade/fisiopatologia , Adipócitos/metabolismo , Adiponectina/sangue , Animais , Densidade Óssea , Colesterol/sangue , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/sangue , Leptina/sangue , Metabolismo dos Lipídeos , Masculino , NF-kappa B/sangue , Obesidade/etiologia , PPAR gama/sangue , Ligante RANK/sangue , Ratos , Ratos Wistar , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
15.
J Diabetes ; 9(7): 699-706, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27573980

RESUMO

BACKGROUND: The higher probability of type 2 diabetes mellitus (T2DM) in the Uygur population is due to a greater waist: hip ratio and visceral fat. This study investigated DNA methylation of tumor necrosis factor-α (TNF), monocyte chemoattractant protein-1 (MCP1), and adiponectin (ADIPOQ) in visceral adipose tissue in T2DM. METHODS: Visceral adipose tissue was collected from Uygur individuals and divided into normal control (NC; n = 50), obese (Ob; n = 48), and T2DM (n = 26) groups. Expression of TNF, ADIPOQ, and MCP1 mRNA and DNA methylation status were quantified by reverse transcription-polymerase chain reaction and denaturing HPLC. RESULTS: The respective methylation-positive rate for ADIPOQ increased gradually from the NC to Ob to T2DM groups (34.0 %, 47.9 %, and 65.4 %; P < 0.05), decreased gradually for TNF (70.0 %, 47.9 %, and 26.9 %; P < 0.01), and did not differ significantly for MCP1 (0 %, 2.08 %, and 0 %). Compared with the NC group, ADIPOQ mRNA expression was significantly lower in the Ob and T2DM groups (median 0.7162 vs 0.4244 and 0.4093, respectively; P < 0.05), whereas TNF and MCP1 expression was significantly higher (median TNF expression: 0.0250 vs 0.1096 and 0.0734 respectively; median MCP1 expression 0.1588 vs 0.1937 and 0.1983, respectively; P < 0.05 for all). Expression of ADIPOQ and TNF was significantly lower in methylation-negative (median 0.7870 and 0.1988, respectively) than methylation-positive (median 0.2700 and 0.0542, respectively) groups (P < 0.01). CONCLUSIONS: Lower ADIPOQ and higher TNF and MCP1 mRNA expression in visceral adipose tissue may be correlated with obesity and T2DM in the Uygur population. Promoter DNA methylation affects expression of ADIPOQ and TNF.


Assuntos
Adiponectina/genética , Quimiocina CCL2/genética , Metilação de DNA , Diabetes Mellitus Tipo 2/genética , Gordura Intra-Abdominal/metabolismo , Fator de Necrose Tumoral alfa/genética , Adulto , Idoso , Povo Asiático/genética , China , Diabetes Mellitus Tipo 2/etnologia , Feminino , Expressão Gênica , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Obesidade/etnologia , Obesidade/genética
16.
Mediators Inflamm ; 2016: 7015620, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199507

RESUMO

In this paper, the researchers collected visceral adipose tissue from the Uygur population, which were divided into two groups: the normal control group (NC, n = 50, 18.0 kg/m(2) ≤ BMI ≤ 23.9 kg/m(2)) and the obese group (OB, n = 45, BMI ≥ 28 kg/m(2)), and then use real-time PCR to detect the mRNA expression level of key genes involved in inflammation signaling pathway. The findings suggest that, in obese status, the lower expression level of A2bAR, KLF4, and KLF15 of visceral adipose tissue may correlate with obese-dyslipidemia induced inflammation in Uygur population.


Assuntos
Dislipidemias/metabolismo , Inflamação/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Obesidade/metabolismo , Receptor A2A de Adenosina/metabolismo , Tecido Adiposo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Dislipidemias/genética , Feminino , Humanos , Inflamação/genética , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Obesidade/genética , Receptor A2A de Adenosina/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA