Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 14(1): 50, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681688

RESUMO

Parthanatos is one of the major pathways of programmed cell death in ischemic stroke characterized by DNA damage, poly (ADP-ribose) polymerases (PARP) activation, and poly (ADP-ribose) (PAR) formation. Here we demonstrate that crocetin, a natural potent antioxidant compound from Crocus sativus, antagonizes parthanatos in ischemic stroke. We reveal that mechanistically, crocetin inhibits NADPH oxidase 2 (NOX2) activation to reduce reactive oxygen species (ROS) and PAR production at the early stage of parthanatos. Meanwhile we demonstrate that PARylated hexokinase-I (HK-I) is a novel substrate of E3 ligase RNF146 and that crocetin interacts with HK-I to suppress RNF146-mediated HK-I degradation at the later stage of parthanatos, preventing mitochondrial dysfunction and DNA damage that ultimately trigger the irreversible cell death. Our study supports further development of crocetin as a potential drug candidate for preventing and/or treating ischemic stroke.


Assuntos
AVC Isquêmico , Parthanatos , Humanos , Hexoquinase/metabolismo , NADPH Oxidase 2/metabolismo , AVC Isquêmico/metabolismo , Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo
3.
Chem Biol Interact ; 365: 110047, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35917946

RESUMO

Pyrrolizidine alkaloids (PAs) are among the most significant hepatotoxins widely distributed in plant species. Incidence of liver injuries caused by PAs has been reported worldwide, and the reactive metabolites of PAs are known to play a critical role in causing the hepatotoxicity. To better understand the toxicity-induction mechanisms, we explored the interactions of PA metabolites with cellular RNA molecules, and examined their effects on the biochemical and metabolic properties of hepatic RNAs. After exposure to retrorsine, adduction on adenosine and guanosine were detected in mouse liver microsomal incubations, cultured mouse primary hepatocytes, and mouse liver tissues. NMR analysis showed that the exocyclic amino group participated in the adduction. We found drastically altered properties and metabolism of the adducted RNA such as reverse-transcriptability, translatability, and RNase-susceptibility. In addition, endogenous modification of N6-methyladenosine (m6A) was remarkably reduced.


Assuntos
Alcaloides de Pirrolizidina , RNA , Ativação Metabólica , Animais , Fígado , Camundongos , Microssomos Hepáticos/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Alcaloides de Pirrolizidina/toxicidade , RNA/metabolismo
4.
iScience ; 25(7): 104516, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35754732

RESUMO

Cellular global translation is often measured using ribosome profiling or quantitative mass spectrometry, but these methods do not provide direct information at the level of elongating nascent polypeptide chains (NPCs) and associated co-translational events. Here, we describe pSNAP, a method for proteome-wide profiling of NPCs by affinity enrichment of puromycin- and stable isotope-labeled polypeptides. pSNAP does not require ribosome purification and/or chemical labeling, and captures bona fide NPCs that characteristically exhibit protein N-terminus-biased positions. We applied pSNAP to evaluate the effect of silmitasertib, a potential molecular therapy for cancer, and revealed acute translational repression through casein kinase II and mTOR pathways. We also characterized modifications on NPCs and demonstrated that the combination of different types of modifications, such as acetylation and phosphorylation in the N-terminal region of histone H1.5, can modulate interactions with ribosome-associated factors. Thus, pSNAP provides a framework for dissecting co-translational regulations on a proteome-wide scale.

5.
J Exp Clin Cancer Res ; 41(1): 100, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292092

RESUMO

DNA methylation is one of the most important epigenetic mechanisms to regulate gene expression, which is highly dynamic during development and specifically maintained in somatic cells. Aberrant DNA methylation patterns are strongly associated with human diseases including cancer. How are the cell-specific DNA methylation patterns established or disturbed is a pivotal question in developmental biology and cancer epigenetics. Currently, compelling evidence has emerged that long non-coding RNA (lncRNA) mediates DNA methylation in both physiological and pathological conditions. In this review, we provide an overview of the current understanding of lncRNA-mediated DNA methylation, with emphasis on the roles of this mechanism in cancer, which to the best of our knowledge, has not been systematically summarized. In addition, we also discuss the potential clinical applications of this mechanism in RNA-targeting drug development.


Assuntos
Metilação de DNA/genética , Neoplasias/genética , RNA Longo não Codificante/metabolismo , Humanos
6.
Chem Biol Interact ; 351: 109748, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34801539

RESUMO

RNA molecules are essential for cell function by not only serving as genetic materials, but also providing cells with structural support and catalytic functions. Due to nucleophilicity of nucleobases, RNA molecules can react with electrophilic species thus to be "adducted". The electron-deficient agents potentially inducing adduction exist in a variety of natural sources including metabolic products of biomolecules. Although evident and readily detected in human tissue, RNA adduction remains poorly understood for their physiological and pathological function. In this article, we review a collection of exogenous and endogenous molecular species that participate in RNA adduction and elaborates on the chemical nature of their RNA adduction sites. Furthermore, we provide perspectives on the potential of RNA adducts as biomarkers of environmental insults. Finally, we project future investigations that are necessary for understanding the mechanisms of cellular toxicity of RNA adduction.


Assuntos
Carcinógenos/metabolismo , RNA/metabolismo , Alquilação , Animais , Biomarcadores/análise , Biomarcadores/química , Carcinógenos/análise , Carcinógenos/química , Humanos , Peroxidação de Lipídeos/fisiologia , RNA/análise , RNA/química
7.
J Agric Food Chem ; 69(49): 14824-14839, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851635

RESUMO

Metabolic dysfunction (MD) is a major health problem threatening the life quality of menopausal women. Saffron has been widely used in herb prescriptions for treating menopausal syndrome. However, the pharmacological effects and mechanisms of saffron are poorly understood. Here, we investigated the effect of crocin, the major ingredient of saffron and its active metabolite in blood, crocetin, on MD and lipid metabolism in ovariectomized (OVX) mice and 3T3-L1 adipocytes. The present study showed that intragastric treatment of crocin prevented weight gain, fat accumulation, and insulin resistance in OVX mice by increasing energy expenditure and fat oxidation. Mechanistically, crocin influenced adipose tissue homeostasis by regulating adipogenic and lipolytic factors, which was strongly associated with the restoration of the downregulated ERß function in white adipose tissue (WAT). In vitro, crocetin facilitated lipid metabolism in an ERß-dependent manner. Our results demonstrated the beneficial effects of crocetin/crocin-mediated intervention against metabolic dysfunction, revealing a prospective therapeutic application in menopausal women.


Assuntos
Carotenoides/farmacologia , Crocus , Receptor beta de Estrogênio , Ovariectomia/efeitos adversos , Vitamina A/farmacologia , Tecido Adiposo Branco , Animais , Crocus/química , Receptor beta de Estrogênio/genética , Feminino , Camundongos , Vitamina A/análogos & derivados
8.
J Med Chem ; 64(21): 15810-15824, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34727689

RESUMO

Fat mass obesity-associated protein (FTO) is a DNA/RNA demethylase involved in the epigenetic regulation of various genes and is considered a therapeutic target for obesity, cancer, and neurological disorders. Here, we aimed to design novel FTO-selective inhibitors by merging fragments of previously reported FTO inhibitors. Among the synthesized analogues, compound 11b, which merges key fragments of Hz (3) and MA (4), inhibited FTO selectively over alkylation repair homologue 5 (ALKBH5), another DNA/RNA demethylase. Treatment of acute monocytic leukemia NOMO-1 cells with a prodrug of 11b decreased the viability of acute monocytic leukemia cells, increased the level of the FTO substrate N6-methyladenosine in mRNA, and induced upregulation of MYC and downregulation of RARA, which are FTO target genes. Thus, Hz (3)/MA (4) hybrid analogues represent an entry into a new class of FTO-selective inhibitors.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Desenho de Fármacos , Humanos , Especificidade por Substrato , Regulação para Cima/efeitos dos fármacos
9.
Genome Biol ; 22(1): 180, 2021 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-34120636

RESUMO

BACKGROUND: Canonical nonsense-mediated decay (NMD) is an important splicing-dependent process for mRNA surveillance in mammals. However, processed pseudogenes are not able to trigger NMD due to their lack of introns. It is largely unknown whether they have evolved other surveillance mechanisms. RESULTS: Here, we find that the RNAs of pseudogenes, especially processed pseudogenes, have dramatically higher m6A levels than their cognate protein-coding genes, associated with de novo m6A peaks and motifs in human cells. Furthermore, pseudogenes have rapidly accumulated m6A motifs during evolution. The m6A sites of pseudogenes are evolutionarily younger than neutral sites and their m6A levels are increasing, supporting the idea that m6A on the RNAs of pseudogenes is under positive selection. We then find that the m6A RNA modification of processed, rather than unprocessed, pseudogenes promotes cytosolic RNA degradation and attenuates interference with the RNAs of their cognate protein-coding genes. We experimentally validate the m6A RNA modification of two processed pseudogenes, DSTNP2 and NAP1L4P1, which promotes the RNA degradation of both pseudogenes and their cognate protein-coding genes DSTN and NAP1L4. In addition, the m6A of DSTNP2 regulation of DSTN is partially dependent on the miRNA miR-362-5p. CONCLUSIONS: Our discovery reveals a novel evolutionary role of m6A RNA modification in cleaning up the unnecessary processed pseudogene transcripts to attenuate their interference with the regulatory network of protein-coding genes.


Assuntos
Adenosina/análogos & derivados , Genoma Humano , Pseudogenes , Splicing de RNA , RNA Mensageiro/genética , Seleção Genética , Adenosina/genética , Adenosina/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Destrina/genética , Destrina/metabolismo , Células HEK293 , Projeto HapMap , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA Mensageiro/metabolismo
10.
J Agric Food Chem ; 68(51): 15134-15141, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33296206

RESUMO

Methyleugenol (ME) is a ubiquitous component in spices and other culinary herbal products. A prevailing theory in ME toxicity is its ability to be metabolically activated by P450 enzymes and sulfotransferases, which initiates sequential reactions of the resulting metabolites with functional biomolecules. The present study aimed at a potential interaction between the reactive metabolites of ME and RNA. Cultured mouse primary hepatocytes were incubated with ME followed by RNA extraction and NaOH and alkaline phosphatase-based RNA hydrolysis. Three adenosine adducts were detected in the hydrolytic mixture by LC-MS/MS. The same adenosine adducts were also detected in hepatic tissues harvested from ME-treated mice. These three adducts were chemically synthesized and structurally characterized by 1H NMR. Additionally, two guanosine adducts and one cytidine adduct were detected in the in vivo samples. These results provided solid evidence that the reactive metabolites of ME attacked RNA, resulting in RNA adduction.


Assuntos
Eugenol/análogos & derivados , RNA/química , Animais , Cromatografia Líquida , Eugenol/química , Eugenol/metabolismo , Eugenol/toxicidade , Hepatócitos/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Conformação de Ácido Nucleico , RNA/metabolismo , Especiarias/efeitos adversos , Especiarias/análise , Espectrometria de Massas em Tandem
11.
Trends Neurosci ; 43(12): 1011-1023, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33041062

RESUMO

A major challenge in neurobiology in the 21st century is to understand how the brain adapts with experience. Activity-dependent gene expression is integral to the synaptic plasticity underlying learning and memory; however, this process cannot be explained by a simple linear trajectory of transcription to translation within a specific neuronal population. Many other regulatory mechanisms can influence RNA metabolism and the capacity of neurons to adapt. In particular, the RNA modification N6-methyladenosine (m6A) has recently been shown to regulate RNA processing through alternative splicing, RNA stability, and translation. Here, we discuss the emerging idea that m6A could also coordinate the transport, localization, and local translation of key mRNAs in learning and memory and expand on the notion of dynamic functional RNA states in the brain.


Assuntos
Encéfalo , RNA , Adenosina/análogos & derivados , Humanos , Plasticidade Neuronal , Neurônios
12.
J Cell Physiol ; 235(2): 1821-1837, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31432516

RESUMO

Extracellular matrix (ECM) has a marked influence on adipose tissue development. Adipose tissue formation is initiated with proliferation of preadipocytes and migration before undergoing further differentiation into mature adipocytes. Previous studies showed that collagen I (col I) provides a good substratum for 3T3-L1 preadipocytes to grow and migrate. However, it remains unclear whether and how col I regulates adipogenic differentiation of preadipocytes. This study reports that lipid accumulation, representing in vitro adipogenesis of the 3T3-L1 preadipocytes or the mouse primary adipocyte precursor cells derived from subcutaneous adipose tissue in the inguinal region is inhibited by the culture on col I, owing to downregulation of adipogenic factors. Previous study shows that col I enhances 3T3-L1 cell migration via stimulating the nuclear translocation of yes-associated protein (YAP). In this study, we report that downregulation of YAP is associated with in vitro adipogenesis of preadipocytes as well as with in vivo adipose tissue of high-fat diet fed mice. Increased expression of YAP in the cells cultured on col I-coated dishes is correlated with repression of adipogenic differentiation processes. The inactivation of YAP using YAP inhibitor, verteporfin, or YAP small-interfering RNA enhanced adipogenic differentiation and reversed the inhibitory effect of col I. Activation of YAP either by the transfection of YAP plasmid or the silence of large tumor suppressor 1 (LATS1), an inhibitory kinase of YAP, inhibited adipogenic differentiation. The results indicate that col I inhibits adipogenic differentiation via YAP activation in vitro.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/metabolismo , Adipogenia/fisiologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Colágeno Tipo I/metabolismo , Células 3T3-L1 , Animais , Dieta Hiperlipídica , Camundongos , Células-Tronco/metabolismo , Proteínas de Sinalização YAP
13.
Food Funct ; 11(1): 328-338, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31799535

RESUMO

Skeletal muscle regeneration is a complicated process, requiring the proliferation, migration and differentiation of myoblasts whose processes are highly regulated by the extracellular matrix (ECM) surrounding the muscle tissues in vivo. However, the effects of respective ECM components on the regulation of myoblast behaviors are unknown. In this study, we report on the effect of collagen I, a major ECM component in muscle tissue and a popular food supplement, on mouse C2C12 myoblast proliferation, migration and differentiation as well as the underlying mechanisms. Collagen I (col 1) enhances the migration and myogenic differentiation of C2C12 cells, but has no effect on cell proliferation. Col I significantly promotes the production and release of interleukin-6 via nuclear translocation of nuclear factor κB (NF-κB) p65. The release of IL-6 plays a critical role in the col I-enhanced migration and differentiation of C2C12 cells. Furthermore, col I increases phosphorylation of focal adhesion kinase (FAK) that is involved in the nuclear translocation of NF-κB p65. Collectively, col I enhances the migration and differentiation of C2C12 cells through IL-6 release induced by FAK/NF-κB p65 activation.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Colágeno Tipo I/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Interleucina-6/metabolismo , Mioblastos/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular , Camundongos , Desenvolvimento Muscular , Mioblastos/citologia
15.
Nat Neurosci ; 21(7): 1004-1014, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950670

RESUMO

A localized transcriptome at the synapse facilitates synapse-, stimulus- and transcript-specific local protein synthesis in response to neuronal activity. While enzyme-mediated mRNA modifications are known to regulate cellular mRNA turnover, the role of these modifications in regulating synaptic RNA has not been studied. We established low-input m6A-sequencing of synaptosomal RNA to determine the chemically modified local transcriptome in healthy adult mouse forebrains and identified 4,469 selectively enriched m6A sites in 2,921 genes as the synaptic m6A epitranscriptome (SME). The SME is functionally enriched in synthesis and modulation of tripartite synapses and in pathways implicated in neurodevelopmental and neuropsychiatric diseases. Interrupting m6A-mediated regulation via knockdown of readers in hippocampal neurons altered expression of SME member Apc, resulting in synaptic dysfunction including immature spine morphology and dampened excitatory synaptic transmission concomitant with decreased clusters of postsynaptic density-95 (PSD-95) and decreased surface expression of AMPA receptor subunit GluA1. Our findings indicate that chemical modifications of synaptic mRNAs critically contribute to synaptic function.


Assuntos
Adenosina/análogos & derivados , Prosencéfalo/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Adenosina/genética , Adenosina/metabolismo , Animais , Camundongos , Transcriptoma
16.
ACS Chem Biol ; 13(7): 1853-1861, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29297678

RESUMO

Iron is an essential transition metal species for all living organisms and plays various physiologically important roles on the basis of its redox activity; accordingly, the disruption of iron homeostasis triggers oxidative stress and cellular damage. Therefore, cells have developed sophisticated iron-uptake machinery to acquire iron while protecting cells from uncontrolled oxidative damage during the uptake process. To examine the detailed mechanism of iron uptake while controlling the redox status, it is necessary to develop useful methods with redox state selectivity, sensitivity, and organelle specificity to monitor labile iron, which is weakly bound to subcellular ligands. Here, we report the development of Mem-RhoNox to monitor local Fe(II) at the surface of the plasma membrane of living cells. The redox state-selective fluorescence response of the probe relies on our recently developed N-oxide strategy, which is applicable to fluorophores with dialkylarylamine in their π-conjugation systems. Mem-RhoNox consists of the N-oxygenated rhodamine scaffold, which has two arms, both of which are tethered with palmitoyl groups as membrane-anchoring domains. In an aqueous buffer, Ac-RhoNox, a model compound of Mem-RhoNox, shows a fluorescence turn-on response to the Fe(II) redox state-selectively. An imaging study with Mem-RhoNox and its derivatives reveals that labile Fe(II) is transiently generated during the major iron-uptake pathways: endocytotic uptake and direct transport. Furthermore, Mem-RhoNox is capable of monitoring endosomal Fe(II) in primary cultured neurons during endocytotic uptake. This report is the first example that identifies the generation of Fe(II) over the course of cellular iron-uptake processes.


Assuntos
Corantes Fluorescentes/química , Ferro/análise , Rodaminas/química , Animais , Membrana Celular/metabolismo , Endocitose , Corantes Fluorescentes/síntese química , Células Hep G2 , Hipocampo/metabolismo , Humanos , Ferro/química , Ferro/metabolismo , Camundongos Endogâmicos ICR , Oxirredução , Rodaminas/síntese química
17.
Nucleic Acids Res ; 43(19): e126, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26101260

RESUMO

Elucidating the dynamic organization of nuclear RNA foci is important for understanding and manipulating these functional sites of gene expression in both physiological and pathological states. However, such studies have been difficult to establish in vivo as a result of the absence of suitable RNA imaging methods. Here, we describe a high-resolution fluorescence RNA imaging method, ECHO-liveFISH, to label endogenous nuclear RNA in living mice and chicks. Upon in vivo electroporation, exciton-controlled sequence-specific oligonucleotide probes revealed focally concentrated endogenous 28S rRNA and U3 snoRNA at nucleoli and poly(A) RNA at nuclear speckles. Time-lapse imaging reveals steady-state stability of these RNA foci and dynamic dissipation of 28S rRNA concentrations upon polymerase I inhibition in native brain tissue. Confirming the validity of this technique in a physiological context, the in vivo RNA labeling did not interfere with the function of target RNA nor cause noticeable cytotoxicity or perturbation of cellular behavior.


Assuntos
Hibridização in Situ Fluorescente/métodos , RNA/análise , Animais , Movimento Celular , Núcleo Celular/genética , Cerebelo/química , Cerebelo/citologia , Embrião de Galinha , Células HeLa , Humanos , Células MCF-7 , Camundongos Endogâmicos ICR , Sondas de Oligonucleotídeos/síntese química , Sondas de Oligonucleotídeos/química , Imagem Óptica , RNA/metabolismo , RNA Ribossômico 28S/análise , RNA Nucleolar Pequeno/análise , Imagem com Lapso de Tempo
18.
RNA ; 18(1): 166-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22101241

RESUMO

Fluorescence in situ hybridization (FISH) is a powerful tool used in karyotyping, cytogenotyping, cancer diagnosis, species specification, and gene-expression analysis. Although widely used, conventional FISH protocols are cumbersome and time consuming. We have now developed a FISH method using exciton-controlled hybridization-sensitive fluorescent oligodeoxynucleotide (ECHO) probes. ECHO-FISH uses a 25-min protocol from fixation to mounting that includes no stringency washing steps. We use ECHO-FISH to detect both specific DNA and RNA sequences with multicolor probes. ECHO-FISH is highly reproducible, stringent, and compatible with other fluorescent cellular labeling techniques. The resolution allows detection of intranuclear speckles of poly(A) RNA in HeLa cells and dissociated hippocampal primary cultures, and mRNAs in the distal dendrites of hippocampal neurons. We also demonstrate detection of telomeric and centromeric DNA on metaphase mouse chromosomes. The simplicity of the ECHO-FISH method will likely accelerate cytogenetic and gene-expression analysis with high resolution.


Assuntos
Corantes Fluorescentes/química , Perfilação da Expressão Gênica/métodos , Hibridização in Situ Fluorescente/métodos , Oligodesoxirribonucleotídeos/química , RNA Mensageiro/análise , Animais , Células Cultivadas , DNA Satélite/química , DNA Satélite/genética , Células-Tronco Embrionárias/química , Células-Tronco Embrionárias/metabolismo , Células HeLa , Hipocampo/química , Humanos , Camundongos , Telômero/química , Telômero/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA